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Abstract

Types play an important role in modern software development. They help to identify many
possible errors at compile-time, before a program is run. Additionally, types can serve as an
added documentation for the intended use of a procedure. Further benefits are the possib-
ilities for compiler optimization, e.g. through exhaustiveness checks, and further program
analysis, e.g. program verification.
Type systems have to strike a fine balance to achieve this goal. If they are too simplistic,
they forbid many programming techniques common to untyped languages of the same pro-
gramming paradigm. In logic programming, meta-programming has for example proven to
be difficult to include into a type system, resulting in different suggested type systems allow-
ing higher-order programming. On the other hand, type systems can become too complex.
Type analysis (mostly type inference) might become undecidable, rendering the type system
basically worthless. It might also lead to confused developers baffled by error messages or
even accepted programs, leaving them with a feeling of an arbitrary type checker.
Logic Programming allows a declarative view of programs, providing a very elegant and
simple way to reason about a program. A type system would help by providing an additional
tool to talk about the program in an abstract way. However, due to its roots in untyped
first-order predicate logic, logic programming languages have traditionally been untyped.
This work provides an overview over type systems proposed for logic programming. Their
defining features are briefly described, mentioning some of the challenges arising from in-
troducing them in the context of logic programming, as well as suggested solutions to these
problems.
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Zusammenfassung

Typen spielen eine wichtige Rolle in moderner Software-Entwicklung. Sie helfen dabei, vie-
le potenzielle Fehler zur Kompilierzeit zu finden, bevor ein Programm überhaupt ausge-
führt wird. Zusätzlich können Typen als zusätzliche Dokumentation für die angedachte
Verwendung einer Prozedur dienen. Weitere Vorteile sind die Möglichkeiten zu Compiler-
Optimierungen, z.B. durch Vollständigkeitsanalysen, und zu weiterer Programmanalyse, z.B.
Software Verifikation.
Typsysteme müssen dabei gegensätzliche Ziele berücksichtigen. Sind sie zu simpel, verbieten
sie viele Programmiertechniken, die in untypisierten Sprachen desselben Programmierpa-
radigma üblich sind. In der Logik-Programmierung war z.B. Meta-Programmierung nur
sehr schwierig in Typsysteme zu integrieren. Als Resultat wurden verschiedene Typsysteme
vorgeschlagen, die Programmieren mit Prädikaten höherer Ordnung erlauben. Andererseits
kann ein Typsystem zu komplex werden. Typanalyse (vor allem Typ-Inferenz) kann unent-
scheidbar werden, wodurch das Typsystem praktisch nutzlos wird. Es kann auch Entwickler
verwirren, die von Fehlermeldungen oder unerwartet akzeptieren Programmen vor ein Rätsel
gestellt werden. Dies führt zu dem Gefühl eines willkürlichen Typ-Checkers.
Logikprogrammierung erlaubt eine deklarative Sichtweise auf das Programm, mit der es auf
elegante und einfache Art möglich ist, Schlussfolgerungen über das Programm aufzustellen.
Ein Typsystem würde dabei helfen, indem es ein weiteres Werkzeug bereitstellt, über das
Programm in abstrakter Art und Weise zu sprechen. Allerdings sind Sprachen der Logikpro-
grammierung aufgrund seiner Wurzeln in untypisierter Prädikatenlogik erster Stufe ebenfalls
untypisiert.
Diese Arbeit gibt einen Überblick über in der Literatur vorgeschlagene Typsysteme für die
Logikprogrammierung. Ihre besonderen Eigenschaften werden kurz beschrieben. Zusätzlich
werden Herausforderungen, die durch eine Einführung im Kontext der Logikprogrammierung
entstehen, sowie dazu vorgeschlagene Lösungen genannt.
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CHAPTER 1

Introduction

In programming, types are a way to formalize given meaning to raw data, e.g. bits and bytes.
In literature, especially in articles heavily influenced by mathematics, types are sometimes
called sorts. The exact definition of a type may vary between type systems, but in most
cases the intuition of types as sets of values with some shared properties and operations
is reasonably close, although Cardelli and Wegner [CW85] point out other interpretations
exist as well. A type system is a collection of types. It is monomorphic if every value has
only one type and polymorphic if a value can have multiple types.
Empirical evidence shows a good type system helps finding many common programming
mistakes, e.g. switching the arguments of a function, even before a program is run. There-
fore, a common opinion states programs above a certain size, e.g. once multiple developers
are involved, should be created with a typed language.
On the other hand, type systems might feel restrictive or confusing, leaving the programmer
with the feeling of fighting the type checker, instead of it being another pair of helpful eyes.
Together with the added verbosity of type annotations, this might contribute to explain why
Python and JavaScript, both untyped, are currently two of the most-used languages (e.g.
see [Zap21]).
Similarly, Prolog as the main logic programming language is untyped as well. This can be
traced back to first-order logic serving as the basis for the logic programming paradigm.
This work provides an overview of type systems proposed for logic programming by various
authors.
Chapter 2 provides a brief description of logic programming, introducing commonly used
terminology and providing references for further reading. It doesn’t provide detailed insight,
just enough to ensure a common terminology. The interested reader is referred to other
literature. [Llo87; BG94]
Chapter 3 focuses on descriptive type systems. They take an untyped program, describe its
clauses with types, in this context subsets of the Herbrand Universe as an over-approximation
of potentially successful values, and use them to find errors, allow for compiler optimizations,
or help with further analysis of the program.
Chapter 4 looks at prescriptive type systems. Here, types are part of and essential to the
meaning of programs. Usually, type declarations have to be provided by the programmer
at strategic locations, e.g. for all predicates, allowing the type of other expressions to be
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CHAPTER 1. INTRODUCTION 2

inferred. Special attention is brought to the type system of Mercury1, since it has a ready-
to-use compiler, allowing to try it hands-on.
Chapter 5 looks into type system features which, to my knowledge, haven’t been explored
in the context of logic programming.
Chapter 6 provides a short summary and some concluding thoughts.

1Mercury is available at https://mercurylang.org/

https://mercurylang.org/


CHAPTER 2

Logic Programming

Logic Programming stems from the idea of assigning a procedural interpretation to first order
logic. Its main building block are clauses, also called rules, taking the following form:

A0 ← A1, . . . , Am,notAm+1, . . . , notAn

Ais are atoms and not a logical connective called negation as failure. A0 is called the head (or
conclusion) of the clause and everything to the right side of the arrow its body (or premise).
A clause without a head is called a goal, one with an empty body a fact. [Llo87; BG94]
Negation as failure gives rise to non-monotonic logic (e.g. Chitta Baral and Michael Gelfond
use stable model semantics [BG94]), but is not addressed further since it has no (significant)
impact on possible type systems. For easier writing, in logic programming languages the
arrow is often replaced by the ASCII sequence :- and each clause ends with a dot “.”.
Atoms, also known as atomic formulas, have the form p(t1, . . . , tn), where tis are terms and p
is a n-ary predicate symbol. For 0-ary predicates the parentheses are usually dropped. When
talking about predicates, it is helpful to include the arity in the name to avoid confusion.
The predicate p/n specifies a predicate with name p and arity n, and is in fact different to
the predicate p/m with m 6= n.
Following [Llo87] terms are defined inductively:

• A variable is a term.
• A constant is a term.
• If f is a n-ary function symbol and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

Variables are usually written with a name starting with a capital letter, constants with a
lower case letter. Functions are in general not evaluated, instead a term consisting of the
function symbols and arguments is build. A variant called functional logic programming
exists, where evaluated functions exist in addition to predicates. Since it is possible to
encode a function as a predicate (and vice-versa if tuples exist), both from a semantics
and typing perspective, evaluated functions won’t be discussed in detail. In fact, Mercury
internally encodes every function of arity n as a predicate of arity n + 1, automatically
replacing function calls with predicate calls and unification of the extra result argument.
[Jef02]
Terms, and by extension atoms and formulas, are called ground if they do not contain any
variable. The set of all ground terms is called the Herbrand universe, the set of all ground
atoms the Herbrand base. Both are defined in terms of some program.
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CHAPTER 2. LOGIC PROGRAMMING 4

A program is run by giving an initial goal, e.g. following C convention “:- main.”. Let
← C1, . . . , Ck be the current goal, then a computation step tries to unify some Ci with
the head A of a program clause A← B1, . . . , Bn. If unification succeeds with unifying
substitution ϑ, the next current goal is ← (C1, . . . , Ci−1, B1, . . . , Bn, Ci+1, . . . , Ck)ϑ. Once
the empty clause is produced (or no unification is possible) terminate the calculation. [Llo87]
A substitution is a syntactical operation on terms and, by extension, atoms and formulas
which replaces variables with terms. A substitution ϑ is unifying for two terms t1, t2 if both
terms are equal after the substitution t1ϑ = t2ϑ. In literature, multiple different notations
are used for substitutions. In this work, choosing one notation is avoided when possible,
describing them only informally.
Example 1:
Let X be a variable, a an atom and :- p(X). the current goal. Further, let p(Y) :- u(Y,a).
and u(Z, Z). be clauses in the program. A valid computation step unifies p(X) with p(Y),
where the unifying substitution ϑp replaces the variable X with the variable Y. The new
current goal is “:- u(Y, 1).”. A possible next (and final) computation step unifies u(Y, 1)
with u(Z, Z). The corresponding substitution ϑu replaces the variable Y with the variable
Z and the variable Z with the atom a. Since the relevant clause for u/2 has no body, the
empty goal is produced resulting in the successful termination of the calculation.
In general, multiple unifications are possible for the current goal, e.g. in example 1, the
program might contain multiple clauses for p/1. Due to the deterministic nature of current
computer systems, this is usually implemented via backtracking. The selection order (which
goal atom is tried to unify with what clause head first) is dependent on the language and
sometimes even its implementation.



CHAPTER 3

Descriptive Type Systems

Descriptive type systems assign types to the terms of a previously untyped language, e.g.
Prolog. These types help to statically reason about the code, e.g. for compiler optimizations,
or identifying unsatisfiable clauses. Since the source code doesn’t contain any type inform-
ation, the type of every term has to be calculated. This process is called type inference in
contrast to type checking and type reconstruction used for prescriptive type systems. The
main advantage is the ability to continue using the same language, e.g. to continue using
well-tested libraries. In logic programming, descriptive types are usually interpreted as a
subset of the Herbrand universe, approximating the meaning of a predicate as a superset of
potentially successful program derivations.

3.1 Regular Trees as Types
One of the first type system for logic programming was proposed by Prateek Mishra in
[Mis84]. It is purely descriptive, so the user doesn’t have to provide any type information
since every type is inferred. Types are interpreted as subsets of the Herbrand universe and
described using regular trees. The type for a term t is written as T(t).
Ground regular trees (GRT) are defined in [Mis84, p.292] by the following rules:

* The empty tree Φ is a GRT.

* Any constant symbol a,b,c.. is a GRT.

* Given n GRTs, r1, . . . , rn the tuple (r1, . . . , rn) is a GRT.

* Given function symbol f and GRT r, an application fr is a GRT.

* If t1 and t2 are GRTs, then t1 + t2 is a GRT.

* If g(z) is a GRT involving variable z then z!g(z) is a GRT.

Their interpretation is specified by an interpretation function I as expected for the first four
cases. The type t1 + t2 is interpreted as the (set) union of t1 and t2. The interpretation for
z!g(z) is the smallest set of terms X satisfying X = {g(x)|x ∈ X}. The author adds the
minimal solution always exists and is given by I : z!g(z) = ∪inf

i=0{gi(Φ)}.

5



CHAPTER 3. DESCRIPTIVE TYPE SYSTEMS 6

The author also defines parameterized regular trees (PRT), denoting sets of GRTs. However,
due to issues with type inference, partially similar to those discussed in section 4.4, they are
not discussed beyond addressing problems with the presented inference algorithm.
Polymorphism in the type system is achieved through subtypes, where one type may be fully
contained in another type. Its presence is obvious from the type t1 + t2, but other types
may be supertypes as well. Since many types are infinite, solving subset relations is not a
realistic option. Instead, Mishra provides an algorithm using the GRT representation of the
involved types.
Types of predicates are over-approximations of their success sets, and are written as a tuple
of the types of its arguments. E.g. examples 3.1.1 and 3.2.11 from [Mis84], using # as an
infix tuple operator.

sub1 ( succ ( zero ) , ze ro ) .
sub1 ( succ ( succ (X) ) , succ (Y) ) :− sub1 ( succ (X) , Y) .

T( sub1 ) = z ! succ ( zero ) + succ ( z )
# z ! ze ro + succ ( z )

A full type inference algorithm is provided. One of its noteworthy properties is it only
produces tuple distributive types. Therefore, the described type system only includes tuple
distributive types as well.
Example 2:

p(a , c ) .
p (b , d ) .

T(p) = ( a+b , c+d)

Although the predicate p will only succeed with the argument-combinations (a,c) and
(b,d), the inferred type includes (b,c) and (b,d) as well. While some precision is lost, the
type is clearly correct since all success cases are included.
One of the main results is the ability to identify clauses with an empty success set, i.e.
clauses that will never succeed regardless of their arguments. This led the author to suggest
replacing the famous claim “well-typed programs do not wrong” used in prescriptive type
systems (e.g. [MO84]) with “Ill-types programs cannot succeed” as their correctness coin
phrase.
The work was one of the first on types in logic programming, thus it is mostly of theoretical
nature. Additionally, some parts of logic programming weren’t discussed.
First, negation wasn’t considered and might prove difficult to integrate. Using the naive
set difference with the Herbrand universe won’t work with supersets of the success set
(everything else will fail), so a second type interpreted as subset of the success set (guaranteed
to succeed) would be required. Interaction with negation-as-failure is unclear, so it must
also be investigated. However, there might be a more elegant way, so further research is
required to provide an answer.
Second, higher-order programming wasn’t covered. There is no obvious reason for it not
working in the presented type system, but introducing it to prescriptive type systems (see
section 4.5) has proven to be difficult.
Third, only types representable by GRTs are included. The author notes “[s]ome simple
polymorphic predicates (e.g. append and reverse) can be analyzed by an ad-hoc expansion
of the standard algorithms”. [Mis84, p.297] However, a dedicated algorithm for dealing with
PRTs is required for most polymorphic predicates.

1A typo in the type has been corrected.
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3.2 Operator Fixpoints
Nevin Heintze and Joxan Jaffar in [HJ92] explore descriptive types, they call them semantic
types, defined and calculated with different approaches. The first approach uses a collection
of formulas describing relationships between sets of atoms, e.g. used by Mishra in [Mis84].
A type is defined as a specific model, e.g. the least model, of the collection of formulas.
The second approach is based on an adaption, usually introducing an approximation, of the
immediate consequence operator TP associated with the program P . A type is defined as
the fixpoint of the adapted operator. They also mention a third approach based on flow
analysis, but don’t include it in their analysis.
Heintze and Jaffar show the types defined using set formulas and those defined with fixpoints
of approximated immediate consequence operators are equivalent, hence establishing an
equivalence between both formalism. They also present three specific type variants of varying
accuracy, only the least accurate one using tuple distributive types. The two more accurate
types are recursive sets and can be represented by a regular tree grammar. Whether this is
possible for the third type is left as an open question, but representation with a regular tree
grammar is conjectured to be possible.

3.3 Regular Types
Philip W. Dart and Justin Zobel in [DZ92] investigate regular types represented by a regular
term grammar (not to be confused with a regular grammar). These types are a generalization
of those used by Mishra in [Mis84].
With the goal of identifying whether a given type is a regular type they start by provid-
ing a pumping lemma which is a necessary, but not sufficient condition for regular types.
Improving the lemma to a more specific, at best necessary condition is left as an open
problem.
Type inference and analysis based on types require reasoning about types. The authors
provide algorithms to decide whether a regular type is empty, a subset of another regular
type and to calculate the intersection between two regular types. They show the intersection
of two regular types is a regular type as well. All three algorithms are exact and don’t rely on
approximations, e.g. in contrast to Mishra types don’t need to adhere to tuple distributivity.
For type inference, Dart and Jaffar provide an algorithm unify for type unification, gener-
ating a type unifier. Due to problems comparable to tuple-distributivity, not all types have
a most general type unifier. In consequence, unify returns a weak type unifier as an approx-
imation. The authors note that for all their algorithms using unify a weak type unifier is
sufficient. Furthermore, they show for types defined by deterministic type rules the result
is always exact. However, the question whether unify returns a minimal weak type unifier
in general is unknown and left as an open question.
The work can be viewed as a framework for creating a type system based on regular types.
It doesn’t provide any specific type system, but provides algorithms for and identifies some
properties of type systems built upon regular types. As a caveat, parametric types are
only allowed as a notational convenience. According to the authors, the results can “easily
be modified to use instantiated parametric type[s]” [DZ92, p.184], but won’t work if type
variables are involved.

3.4 Discussion
Descriptive type systems are defined without introducing new syntax or special constructs
into the language. Therefore, they allow reasoning about code based on types even for
existing code without any additional developer effort. Program verification of an untyped
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language for example usually starts by inferring types based on a descriptive type system.
In logic programming, they allow to identify unsatisfiable clauses usually caused by a pro-
gramming error. Additionally, the inferred type might provide insight into the operational
semantics of a predicate.
Nonetheless, the inferred type doesn’t always match the type intended by the developer as
shown by Lee Naish in [Nai92]. Consider for example the append predicate with its usual
definition. Then the following query is successful, even though two of the arguments are not
lists.

?− append ( [ ] , a , a ) .
true .

This manifests in the inferred type for append, described as [list(any), any, any] in
[WK20]. In a descriptive system, outside of the developer carefully checking every inferred
type, there is no way to find this mismatch since the desired type is unknown.
As a way to bridge the gap to prescriptive type systems, Tom Schrijvers, Vitor Santos Costa,
Jan Wielemaker and Bart Demoen propose an optional prescriptive type system based on
the one introduced by Mycroft and O’Keefe discussed in section 4.1. A type-safe interface
with untyped code is achieved through introduction of runtime type checking. According
to [WK20] the project appears to be abandoned, however the prolog package type_check is
available as an artifact2.
Isabel Wingen and Philipp Körner use a similar approach in [WK20] with the tool plspec.
Instead of runtime type checks, their type system includes an any type, including no type
information available as part of their type system. Type information is inferred from builtin
predicates with manually provided type information. Their type system is based on a set
of builtin types, some of them polymorphic like list(α), with subtype relations between
them. They might be combined with a union or intersection operation, resulting in types
looking very similar (not identical at least through inclusion of polymorphic types) to regular
types described in section 3.3. Their type system distinguishes between variables and ground
terms, allowing predicates to have pre- and postconditions on their arguments, thus including
mode information discussed in section 4.2. They notice problems with library code since
they are pre-compiled by modern Prolog systems. Their clauses can’t be accessed or are
wrappers of a C library. Without annotations to these libraries, the amount of inferred types
remains relatively low resulting in many variables with inferred type any. Nonetheless, the
authors report successful identification of type errors in several Prolog repositories. While a
full implementation exists, the work appears to be at an early stage resulting in sometimes
drastic performance issues. Some ideas for improving both performance and handling of
libraries are presented. Time will tell, whether they are successful resulting in a useful tool
based on static type analysis.

2type_check is available at https://www.swi-prolog.org/pack/file_details/type_check/prolog/type
_check.pl?show=src

https://www.swi-prolog.org/pack/file_details/type_check/prolog/type_check.pl?show=src
https://www.swi-prolog.org/pack/file_details/type_check/prolog/type_check.pl?show=src


CHAPTER 4

Prescriptive Type Systems

In prescriptive type systems, types are a part of the programming language. The developer
can provide a type signature, signalling his intent in a machine-verifiable way avoiding the
problems described in section 3.4. Here, the goal append([], 3, 3) would be ill-typed and
therefore without meaning. According to Frank Pfenning [Pfe92], this notion of types goes
back to Church [Chu40].
Since providing a type declarations for every value is quite tedious it is often possible to
omit them for many values. The process of filling in missing type information is called type
reconstruction and is a generalization of type checking.
Only well-typed clauses and goals have a meaning. Therefore, the well-typing has to be
ensured before the execution of a program and goal. Consequently, both type checking and
type reconstruction have to be decidable. Otherwise, a program might never be able to run,
indefinitely waiting for the type checker to report a result. In addition, type system might
have a runtime cost, e.g. by requiring type information and type checks at runtime to ensure
an execution step can only produce well-typed goals. Ideally, this is not necessary resulting in
an identical, or even improved runtime behaviour when compared to a semantically identical
code in an untyped language.

4.1 Parametric Polymorphism
The basis for basically all prescriptive type systems is the one introduced by Alan Mycroft
and Richard A. O’Keefe in [MO84], from now on abbreviated as MO type system. It is
a translation of Milner’s type system for ML [Mil78] featuring parametric polymorphism
to logic programming. Types may be defined in term of type arguments, usually called
parameters to avoid confusion with value level arguments. The first name of a type is called
a type constructor and the number of parameters specifies its arity, e.g. considering the
type list(α) its type constructor is list of arity 1, in a logic programming context often
written as list/1. The full power of parametric polymorphism is achieved through type
variables. They can be substituted with any type to form an instance of the original type,
with a pure renaming of type variables forming a type variant. For example, let α and β
be different type variables. Then list(α) and list(β) are type variants (and instances)
of each other, while list(int) is an instance (but not a variant) of both.

9
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More formally, let TConsn be the set of all type constructors of arity n and TVar the set of
all type variables. Types are defined by the following Grammar:

Type::= TVar | TConsn(Typen)

A type without any type variables, e.g. bool or list(int), is called a monotype. Otherwise,
e.g. list(α) or pair(int, β), it is a polytype. Type instances (and variants) are usually
described through type substitutions which are a mapping of type variables to types. The
syntax for definition and application of type substitutions differs between authors, thus
requiring careful reading.
In difference to [Mil78] the restriction where “mutually recursive definitions can only be used
nongenerically within their bodies” [MO84, p.297] is lifted. For example, the following ML
program presented in [MO84, p.297] is ill-typed, but its Prolog equivalent is allowed in the
described type system:
Example 3:

let rec I x = x
and f x = I (x + 1)
and g x = i f I ( x ) then 1 else 2

Since mutual recursion is prevalent in Prolog clauses, the authors note keeping this restriction
would make polymorphism practically useless.
Although no typed execution semantics has been given, the authors show that using SLD-
resolution on the corresponding untyped Prolog program, a well-typed program and resolvent
will never produce an ill-typed resolvent, i.e. won’t “go wrong”. Additionally, a typed se-
mantics together with a type reconstruction algorithm was provided in [LR91] by Lakshman
and Reddy, addressing some of the initial concerns about the type system.
Mycroft and O’Keefe propose developers supply type declarations for predicates and func-
tors, automatically inferring the types of variables. In addition to documentation by the writ-
ten form of the types, this also reduces the risk of unintended positives like append([],3,3).
Lakshman and Reddy’s algorithm allows to even omit type declarations for predicates,
providing them only for functors (e.g. as a meta-predicate :- type bool=false,true.).
However, they note type reconstruction for recursive polymorphic predicates is undecidable,
citing an earlier work showing an equivalence to semi-unification [LR91]. As a solution,
the algorithm assumes the type of a body occurrence in recursive definitions is identical to
(not just an instance of) its type signature. This would make example 3 ill-typed as well.
The authors believe this is not a serious problem in practice, referring to some functional
programming languages using the same type reconstruction algorithm.
Execution Semantics of well-typed programs in the described type system don’t depend on
the type of variables and values. Thus, it is not necessary for type information to be present
at runtime, reducing the required memory and resulting in faster execution of the program.
The MO type system doesn’t allow higher-order programming, but the authors propose
ways how it might be extended. It is interesting to note, there is no typing rule for negation
present. Adding one would pose no problem from a typing perspective (see [LR91, p.14]),
but might become redundant with the introduction of higher-order (predicate) types.

4.1.1 Head Condition
One unexpected property of the MO type system is the so-called head condition, not expli-
citly stated in [MO84] and named “Definitional Genericity” in [LR91]. It restricts the use of
any arbitrary type instance of a predicate in the head of a clause, instead only type variants
are allowed. For example, consider this extended definition presented in [Han89a] of the
append predicate violating the head condition (both type and term variables are written
with an uppercase letter):
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Example 4:

:− pred append ( l i s t (A) , l i s t (A) , l i s t (A) ) .
append ( [ 1 , 2 ] , [ 3 , 4 ] , [ 1 , 2 , 3 , 4 ] ) .
append ( [ ] , T, T) .
append ( [X | L ] , Y, [X | T] ) :− append (L , Y, T) .

In the first clause, all arguments have the type list(int) instead of the declared list(A).
Thus, the head of the clause is only an instance (list(int), list(int), list(int))
instead of (a variant of) the declared type (list(A), list(A), list(A)). This is obviously
a very constructed example; it was chosen, since it showcases problems with rejecting the
head condition very well. A more realistic example violating the head condition is a generic
print predicate.
Assuming the head condition wasn’t enforced, it would be mandatory for type information
to be present at runtime. Otherwise, there would be no way to tell which clause to try first
in the recursive call of the third clause.
Example 5:
Compare the following two queries, both initially unifying with the third clause.

?− append ( [ 5 , 1 , 2 ] , [ 3 , 4 ] , [ 5 , 1 , 2 , 3 , 4 ] ) .
?− append ( [ ” h e l l o ” ] , [ ”world ” ] , [ ” h e l l o ” , ”world ” ] ) .

The integer-query will short-cut evaluation with the specialized clause. Conversely, the
string-query will directly continue to the base case of an empty first list without considering
the specialized clause.
Among other things, Pierre Deransart and Jan–Georg Smaus discuss the head condition in
more detail in [DS01]. According to them, it can be viewed as an essential characteristic of
generic polymorphism, opposed to ad-hoc polymorphism, i.e. different behaviour based on
the type of the arguments.
Michael Hanus proposes a type system without this restriction [Han89a]. Here, normal
unification has to be replaced by a typed unification, but many cases allow for optimizations
where the type can be ignored in the unification procedure. One of the main benefits they
gain by lifting the head condition is a way of higher-order programming, using constants to
represent predicates and functions described in more detail in section 4.5.
Pascale Louvet and Olivier Ridoux take a different approach in [LR96]. They notice typing
problems with useful program identities/transformations if the head condition isn’t enforced.
As an answer, they define an extension to λProlog called λ2Prolog. They introduce a
new type Πσ.σ′, which can be interpreted as a function Type → Type. In this system,
the extended append predicate would have the type Πα.(list(α), list(α), list(α)).
Additionally, terms allow for type guards providing the ability for different runtime behaviour
depending on the type, without sacrificing the head condition in the process.They note these
type guards act like additional constraints on unification, therefore implementation can be
similar to unification in a constraint logic programming language. For type reconstruction
the authors provide an decidable algorithm based on anti-unification instead of the usual
unification-based approach. The cost for this expressiveness is a complicated type system
which might deter developers new to statically typed languages.
Another way to achieve different runtime behaviour depending on the type are type classes
described in section 4.6.

4.1.2 Interaction with Theorems for Free
Theorems for free is a concept in functional programming introduced by Philip Wadler. It
states “[e]very function of the same type satisfies the same theorem”. [Wad89, p.1]
Example 6:
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Let A,B be types, a : A → B a function from A to B and I : ∀X.X → X a polymorphic
function from any type to itself. Then it doesn’t matter in which order a and I are applied
a ◦ IA = IA′ ◦ a. Since I has to be defined independent of the type, it has to behave identical
for every type. This example was originally stated in [Wad89, Figure 1].
Functions can be encoded with predicates, so a translation of the concept to logic program-
ming should be possible. Due to the difference of functional and logic programming, a mode
and determinism system (see sections 4.2 and 4.3) might be necessary to do so. Lee Naish
provides a similar example in [Nai96a, p.6]: A predicate with type ∀T.(T, T ) and mode
(in, out) (he doesn’t consider determinism, leaving it arbitrary) must be a subset of the
identity relation.
However, if the head condition is not enforced the theorems no longer hold.
Example 7:
Let A=int, B=float and a: pred(int::in, float::out) is det be the usual cast from
int to float values, e.g. a(1, 1.0) is a solution. Further, consider the following poly-
morphic predicate p: ∀ X. pred(X::in, X::out) is multi, where the first clause is only
defined for the type int. It is only possible to define this way if the head condition is not
enforced.

:− pred p(A : : in , A : : out ) i s mult i .
p (X, Y) :− succ (X, Y) .
p(X, X) .

:− pred succ ( i n t : : in , i n t : : out ) i s det .
succ (X, Y) :− Y i s X + 1 .

Clearly, the following two goals produce different results even though they only differ in
application order of the predicates (contradicting the translated theorem from example 6).

?− p (4 , Y) , a (Y, Z ) .
Y = 5 , Z = 5 . 0 .
Y = 4 , Z = 4 . 0 .
?− a ( 4 . 0 , Y) , p(Y, Z ) .
Y = 4 . 0 , Z = 4 . 0 .

It is unclear how strong a translation of theorems for free would be for logic programming,
if it is possible at all. Nonetheless, example 7 clearly demonstrated enforcing the head
condition is a requirement for it to be possible. Further research is to required to decide
whether a type system enforcing the head condition produces useful free theorems.

4.2 Modes
Modes describe the instantiation of arguments prior to and after successful evaluation of
a predicate. If an argument is a variable it is free, if it is fully evaluated it is ground.
Depending on the instantiation of its arguments a predicate might have drastically different
runtime behaviour, demonstrated in example 8 originally given in [ZY92].
Example 8:

r ev e r s e 1 ( [X | L1 ] , L2) :− r eve r s e 1 (L1 , L3 ) , append (L3 , [X] , L2 ) .
r ev e r s e 1 ( [ ] , [ ] ) .

r e v e r s e 2 (L1 , [X | L2 ] ) :− r eve r s e 2 (L3 , L2 ) , append (L3 , [X] , L1 ) .
r ev e r s e 2 ( [ ] , [ ] ) .

append ( [ ] , L , L ) .



CHAPTER 4. PRESCRIPTIVE TYPE SYSTEMS 13

append ( [X | L1 ] , L2 , [X | L3 ] ) :− append (L1 , L2 , L3 ) .

The declarative semantics for both reverse1 and reverse2 are identical, both reversing a
list. However, using usual Prolog execution semantics, if the second argument is free prior
to evaluation of the predicate, evaluation of reverse1 produces the expected result and
reverse2 diverges. Both queries have been tested with SWI-Prolog 8.2.2.

?− r eve r s e 1 ( [ a , b ] , L ) .
L = [ b , a ]
:− r eve r s e 2 ( [ a , b ] , L ) .
% i n f i n i t e loop

In [Jac92], Dean Jacobs only looks at instantiation prior to predicate evaluation. He proposes
using a set of integers to mark ground arguments of a predicate. Later chapters already
suggest linking modes to types modeled after [Mis84] using regular trees, but only considers
ground arguments.
Joseph L. Zachary and Katherine A. Yelick explore the effect of different evaluation se-
mantics. By imposing a youngest-literal-first restriction on computation rules, they identify
a class of interpreters which diverge on exactly the same inputs for predicates (and programs
by extension) with equivalent declarative semantics and mode specification. They also in-
troduce a way to define modes for types (even though they call them sorts): For every type
T the mode anyT exists and contains all terms (including variables). In addition, the user
can define their own modes, based on functors of the type together with the modes of their
arguments. This allows to properly account for partially instantiated variables, e.g. a list
where only its length, but none of its arguments are known, which are a feature exclusive
to logic programming.
[DH88] also considers instantiation of arguments after a successful evaluation of predicate.
Its three modes are called i, o and io, linking them to data flow in the predicate.
Mercury allows mode specification by giving pre- and post-conditions about instantiation
of an argument [Jef02]. Both are automatically verified by the compiler and an important
aspect of its semantics.
Mode analysis can be done independently of a type system, thus might be regarded ortho-
gonal to it. Nonetheless, since a mode violation feels similar to a type error, e.g. a program
gets rejected by the compiler, it should be treated as an extension to type checking. Note
that one predicate may have multiple valid mode declarations.
Example 9:

:− pred l ength ( l i s t (A) , u int ) .
:− mode l ength ( in ( l i s t_ s k e l ( I ) ) , out ) .
:− mode l ength (out ( l i s t_ s k e l ( f r e e ) ) , in ) .
l ength ( [ ] , 0u ) .
l ength ( [_|T] , X) :− X = 1u + Y, l ength (T, Y) .

The mode in(I') is an abbreviation for an unchanging instantiation I', list_skel(I) is
abbreviation for a list where all the cons-cells are known with elements instantiated as I and
out(I') specifies a free variable which is instantiated with I' after successful evaluation.
Both in and out are special cases, using ground as argument in their respective parametrized
versions. The first mode of the predicate calculates the length of a list with known spine.
The second mode produces a list with specified length, where all elements are left as free
variables.
Additionally, mode and type systems synergise with each other, allowing for both more pre-
cise modes and more flexible type rules. The former is used in Mercury where instantiation
descriptions (and modes by extension) are defined for some type, e.g. [ground | free] for
a non-empty list of arbitrary length with fully instantiated first element. Mode information
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is then used to decide the evaluation order of predicates, instead of the syntactical left-to-
right order used in Prolog. The latter has been used in [DH88] to introduce subtypes into
logic programming. It is discussed in more detail in section 4.4.
Usually modes are considered from a procedural viewpoint. Lee Naish provides a declar-
ative interpretation in [Nai96a]. He proposes to use constraint regular trees to represent
polymorphic modes. However, mode inference has not been fully developed, e.g. key al-
gorithms like intersection and unification are still missing. Nonetheless, the author sees
promising indications that “constraint regular trees with a suitably rich constraint language
can form an excellent basis for mode analysis”. [Nai96a, p.11]

4.3 Determinism
Determinism information specifies how many solutions exist for a predicate for different
arguments. The determinism of a predicate depends on its mode and can be divided into
four classes. “The four classes are those that have exactly one solution, those that have at
most one solution, those that have at least one solution, and those that have any number of
solutions.” [SHCO95, p.5] Example 10 shows the mode for the append predicate, originally
given in [SHCO95] and slightly extended.
Example 10:

:− pred append ( l i s t (A) , l i s t (A) , l i s t (A) ) .
:− mode append ( in , in , in ) i s semidet . % at most one s o l u t i o n
:− mode append ( in , in , out ) i s det . % e x a c t l y one s o l u t i o n
:− mode append (out , out , in ) i s multi . % at l e a s t one s o l u t i o n
append ( [ ] , Y, Y) .
append ( [H|A] , B, [H|C] ) :− append (A, B, C) .

The append predicate has a different number of solutions dependent on the modes. If all
arguments are ground, the predicate might fail or succeed. If the first two arguments are
ground, a solution always exists with the appended list as the third argument. However, if
only the third argument is ground at least one solution always exists, e.g. the first argument
is the empty list and the second a copy of the third list. More solutions are constructed by
moving the first element of the second list to the end of the first list.
Prescriptive determinism information provides similar advantages to a prescriptive type
system. It may help eliminating errors, e.g. identifying a failing predicate that should never
fail. Furthermore, it may be used for optimizations, e.g. directly stopping after the first
solution for a deterministic mode of a predicate.
Mercury also uses determinism information to ensure no backtracking happens for predicates
with side effects. A predicate with IO must be deterministic, i.e. with exactly one solution.
Alternatively, it can also be cc_multi where the predicate is guaranteed to succeed and
execution (forcefully) stops after the first solution.
Zoltan Somogyi, Fergus Henderson and Thomas Conway note checking correctness of de-
terminism declarations is undecidable in general. Nonetheless, fast approximate (conservat-
ive) solutions exist. The authors claim they work well in practice, and my experience with
Mercury which implements the described determinism system supports this claim. For the
rare cases the approximate solution is too general, Mercury also provides pragmas forcing
the compiler to blindly trust the declared determinism.

4.4 Inclusion Polymorphism (Subtypes)
Inclusion Polymorphism, better known as subtypes, allows specifying subtype relations like
σ ≤ τ where all values (including variables) with type σ also have type τ . Since subtype
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relations form a quasi order on types, in literature type systems including this feature are also
referred to as order-sorted. One typical example for subtypes is the declaration int ≤ float,
i.e. every integer value is also a floating point value. While certainly true in a mathematical
sense, especially assuming arbitrarily large and precise numbers, programming languages
rarely include this specific subtype relation due to different runtime properties and semantics.
For example, consider the following two Prolog queries. Only the floating point version shows
rounding inaccuracies.
Example 11:

?− X i s 100000000000000000 + 2 .
X = 100000000000000002.
?− X i s 100000000000000000.0 + 2 . 0 .
X = 1 .0 e+17.

Roland Dietrich and Frank Hagl suggest an extension to the MO type system, introducing
the ability to declare subtype relations. They notice subtypes cannot be used anywhere a
corresponding supertype can be used, linking the resulting typing of output arguments to
the data flow of a predicate which can be provided by a mode system (for more detail about
modes see section 4.2). They use three data flow modes for predicate arguments: i if the
instantiation doesn’t change (input arguments), o if it is a free variable at call time (output
arguments) and io in every other case (inout arguments). Input arguments may be used
with (an instance of) the specified type or one of its subtypes, output arguments with (an
instance of) the specified type or one of its supertypes, and inout arguments only with (an
instance of) the specified type. This difference between input and output position in subtype
usage also exists in object-oriented programming languages, although there is a syntactical,
and therefore more obvious separation between them.
Similar to the MO type system, type inference rules are given as a set of Horn clauses
and adjusted to allow function symbols and variables to have more than one type. Addi-
tionally, a variable typing condition (VTC) is introduced which “guarantees that in well-
typed clauses dataflow cannot happen from a supertype occurrence to a subtype occurrence”
[DH88, p.86]. Assuming type and mode checking succeeds (including VTC), they show no
ill-typed resolvent will be produced, thus the program won’t “go wrong” in the sense of
Mycroft-O’Keefe, without the need for runtime type or mode information.
Furthermore, they sketch how the implementation of a type checking algorithm could look
like. Solving subtype relations poses the biggest challenge. Once polytypes are involved,
it is impossible to decide whether one type is the subtype of another. They introduced
conditional subtype relations (CSR) as method of formalising subtype relations depending
on parameters. Type checking then involves showing whether a set of CSRs is satisfiable.
Since the most general form of these CSRs are Horn clauses it is in general undecidable, but
there are special cases where type checking becomes decidable. [Han91, p12]
Patricia Hill and Rodney Topor in [HT92] restrict subtype relations to type constructors
of the same arity. In addition, for a subtype relation to hold they require monotonicity in
their parameters. Consider for example K and L two m-ary type constructors with K ≤ L,
then K(σ1, . . . , σm) ≤ L(τ1, . . . , τm) holds only if ∀i ∈ {1, . . . ,m}.σi ≤ τi. The authors show
type checking is decidable with these restrictions by providing a type inference algorithm
and a proof for its termination. They continue by exploring several evaluation procedures
for typed logic programs. These procedures are only sound if type information is present at
runtime, executing runtime type checks. An important caveat was raised by Deransart and
Smaus. They note some of the results have been shown to be faulty (Lemmas 1.1.7, 1.1.10,
1.2.7), affecting type systems which include subtypes [DS01]. Thus, the results in [HT92]
have to be treated with care.
François Fages and Emmanuel Coquery provide a more general result in [FC01] than Hill and
Topor, allowing subtype relations between type constructors of decreasing (or equal) arity. It
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is for example possible to define a universe type > as a supertype of every type, but it is not
possible to define int_list ≤ list(A). The authors show the constraints produced by type
checking can be solved in linear time, and those produced by type reconstruction in cubic
time, assuming the types form a lattice. Therefore, type inference is again decidable under
the described constraints. Again, runtime type checks are necessary to ensure soundness.
Since they assume a constraint logic programming language they add them to program
constraints, but translating the results to a logic programming language without constraints
solving should pose no problem. One interesting property of the type inference algorithm
is, it produces two types for predicates: the minimal type and a more permissive heuristic
type that can include type variables.
In [Han91], Michael Hanus also considers an earlier work for functional programming by
You-Chin Fuh and Prateek Mishra [FM88]. They consider the case where subtype relations
are only possible between (different) basic types, or for the same type constructor with every
parameter either being monotonic or anti-monotonic. Fuh and Mishra provide an decidable
algorithm for solving subtype constraints under these conditions. Since these results are for
functional programming, it is unknown whether in logic programming type information is
necessary at runtime.

4.5 Higher Order Types
Higher-order programming allows defining predicates and functions in term of other predic-
ates and functions, possibly unknown at compile time. Higher-order functions (and predic-
ates by extension) allow to “express the essential part of an algorithm, while abstracting
away the details that vary between different uses of that algorithm” [SHCO95, section 2.4],
allowing code reuse where it previously wouldn’t be possible.
Example 12:
The following predicate map originally presented in [SHCO95, section 2.4] transforms one
list into another, by applying a (user-defined) function-like predicate to all its arguments.

:− pred map(pred (T1 , T2) , l i s t (T1) , l i s t (T2 ) ) .
:− mode map(pred ( in , out ) i s det , in , out ) i s det .
:− mode map(pred ( in , in ) i s semidet , in , in ) i s semidet .

map(_Pred , [ ] , [ ] ) .
map(Pred , [X| Xs ] , [Y| Ys ] ) :−

c a l l ( Pred , X, Y) ,
map(Pred , Xs , Ys ) .

The problems of higher-order terms are twofold. First, according to [SHCO95] comparison
of higher-order terms are undecidable. Second, traditional techniques to allow higher-order
programming in untyped Prolog are ill-typed in polymorphic type systems strictly following
the MO type system.
Continuing his work in [Han89a], Michael Hanus proposes a type system based on first order
logic, but allowing higher-order programming in [Han89b]. This is achieved by introducing
a constant λp for every predicate p. They are linked by a predicate applyN where N is the
arity of p. The applyN-predicates are polymorphic in their arguments, but the predicate p
might not be. Therefore, defining applyN is only possible if the head condition is rejected
as described in [Han89a].
Example 13:
The binary predicates not and inc together with their corresponding constants and the
higher-order predicate map are presented. The definition of apply2 is only possible, since
the type system doesn’t enforce the head condition. It was originally presented in [Han89b]
and slightly adjusted to follow an extended Mercury syntax.
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:− type bool −−−> yes ; no .
:− type nat −−−> 0 ; s ( nat ) .
:− type l i s t (A) −−−> [ ] ; [ | ] ( A, l i s t (A) ) .

:− pred map( pred2 (A, B) , l i s t (A) , l i s t (B) ) .
map(_P, [ ] , [ ] ) .
map(P, [ E1 | L1 ] , [ E2 | L2 ] ) :− apply2 (P, E1 , E2 ) , map(P, L1 , L2 ) .

% t h i s cons t ruc t i s not par t o f Mercury
% i t mimics Haske l l −GADTs to d e f i n e the r e s p e c t i v e cons tan t s
:− type pred2 (A, B) where [

λnot : pred2 ( bool , bool ) ,
λ i n c : pred2 ( int , i n t )

] .

:− pred not ( bool , bool ) .
not ( yes , no ) .
not (no , yes ) .
:− pred i n c ( nat , nat ) .
inc (N, s (N) ) .

% here , we l i n k the λ−cons tan t s and corresponding p r e d i c a t e s
% r e j e c t i n g the head cond i t i on i s r e qu i r ed f o r d e f i n i n g app ly2
:− pred apply2 ( pred2 (A, B) , A, B) .
apply2 (λnot , B1 , B2) :− not (B1 , B2 ) .
apply2 (λ inc , I1 , I2 ) :− i n c ( I1 , I2 ) .

With this definition of map, it is possible to transform every element of an input list with
the specified predicate. This use case corresponds to the one in functional programming.

?− map(λnot , [ yes , no , no ] , L ) .
L= [ no , yes , yes ] .

Furthermore, it is possible to search for predicates which relate two lists, identifying it with
its λ-constant. Since there is only a finite number of predicates, those explicitly defined in
the program, the search for predicates is only undecidable if the predicates are undecidable
themselves. Comparison is done purely based on the result of calling a predicate with a
fixed set of arguments, not directly on higher-order terms.

?− map(P, [ 0 ] , [ s ( 0 ) ] ) .
P = λ i n c .

Obviously, defining the applyN predicate clauses can easily be automated, removing a lot
of the boilerplate code currently present in the system. Interestingly, the semantics of the
langauge is still based on first-order logic. Higher-order objects are not directly used, but
instead referred to by a name. Their application is defined through applyN-clauses, allowing
to use them like higher-order values.
Finally, they provide optimization techniques, identifying conditions when type information
is necessary at runtime. In cases they are not fulfilled, e.g. the MO type system including
the head condition, runtime type information might be removed, resulting in a faster runtime
behaviour.
Mercury takes a different approach. Here, higher-order terms are a direct part of the lan-
guage. In addition to type information, higher-order terms also include mode and determin-
ism information. Calling a higher-order predicate can be done with the builtin goal call/N,
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higher-order functions with the expression apply/N. Syntax sugar exists to allow easier us-
age. Assuming a higher-order predicate P of arity 1 and X a value with the correct type and
instantiation, it is possible to simply write P(X) instead of the slightly longer call(P, X).
One restriction placed upon higher-order types is they can’t be polymorphic. They may
contain type variables, but those have to be quantified outside of the higher-order type, e.g.
in the type of a polymorphic map predicate. [SHCO95; Jef02]

4.6 Type Classes
Type classes provide a way to use ad-hoc polymorphism in a controlled manner. They are
used with great success in functional programming languages like Haskell. Logic program-
ming and functional programming “are closely connected since both paradigms are trying
to solve the same problems with techniques that are very similar” [Fer97, p.1]. Therefore,
translating their use to logic programming seems natural.
Type classes are always defined in terms of one or more parameters, and usually define
predicate or function signatures. A common extension is the ability to declare a default im-
plementation, allowing the user to overwrite it with e.g. a more performant one if desired.
Types are declared to belong to a class by providing an instance, where explicit implement-
ations are provided for all predicates and functions without default implementation. Using
the syntax of Mercury, an example for a type class semigroup and an instance for lists of
arbitrary type is given below.
Example 14:

:− typeclass semigroup (A) where [
append (A : : in , A : : in , A : : out ) i s det

] .
:− instance semigroup ( l i s t (A) ) where [

append ( [ ] , Y, Y) .
append ( [H|X] , Y, [H| Z ] ) :− append (X, Y, Z ) .

] .

Their functions and predicates can be used either for an explicit instance, e.g. list(int),
or a type variable with a constraint (an instance must be an instance of the type class). In
the latter case, fulfilling the constraint is then required by the user of the current predicate.
All constraints on (the parameters of) a predicate are called its context. In example 15, the
type class version of q can be used with any instance of pclass, forwarding the constraint
to the user of q through the context pclass(T).
Example 15:
For this very constructed example, let p be an overloaded predicate defined for both types
pred(int) and pred(bool). Defining a predicate q using it would require a copy-and-paste
implementation to replicate the overloading of int and bool arguments. In addition, this
has to be repeated for every type we later decide to overload p with.

:− pred p( i n t : : in ) i s det .
p (_) .
:− pred p( bool : : in ) i s det .
p (_) .

:− pred q ( i n t : : in ) i s det .
q (X) :− p(X) .
:− pred q ( bool : : in ) i s det .
q (X) :− p(X) .
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However, if p is defined as part of a type class we can define q for all instances of the type
class, even user-defined ones, without any need for error-prone source code copying.

:− typeclass pc l a s s (T) where [
pred p(A : : in ) i s det

] .
:− instance pc l a s s ( i n t ) where [

p (_) .
] .
:− instance pc l a s s ( bool ) where [

p (_) .
] .

:− pred q (T) <= pc l a s s (T) .
q (T) :− p(T) .

Antonio Fernández in [Fer97] defines an extension of type classes for a prescriptive language
supporting parametric polymorphism and the ability to declare their own algebraic data
types. The MO type system supports all these requirements, meaning any extension can be
further enhanced with type classes in the described fashion.
It is possible to define a hierarchy of type classes declaring one class a subclass of another.
The class of ordered types Ord/1 for example is a subclass of all types with a equality
relation Eq/1. For a type σ, declaring an instance Ord(σ) is only possible, if an instance for
Eq(σ) exists as well. Furthermore, if a predicate has an Ord(A)-constraint for a parameter
A, it is possible to use the equality-predicate from the Eq typeclass for values with type A
without explicitly specifying a Eq(A)-constraint. Some restrictions on subtype relations are
mentioned, e.g. the hierarchy should not be cyclic; for details the reader is pointed to an
earlier work [FR96].
The author doesn’t specify any information about decidability of instance resolution. Haskell
normally uses a set of rules to ensure termination [GHC21, ch.6.8.8.3], so it is likely this is
necessary in logic programming as well.
Moreover, Fernández proposes a generalization to the class system to constructor classes.
This would allow to define type classes not only for types, but also for type constructors.
Their motivating example is a typeclass containing a map/3 predicate (in Haskell, the cor-
responding class is known as Functor) which can’t be typed to a satisfactory level without
constructor classes. In the article, the concept is limited to type constructors with 1 para-
meter, although the authors intended to study n-parametric classes in the future.
Enrique Martin-Martin in [Mar11] focuses on the implementation of type classes in logic
programming. They notice some difficulties with multi-use of non-deterministic predicates,
if type classes are implemented using a dictionary-passing scheme known from functional
programming languages like Haskell. The problem is shown in figure 1 of [Mar11] and
the associated discussion (end of p.1 to p.2) where some expected solutions are missing.
Instead, they propose an implementation based on type indices as an implicit (inserted by
the compiler) argument. Not only do they solve the described problem, they also report an
increase in efficiency compared to a dictionary-passing implementation.
Mercury uses type classes, described in [Jef02]. It supports a hierarchy of subclasses and is
implemented using a dictionary passing scheme. Instances are only allowed, when all para-
meters are “either a type with no arguments, or a polymorphic type whose arguments are
all type variables” [Mer21, ch.10.8]. This ensures uniqueness of instance declarations for (a
sequence of) types, and (according to the rules specified in [GHC21, ch.6.8.8.3]) guarantees
termination of instance resolution. Later versions of Mercury also support functional de-
pendencies, where one type of an instance uniquely determines another type [Mer21, ch.10.8].
Consider the class of (monomorphic) collections providing a member predicate for example.
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Here, the collection uniquely determines the element type which can be encoded with a func-
tional dependency. A functional dependency might help with type reconstruction, allowing
to omit some otherwise required type declarations.
Often times laws are associated with a typeclass, e.g. instances to an ordering typeclass
should only be defined for types forming a total order. However, this is no requirement and
has no impact on the addition of type classes to a type system.

4.7 Existential Types
Existential types provide a way to introduce abstract types into the language. In contrast
to specifying an abstract type through a module interface, using an existential type al-
lows “multiple implementations of a given abstract type, and most importantly allows the
construction of heterogeneous collections of different implementations of the same abstract
type”. [Jef02, p.63]
According to Luca Cardelli and Peter Wegner, not all existential types are useful [CW85],
e.g. the type ∃A.A cannot be manipulated, outside of passing it around, so it can’t be used
for any computation. They need to be sufficiently structured to be useful, e.g. a pair of a
type and a predicate for further manipulation. It is hard to imagine useful existential types in
a type system without higher-order types. In the Mercury language, such a structure might
alternatively be provided by a type class constraint. At construction of the existential type,
the compiler ensures a valid instance of the type class is used. Thus, after deconstruction
type class predicates can be used for further manipulation. Appendix A uses existential
types to store a typed predicate identifier with its applied arguments.
David Jeffrey introduced existential types to the logic programming language Mercury
[Jef02]. They noticed in contrast to most other types, construction and deconstruction
of existential types when thought of as functions have different types. For construction we
can use a value of any type, it is therefore function with a universally qualified type vari-
able. On the other hand, deconstruction produces a value of unknown type. Accordingly,
the result type of the function has to be an existentially qualified type variable. Therefore,
they provide a syntactic distinction by annotating all constructions with an existentially
qualified component with the keyword new. Deconstruction syntax is left unchanged.
Example 16:

:− type to_int −−−> some [T] f (T, pred (T, i n t ) ) .

:− pred cons t ruc t ( to_int : : out ) i s det .
c ons t ruc t (X) :− X = ’new␣ f ’ (

42 ,
pred (A : : in , B : : out ) i s det :− B = A + 12

) .

:− pred eva luate ( to_int , i n t ) .
:− mode eva luate (

in ( f ( ground , pred (A : : in , B : : out ) i s det ) ) ,
out

) i s det .
eva luate (X, R) :− X = f (V, P) , P(V, R) .

Here, the definition of an existential type, allowing conversion to an integer, as well as
example predicates for construction and deconstruction (with direct usage) are shown. All
examples were originally defined in [Jef02, p.67] and extended to full predicates.
Functional programming allows deconstruction through pattern matching in some form of
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let expression. The result type of the body of the let expression is not allowed to contain any
existentially qualified type variable. The type is not allowed to “escape” the let expression.
In logic programming, the value can be used in the whole body of the predicate. The
existentially qualified type is allowed to “escape”, with type soundness preserved through
careful handling of higher-order expressions. Multiple deconstructions of the same type
for example produce different existentially qualified type variables as they may be different
types, thus the resulting values can’t be unified (rejected with a type error). Example 17
showcases this, where even unification of two different deconstructions of the same value is
rejected.
Example 17:

:− pred dual_deconstruct ion ( to_int : : in ) .
dua l_deconstruct ion (X) :− X=f (A, _) , X=f (B, _) , A=B.
% produces a type error at A=B

The authors continue to explore the combined use of existential types and type classes. Not
only does it increase the freedom of the programmer, they also show it is possible to use
many useful object-oriented designs. Due to the popularity of object-oriented programming
they are very well understood, so the ability to use them allows us to “stand on the shoulder
of giants”.
One caveat for existential types is a small runtime overhead, since type information has
to be present at runtime. However, in most cases the added flexibility is worth the trade,
considering it is only required exactly when existential types are involved instead of all the
time like in object-oriented programming languages.

4.8 The Mercury Type System
Mercury was mentioned in many earlier sections, since it includes a combination of the
respective described features. Like many prescriptive systems, its type system is based on
the MO type system. It uses a strong mode and determinism system, guiding execution
order and providing a controlled way to incorporate side effects (e.g. IO) into the language.
The latter is achieved through uniqueness modes, threading an IO-token through the body
of a predicate. However, the instantiation checker is not fully implemented resulting in some
surprising error messages.
Example 18:

:− type t e s t (A, B) −−−> t e s t (A, B) .
:− inst t e s t (A, B) f o r t e s t /2 −−−> t e s t (A, B) .

:− pred use_ground (A : : in ) i s det .
use_ground (_) .

:− pred i n va l i d_ in s t ( t e s t ( t e s t (A, B) , C) ) .
:− mode i n va l i d_ in s t ( in ( t e s t ( t e s t ( ground , f r e e ) , I ) ) ) i s det .
i n va l i d_ in s t ( t e s t ( t e s t (A, _B) , _C) ) :− use_ground (A) .

This code should be accepted, since A is guaranteed to be ground by the specified mode.
However, in Mercury version 20.06.01 it is rejected. Variable A is reported to have instanti-
atedness free, even though it should be ground.
Mercury supports higher-order types (section 4.5), including special higher-order modes
including mode and determinism information. While they might include type variables,
they can’t be polymorphic. Any type variable appearing in a higher-order type must be
qualified by an outer scope, e.g. the type of a predicate.
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Type classes can be defined for one or more types and might be defined as a subclass of
another type class. It is possible to define functional dependencies between the parameters
of a type class. Instances for a type class can be defined for types with a known type
constructor, where all parameters are a (potentially constraint) type variable, including
types without parameters. Instance may for example be defined for int and list(T), but
not for T and list(int).
Existentially qualified type variables may be used in predicates, functions and data types.
They can be constraint by type classes, however it is not possible to use both existentially
and universal type variables in the same constraint.
Example 19:

:− typeclass some_class (T) where [ ] .
:− instance some_class ( i n t ) where [ ] .
:− typeclass mult i_c las s (S , T) where [ ] .
:− instance mult i_c las s ( int , i n t ) where [ ] .

:− a l l [A] (some [B] pred s p l i t (A, B) => some_class (B) )
<= some_class (A) .

:− mode s p l i t ( in , in ) i s semidet .
s p l i t (_, 1 4 ) .

% :− a l l [A] some [B] pred mixed (A, B) => mul t i_c la s s (A, B) .
% :− mode mixed ( in , in ) i s semidet .
% mixed (_, 14) .

:− some [B] pred mono( int , B) => mult i_c las s ( int , B) .
:− mode mono( in , in ) i s semidet .
mono(_, 1 4 ) .

The methods of the type classes are not important for this example, therefore they don’t
contain any. The type variable A is universally, B is existentially qualified. Universal quan-
tification is the default, but was specified explicitly for clarity sake. The predicate split/2
shows a predicate using both existential and universal type variables, both constraint by
a type class. On the other hand, mixed/2 would be rejected, because it tries to impose
a constraint on existential and universal type variables at the same time. As showcased
by predicate mono/2, it is possible for constraints to mention existentially quantified type
variables and ground types. If all ground types of a program are known, in combination
with overloading this can be used to simulate constraints between universal and existential
type variables. However, this is neither an elegant solution, nor does it scale very well.
Although the described limitations in implementation are annoying at times, the language
and its type system are quite flexible. An example is provided in appendix A, where an
implementation for a simple print meta interpreter for ground formulas is presented. An
proof-of-concept implementation to include free parameters in goals and predicates is easily
possible. It wasn’t included, since it would require a lot of boilerplate code without requiring,
and therefore without showing more features of the type system.
Experimental support is available for solver types, e.g. integer ranges. They get their name
from constraint solving e.g. used in constraint logic programming. Newer versions of Mercury
also provide experimental support for subtypes. No restriction was placed on the arity of
super- and subtype, but it is not possible to declare conditional subtype relations described
in [Han91]. It is possible this leads to the decidability problems described in section 4.4.
Since both are experimental, I didn’t try either of them.
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4.9 Dependent Types
Dependent types allow specifying types that depend on a value. A common example are
length-indexed vectors where the length is part of the type, e.g. vector(3) for vectors with
3 elements.
In his work to introduce dependent types into logic Programming [Pfe92], Frank Pfenning
starts defining a dependently typed λ-calculus. He starts with a similar example of array-
types carrying their respective size, providing a type for an array multiplication function
which can only be called with correctly sized arrays. However, normal “function type con-
struction → is not expressive enough for this purpose, so [he] introduce[s] the new notation
Πx : A.B for the type of a function whose argument x may be needed in the description of
the type B”. [Pfe92, p.289] He calls types constructed this way dependent function type.
Dependent types may require checking the equivalence of objects at the type level, e.g.
vector(2+3) and vector(3+2) as a result type of two different calls to an dependently typed
append function both describe the same type. The author points out equality checking of
expressions in languages with recursion (e.g. functional languages) is undecidable, implying
an undecidable and therefore unacceptable type system. Considering the example above
for example, type checking with dependent types is equivalent to statically checking array
bounds, which is known to be undecidable. Nonetheless, he claims the problem can be
avoided in logic programming.
He continues by introducing the LF logical framework for dependent types in logic pro-
gramming. It is based on encoding derivations of predicates in the proof calculus of natural
deduction. Its methodology is described as adhering to the judgments-as-types principle. Af-
terwards, he presents an implementation of this framework with the programming language
Elf.
Pfenning notes, unification in Elf is undecidable in the general case of the underlying data do-
main. His solution is to solve all “obvious” unification problems directly and leave everything
else as constraints to be solved in a later step. In addition, type reconstruction is also un-
decidable. Again, he resorts to the constraint solving algorithm, using the fact type recon-
struction can be reduced to unification. The author states in their experience, this works
well in practice and is “not a bottle-neck of the system”. [Pfe92, p.309]
Even though an implementation of the framework is shown, due to its nature of being
the first to introduce dependent types to logic programming it is a very explorative and
theoretical work.
In a later work, Frank Pfenning and Carsten Schürmann present a successor called Twelf,
again based on the LF framework. It is described as “a tool for experimentation in the
theory of programming languages and logics” [PS99, p.1]. The work provides a high-level
description of the capabilities and some success stories of Twelf, showcasing the possibilities
of a language using its type system.



CHAPTER 5

Unexplored Type Systems Features

Many forms of polymorphisms have been explored for logic programming. However, a typed
language will always reject some algorithms possible in an untyped language. There will
always be a desire for more flexible type systems, allowing to use these algorithms without
giving up the benefits of a statically typed language.
On the other hand, since types also serve as a form of specification there is a need for very
precise types, ultimately culminating in dependent types (see section 4.9). Type checking
for dependent types often becomes undecidable, therefore the goal is usually to provide as
precise types as possible while keeping type checking, and ideally type inference decidable.
Both desires can be summarised as a yearning for more type system features. This section
mentions some features which to my knowledge haven’t been explored in the context of logic
programming.
Luca Cardelli and Peter Wegner present a functional language Fun in [CW85], with the
purpose of discussing different forms of polymorphism. Interestingly, from their hierarchy
in their Figure 2 [CW85, p.516] only bounded existential and bounded quantifier, i.e. the
combination of existential types and subtypes, weren’t explored for logic programming. It is
possible, this would result in the same decidability problem as the combination of subtypes
and parametric polymorphism does, possibly allowing similar solutions by restricting valid
subtype relations.
Additionally, the combination of subtypes and type classes needs careful thought about
allowed instances and instance resolution. Should subtypes only be allowed to define an
instance to a type class if no supertype defines one, should multiple instances in the subtype
hierarchy result in dynamic dispatch like it is used in object-oriented programming languages,
or is another solution desirable? A type system including both must find an answer to this,
and possibly other questions.
With regards to higher-order programming, so far only monomorphic types where explored.
A convenient extension allows polymorphic higher-order types as well, a feature known as
RankNTypes in Haskell [GHC21].
Another feature available in Haskell are generalized algebraic data types (GADT). They
allow restricting constructors of a parametric type to a specific instance of the type.
Example 20:
Translating the example in the GHC user guide [GHC21], GADTs allow implementing a
deterministic and well-typed eval predicate for the terms of integer expressions with zero-
checking. The syntax for GADTs mimics those of type classes and functions in Mercury.

24
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:− type term (A) where [
l i t : ( i n t )=term ( i n t ) ,
succ : ( term ( i n t ))=term ( i n t ) ,
i s_zero : ( term ( i n t ))=term ( bool ) ,
i f : ( term ( bool ) , term (A) , term (A))=term (A)

] .

:− pred eva l ( term (A) : : in , A : : out ) i s det .
eva l ( l i t ( I ) , I ) .
eva l ( succ (T) , R) :− eva l (T, P) , R = P + 1 .
eva l ( i s_zero (T) , R) :− ( i f eva l (T, 0) then R=yes else R=no ) .
eva l ( i f ( yes , e1 , _e2 ) , R) :− eva l ( e1 , R) .
eva l ( i f (no , _e1 , e2 ) , R) :− eva l ( e2 , R) .

:− pred i s _ i f ( term ( bool ) , bool ) i s det .
i s _ i f ( i s_zero (_T) , no ) .
i s _ i f ( i f (_b, _e1 , _e2 ) , yes ) .

A predicate for term(bool) then can only define clauses for is_zero and if. As a con-
sequence, the is_if predicate defined above is deterministic; additional clauses for lit and
succ would be ill-typed. Additionally, when pattern matching on e.g. the constructor succ,
on the right hand side of the equation the type parameter A is known to be instantiated with
the type int. Translated to logic programming, if succ(T) is used in the head of a predicate,
we know in the body of the predicate T has type term(int). This allows R = P + 1 to be
well-typed, since at this point both R and P are known to have type int, even though the
eval-predicate is defined for terms with universally quantified parameter.
One can argue the same effect can be achieved by using several types. However, this would
require a significant amount code duplication and boilerplate code. Interestingly, the ex-
ample above is similar to those discussing the head condition (subsection 4.1.1). GADTs
might provide a controlled way to achieve a similar effect like rejecting the head condition,
without the associated repercussions.
It would be interesting to see for both concepts, whether the implementation can be trans-
lated to logic programming, possibly using similar techniques used when translating the
features described in chapters 3 and 4.



CHAPTER 6

Conclusion

This Thesis has presented various type system features, together with type systems for logic
programming implementing the respective feature. Overall, many forms of polymorphism
have been explored in the context of logic programming.
Descriptive type systems approximate the meaning of formerly untyped programs with types
as supersets of the success set of predicates. Their main success story lies in identifying
unsatisfiable clauses. However, their use beyond that remains limited, since the inferred
type often doesn’t match the intend of the developer. [Nai92]
On the other hand, prescriptive type systems include types as part of the language, rejecting
some ill-typed programs as meaningless. In logic programming, they are usually an extension
to the type system introduced by Mycroft and O’Keefe [MO84] which is a translation of the
ML type system [Mil78] featuring parametric polymorphism. Interestingly, in contrast to
functional programming which often served as an inspiration many features require type
information to be present at runtime.
Most works are of a theoretical nature, possibly providing algorithms required for an imple-
mentation and discussing their properties. Nonetheless, some implementations already exist
in a quite usable state, even though all of them would benefit from additional developer
time. Special attention was brought to the language Mercury. It has a flexible type system,
allowing the use of many patterns known from Prolog or even other programming paradigms.
Although the implementation is incomplete in some parts, it is possible to work around these
holes in the implementation, resulting in a overall pleasant development experience.

26



APPENDIX A

A Mercury Meta Interpreter

In this appendix, a meta interpreter for ground Mercury programs, printing every evaluation
step is presented. It doesn’t short-circuit, always evaluating all clauses of a predicate, as
well as all sub-formulas of disjunctions and conjunctions. The implementation should be
regarded as a proof of concept, showcasing the possibility without worrying about an elegant
implementation. It currently only supports predicates up to arity 2, with int and string as
only allowed types for arguments. An extension to more argument types and predicates with
higher arity is purely mechanical, but gets tedious very fast. An improved implementation
might be easier to extent in that regard.
Allowing non-ground arguments is possible by extending the available abstract syntax tree.
However, early experiments showed it requires a lot of extra code without providing much
additional insight about the type system. All required features were already used in the
current implementation. An extension was therefore omitted.

:− module program .

:− interface .

:− use_module i o .
:− pred main ( i o . s t a t e : : di , i o . s t a t e : : uo) i s det .

:− implementation .

:− import_module map, l i s t , bool , int , uint , s t r i n g .
:− use_module except ion .

% name type s
:− type ident_nul la ry −−−> ident_nul la ry ( s t r i n g ) .
:− type ident_unary (A) −−−> ident_unary ( s t r i n g ) .
:− type ident_binary (A, B) −−−> ident_binary ( s t r i n g ) .

:− typeclass i d ent (A) where [
func name(A)=s t r i ng ,
func i d ent ( s t r i n g )=A

27
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] .
:− instance i d ent ( ident_nul la ry ) where [

name( ident_nul la ry (Name) ) = Name,
ident (Name) = ident_nul la ry (Name)

] .
:− instance i d ent ( ident_unary (A) ) where [

name( ident_unary (Name) ) = Name,
ident (Name) = ident_unary (Name)

] .
:− instance i d ent ( ident_binary (A, B) ) where [

name( ident_binary (Name) ) = Name,
ident (Name) = ident_binary (Name)

] .

% type c l a s s e s as a c o l l e c t i o n o f requirements f o r argument t ype s
:− typeclass argument (A)

<= (
unary_store ( program , A) , b inary_store ( program , A, A) ,
b inary_store ( program , A, i n t ) ,
b inary_store ( program , int , A) ,
b inary_store ( program , A, s t r i n g ) ,
b inary_store ( program , s t r i ng , A)

) where [ ] .
:− instance argument ( i n t ) where [ ] .
:− instance argument ( s t r i n g ) where [ ] .

% atomic formulas
% I would p r e f e r to use a type parameter in s t ead o f program ,
% but type c o n s t r a i n t s on e x i s t e n t i a l t ype s can only mention
% e x i s t e n t i a l l y q u a l i f i e d type parameters or ground type s
:− type atom −−−>

nu l l a ry ( ident_nul la ry ) ;
some [A] unary ( ident_unary (A) , A) => argument (A) ;
some [A, B] binary ( ident_binary (A, B) , A, B)

=> (
argument (A) , argument (B) ,
b inary_store ( program , A, A) ,
b inary_store ( program , B, B) ,
b inary_store ( program , A, B) ,
b inary_store ( program , B, A)

) .

% goa l type
:− type goa l −−−>

con junct ion ( goal , goa l ) ;
d i s j un c t i o n ( goal , goa l ) ;
negat ion ( goa l ) ;
atomic ( atom ) .

% types wi th one typed f r e e v a r i a b l e ( unary a b s t r a c t i o n )
:− type var0 (A) −−−> var0 .
:− type fv_atom(Var ) −−−>
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fv_nul lary ( ident_nul la ry ) ;
some [A] fv_unary ( ident_unary (A) , A) => argument (A) ;
fv_unary_var ( ident_unary (Var ) , var0 (Var ) ) ;
some [A, B] fv_binary ( ident_binary (A, B) , A, B)

=> (
argument (A) , argument (B) ,
b inary_store ( program , A, A) ,
b inary_store ( program , B, B) ,
b inary_store ( program , A, B) ,
b inary_store ( program , B, A)

) ;
% c o n s t r a i n t s on ly p o s s i b l e on e x i s t e n t i a l l y q u a l i f i e d
% type v a r i a b l e s and ground type s
% use e x p l i c i t t ype s ins tead ,
% put c o n s t r a i n t s on apply_unary func t i on in s t ead
% some [B] fv_binary_var_fst ( ident_binary (Var , B) , Var , B)
% => b inary_store ( program , Var , B) ;
fv_binary_var_int ( ident_binary (Var , i n t ) , var0 (Var ) , i n t ) ;
fv_binary_var_string (

ident_binary (Var , s t r i n g ) ,
var0 (Var ) ,
s t r i n g

) ;
% some [A] fv_binary_var_snd ( ident_binary (Var , A) , A, Var)
% => b inary_store ( program , A, Var ) ;
fv_binary_int_var ( ident_binary ( int , Var ) , int , var0 (Var ) ) ;
fv_binary_string_var (

ident_binary ( s t r i ng , Var ) ,
s t r i ng ,
var0 (Var )

) ;
fv_binary_var_both (

ident_binary (Var , Var ) ,
var0 (Var ) ,
var0 (Var )

) .

% types wi th one f r e e type v a r i a b l e ( unary a b s t r a c t i o n )
:− type fv_goal (Var ) −−−>

fv_conjunct ion ( fv_goal (Var ) , fv_goal (Var ) ) ;
f v_d i s junc t i on ( fv_goal (Var ) , fv_goal (Var ) ) ;
fv_negation ( fv_goal (Var ) ) ;
fv_atomic ( fv_atom(Var ) ) .

:− func apply_unary ( fv_goal (A) , A)=goa l i s det <= argument (A) .
apply_unary ( fv_conjunct ion (Goal0 , Goal1 ) , A)

= con junct ion ( apply_unary (Goal0 , A) , apply_unary (Goal1 , A) ) .
apply_unary ( fv_d i s junc t i on (Goal0 , Goal1 ) , A)

= d i s j un c t i o n ( apply_unary (Goal0 , A) , apply_unary (Goal1 , A) ) .
apply_unary ( fv_negation (Goal ) , A)

= negat ion ( apply_unary (Goal , A) ) .
apply_unary ( fv_atomic ( fv_nul lary ( Nul lary ) ) , _A)
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= atomic ( nu l l a ry ( Nul lary ) ) .
apply_unary ( fv_atomic ( fv_unary (Unary , X) ) , _A)

= atomic ( ’new␣unary ’ (Unary , X) ) .
apply_unary ( fv_atomic ( fv_unary_var (Unary , var0 ) ) , A)

= atomic ( ’new␣unary ’ (Unary , A) ) .
apply_unary ( fv_atomic ( fv_binary ( Binary , X, Y) ) , _A)

= atomic ( ’new␣binary ’ ( Binary , X, Y) ) .
% apply_unary ( fv_atomic ( fv_binary_var_fst ( Binary , var0 , B) ) , A)
% = atomic ( ’ new binary ’ ( Binary , A, B) ) .
apply_unary ( fv_atomic ( fv_binary_var_int ( Binary , var0 , B) ) , A)

= atomic ( ’new␣binary ’ ( Binary , A, B) ) .
apply_unary ( fv_atomic ( fv_binary_var_string ( Binary , var0 , B) ) , A)

= atomic ( ’new␣binary ’ ( Binary , A, B) ) .
% apply_unary ( fv_atomic ( fv_binary_var_snd ( Binary , A, var0 ) ) , B)
% = atomic ( ’ new binary ’ ( Binary , A, B) ) .
apply_unary ( fv_atomic ( fv_binary_int_var ( Binary , A, var0 ) ) , B)

= atomic ( ’new␣binary ’ ( Binary , A, B) ) .
apply_unary ( fv_atomic ( fv_binary_string_var ( Binary , A, var0 ) ) , B)

= atomic ( ’new␣binary ’ ( Binary , A, B) ) .
apply_unary ( fv_atomic ( fv_binary_var_both ( Binary , var0 , var0 ) ) , A)

= atomic ( ’new␣binary ’ ( Binary , A, A) ) .

% types wi th up to 2 f r e e v a r i a b l e s ( b inary a b s t r a c t i o n )
:− type var1 (A) −−−> var1 .
:− type fv2_atom (Var0 , Var1 )−−−>

fv2_nul lary ( ident_nul la ry ) ;
some [A] fv2_unary ( ident_unary (A) , A) => argument (A) ;
fv2_unary_var0 ( ident_unary (Var0 ) , var0 (Var0 ) ) ;
fv2_unary_var1 ( ident_unary (Var1 ) , var1 (Var1 ) ) ;
some [A, B] fv2_binary ( ident_binary (A, B) , A, B)

=> (
argument (A) , argument (B) ,
b inary_store ( program , A, A) ,
b inary_store ( program , B, B) ,
b inary_store ( program , A, B) ,
b inary_store ( program , B, A)

) ;
% c o n s t r a i n t s on ly p o s s i b l e on e x i s t e n t i a l l y q u a l i f i e d
% type v a r i a b l e s and ground type s
% some [B] fv2_binary_var0_fst (
% ident_binary (Var0 , B) ,
% var0 (Var0 ) ,
% B
% ) => b inary_store ( program , Var0 , B) ;
fv2_binary_var0_int ( ident_binary (Var0 , i n t ) , var0 (Var0 ) , i n t ) ;
fv2_binary_var0_string (

ident_binary (Var0 , s t r i n g ) ,
var0 (Var0 ) ,
s t r i n g

) ;
% some [A] fv2_binary_var0_snd (
% ident_binary (Var0 , A) ,
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% A,
% var0 (Var0 )
% ) => b inary_store ( program , A, Var0 ) ;
fv2_binary_int_var0 ( ident_binary ( int , Var0 ) , int , var0 (Var0 ) ) ;
fv2_binary_string_var0 (

ident_binary ( s t r i ng , Var0 ) ,
s t r i ng ,
var0 (Var0 )

) ;
fv2_binary_var0_both (

ident_binary (Var0 , Var0 ) ,
var0 (Var0 ) ,
var0 (Var0 )

) ;
% some [B] fv2_binary_var1_fst (
% ident_binary (Var1 , B) ,
% var1 (Var1 ) ,
% B
% ) => b inary_store ( program , Var1 , B) ;
% some [A] fv2_binary_var1_snd (
% ident_binary (Var1 , A) ,
% A,
% var1 (Var1 )
% ) => ( b inary_store ( program , A, Var1 ) ;
fv2_binary_var1_int ( ident_binary (Var1 , i n t ) , var1 (Var1 ) , i n t ) ;
fv2_binary_var1_string (

ident_binary (Var1 , s t r i n g ) ,
var1 (Var1 ) ,
s t r i n g

) ;
fv2_binary_int_var1 ( ident_binary ( int , Var1 ) , int , var1 (Var1 ) ) ;
fv2_binary_string_var1 (

ident_binary ( s t r i ng , Var1 ) ,
s t r i ng ,
var1 (Var1 )

) ;
fv2_binary_var1_both (

ident_binary (Var1 , Var1 ) ,
var1 (Var1 ) ,
var1 (Var1 )

) ;
fv2_binary_var0_var1 (

ident_binary (Var0 , Var1 ) ,
var0 (Var0 ) ,
var1 (Var1 )

) ;
fv2_binary_var1_var0 (

ident_binary (Var1 , Var0 ) ,
var1 (Var1 ) ,
var0 (Var0 )

) .
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:− type fv2_goal (Var0 , Var1 ) −−−>
fv2_conjunct ion ( fv2_goal (Var0 , Var1 ) , fv2_goal (Var0 , Var1 ) ) ;
f v2_d i s junc t i on ( fv2_goal (Var0 , Var1 ) , fv2_goal (Var0 , Var1 ) ) ;
fv2_negation ( fv2_goal (Var0 , Var1 ) ) ;
fv2_atomic ( fv2_atom (Var0 , Var1 ) ) .

:− func apply_binary ( fv2_goal (A, B) , A, B)=goa l i s det
<= (

argument (A) , argument (B) ,
b inary_store ( program , A, A) , b inary_store ( program , B, B) ,
b inary_store ( program , A, B) , b inary_store ( program , B, A)

) .
apply_binary ( fv2_conjunct ion (Goal0 , Goal1 ) , A, B)

= con junct ion (
apply_binary (Goal0 , A, B) ,
apply_binary (Goal1 , A, B)

) .
apply_binary ( fv2_d i s junc t i on (Goal0 , Goal1 ) , A, B)

= d i s j un c t i o n (
apply_binary (Goal0 , A, B) ,
apply_binary (Goal1 , A, B)

) .
apply_binary ( fv2_negation (Goal ) , A, B)

= negat ion ( apply_binary (Goal , A, B) ) .
apply_binary ( fv2_atomic ( fv2_nul lary ( Nul lary ) ) , _A, _B)

= atomic ( nu l l a ry ( Nul lary ) ) .
apply_binary ( fv2_atomic ( fv2_unary (Unary , X) ) , _A, _B)

= atomic ( ’new␣unary ’ (Unary , X) ) .
apply_binary ( fv2_atomic ( fv2_unary_var0 (Unary , var0 ) ) , A, _B)

= atomic ( ’new␣unary ’ (Unary , A) ) .
apply_binary ( fv2_atomic ( fv2_unary_var1 (Unary , var1 ) ) , _A, B)

= atomic ( ’new␣unary ’ (Unary , B) ) .
apply_binary ( fv2_atomic ( fv2_binary ( Binary , X, Y) ) , _A, _B)

= atomic ( ’new␣binary ’ ( Binary , X, Y) ) .
% apply_binary (
% fv2_atomic ( fv2_binary_var0_fst ( Binary , var0 , B) ) ,
% A,
% _B
% ) = atomic ( ’ new binary ’ ( Binary , A, B) ) .
apply_binary (

fv2_atomic ( fv2_binary_var0_int ( Binary , var0 , Y) ) ,
X,
_B

) = atomic ( ’new␣binary ’ ( Binary , X, Y) ) .
apply_binary (

fv2_atomic ( fv2_binary_var0_string ( Binary , var0 , Y) ) ,
X,
_B

) = atomic ( ’new␣binary ’ ( Binary , X, Y) ) .
% apply_binary (
% fv2_atomic ( fv2_binary_var0_snd ( Binary , A, var0 ) ) ,
% Y,
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% _B
% ) = atomic ( ’ new binary ’ ( Binary , X, Y) ) .
apply_binary (

fv2_atomic ( fv2_binary_int_var0 ( Binary , X, var0 ) ) ,
Y,
_B

) = atomic ( ’new␣binary ’ ( Binary , X, Y) ) .
apply_binary (

fv2_atomic ( fv2_binary_string_var0 ( Binary , X, var0 ) ) ,
Y,
_B

) = atomic ( ’new␣binary ’ ( Binary , X, Y) ) .
apply_binary (

fv2_atomic ( fv2_binary_var0_both ( Binary , var0 , var0 ) ) ,
A,
_B

) = atomic ( ’new␣binary ’ ( Binary , A, A) ) .
% apply_binary (
% fv2_atomic ( fv2_binary_var1_fst ( Binary , var1 , Y) ) ,
% _A,
% X
% ) = atomic ( ’ new binary ’ ( Binary , X, Y) ) .
apply_binary (

fv2_atomic ( fv2_binary_var1_int ( Binary , var1 , Y) ) ,
_A,
X

) = atomic ( ’new␣binary ’ ( Binary , X, Y) ) .
apply_binary (

fv2_atomic ( fv2_binary_var1_string ( Binary , var1 , Y) ) ,
_A,
X

) = atomic ( ’new␣binary ’ ( Binary , X, Y) ) .
% apply_binary (
% fv2_atomic ( fv2_binary_var1_snd ( Binary , A, var1 ) ) ,
% _A,
% B
% ) = atomic ( ’ new binary ’ ( Binary , A, B) ) .
apply_binary (

fv2_atomic ( fv2_binary_int_var1 ( Binary , X, var1 ) ) ,
_A,
Y

) = atomic ( ’new␣binary ’ ( Binary , X, Y) ) .
apply_binary (

fv2_atomic ( fv2_binary_string_var1 ( Binary , X, var1 ) ) ,
_A,
Y

) = atomic ( ’new␣binary ’ ( Binary , X, Y) ) .
apply_binary (

fv2_atomic ( fv2_binary_var1_both ( Binary , var1 , var1 ) ) ,
_A,
B

) = atomic ( ’new␣binary ’ ( Binary , B, B) ) .



APPENDIX A. A MERCURY META INTERPRETER 34

apply_binary (
fv2_atomic ( fv2_binary_var0_var1 ( Binary , var0 , var1 ) ) ,
A,
B

) = atomic ( ’new␣binary ’ ( Binary , A, B) ) .
apply_binary (

fv2_atomic ( fv2_binary_var1_var0 ( Binary , var1 , var0 ) ) ,
A,
B

) = atomic ( ’new␣binary ’ ( Binary , B, A) ) .

% program ( i . e . a l l c l a u s e s )
:− type program −−−>

program (
nu l l a ry : :map( ident_nul lary , l i s t ( goa l ) ) ,
unary_int : :map( ident_unary ( i n t ) , l i s t ( fv_goal ( i n t ) ) ) ,
unary_str ing

: :map( ident_unary ( s t r i n g ) , l i s t ( fv_goal ( s t r i n g ) ) ) ,
b inary_int_int : :map(

ident_binary ( int , i n t ) ,
l i s t ( fv2_goal ( int , i n t ) )

) ,
b inary_st r ing_st r ing : :map(

ident_binary ( s t r i ng , s t r i n g ) ,
l i s t ( fv2_goal ( s t r i ng , s t r i n g ) )

) ,
b inary_str ing_int : :map(

ident_binary ( s t r i ng , i n t ) ,
l i s t ( fv2_goal ( s t r i ng , i n t ) )

) ,
b inary_int_str ing : :map(

ident_binary ( int , s t r i n g ) ,
l i s t ( fv2_goal ( int , s t r i n g ) )

)
) .

% custom c lauses , f a i l u r e means no custom c l au s e
:− typeclass nu l l a ry_sto re (Program) where [

func get_nul lary (Program , ident_nul la ry )= l i s t ( goa l ) i s semidet
] .
:− typeclass unary_store (Program , A) <= bui l t in_unary (A) where [

func get_unary (Program , ident_unary (A) )
=l i s t ( fv_goal (A) ) i s semidet

] .
:− typeclass binary_store (Program , A, B)

<= bu i l t in_b inary (A, B) where [
func get_binary (Program , ident_binary (A, B) )

=l i s t ( fv2_goal (A, B) ) i s semidet
] .

:− instance nu l l a ry_sto re ( program ) where [
get_nul lary (Program , Name) = search ( nu l l a ry (Program ) , Name)
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] .

:− instance unary_store ( program , i n t ) where [
get_unary (Program , Name) = search ( unary_int (Program ) , Name)

] .
:− instance unary_store ( program , s t r i n g ) where [

get_unary (Program , Name) = search ( unary_str ing (Program ) , Name)
] .

:− instance binary_store ( program , int , i n t ) where [
get_binary (Program , Name)

= search ( binary_int_int (Program ) , Name)
] .
:− instance binary_store ( program , s t r i ng , s t r i n g ) where [

get_binary (Program , Name)
= search ( b inary_st r ing_st r ing (Program ) , Name)

] .
:− instance binary_store ( program , s t r i ng , i n t ) where [

get_binary (Program , Name)
= search ( b inary_str ing_int (Program ) , Name)

] .
:− instance binary_store ( program , int , s t r i n g ) where [

get_binary (Program , Name)
= search ( b inary_int_str ing (Program ) , Name)

] .

% b u i l t i n c l a u s e s
% i f the p r e d i c a t e f a i l s , no p r e d i c a t e o f the name ,
% a r i t y and type was conf igured ,
% otherw i s e i t a lways succeeds ,
% the r e s u l t i s re turned in the bool−argument .
:− pred bu i l t i n_nu l l a r y ( ident_nul la ry : : in , bool : : out ) i s semidet .
bu i l t i n_nu l l a r y ( ident_nul la ry ( ” t rue ” ) , R)

:− P=((pred ) i s semidet :− true ) , R=pred_to_bool (P) .
bu i l t i n_nu l l a r y ( ident_nul la ry ( ” f a l s e ” ) , R)

:− P=((pred ) i s semidet :− f a l s e ) , R=pred_to_bool (P) .
bu i l t i n_nu l l a r y ( ident_nul la ry ( ” f a i l ” ) , R)

:− P=((pred ) i s semidet :− f a i l ) , R=pred_to_bool (P) .

:− typeclass bui l t in_unary (A) where [
pred bui l t in_unary ( ident_unary (A) : : in , A : : in , bool : : out )

i s semidet
] .
:− instance bui l t in_unary ( i n t ) where [

bu i l t in_unary ( ident_unary ( ” even ” ) , N, R)
:− R=pred_to_bool ( even (N) ) ,

bui l t in_unary ( ident_unary ( ”odd” ) , N, R)
:− R=pred_to_bool ( even (N) )

] .
:− instance bui l t in_unary ( s t r i n g ) where [

bu i l t in_unary ( ident_unary ( ” is_empty” ) , S , R)
:− R=pred_to_bool ( is_empty (S ) )



APPENDIX A. A MERCURY META INTERPRETER 36

] .

:− typeclass bu i l t in_b inary (A, B) where [
pred bu i l t in_b inary ( ident_binary (A, B) , A, B, bool ) ,
mode bu i l t in_b inary ( in , in , in , out ) i s semidet

] .
:− instance bu i l t in_b inary ( int , i n t ) where [

bu i l t in_b inary ( ident_binary ( ”=” ) , A, B, R)
:− R=pred_to_bool ( (pred ) i s semidet :− A=B) ,

bu i l t in_b inary ( ident_binary ( ”>” ) , A, B, R)
:− R=pred_to_bool ( (pred ) i s semidet :− A>B)

] .
:− instance bu i l t in_b inary ( s t r i ng , s t r i n g ) where [

bu i l t in_b inary ( ident_binary ( ”=” ) , A, B, R)
:− R=pred_to_bool ( (pred ) i s semidet :− A=B) ,

bu i l t in_b inary ( ident_binary ( ” s u f f i x ” ) , A, B, R)
:− R=pred_to_bool ( (pred ) i s semidet :− s u f f i x (A, B) )

] .
:− instance bu i l t in_b inary ( s t r i ng , i n t ) where [

bu i l t in_b inary ( ident_binary ( ” l ength ” ) , A, B, R)
:− R=pred_to_bool ( (pred ) i s semidet :− l ength (A, B) )

] .
:− instance bu i l t in_b inary ( int , s t r i n g ) where [

bu i l t in_b inary ( ident_binary ( _Ident ) , _A, _B, _R) :− f a i l
] .

% trace meta i n t e r p r e t e r
% unknown i d e n t i f i e r s ( n e i t h e r in program , nor con f i gured b u i l t i n )
% throw a s t r in g −excep t i on
% r e s u l t i s s t o r ed as a bool ,
% to a l l ow running IO ( de t or cc_multi r e qu i r ed )
:− pred demo_trace ( goal , program , bool , i o . s ta te , i o . s t a t e ) .
:− mode demo_trace ( in , in , out , di , uo) i s det .
demo_trace (Goal , Program , Result , ! IO)

:− demo_trace (Goal , Program , Result , 0u , ! IO ) .

:− pred demo_trace ( goal , program , bool , uint , i o . s ta te , i o . s t a t e ) .
:− mode demo_trace ( in , in , out , in , di , uo) i s det .
demo_trace ( con junct ion (A, B) , Program , Result , Depth , ! IO)

:− i o . wr i t e_s t r ing ( n l_ identat ion (Depth ) ++ ”AND( ” , ! IO ) ,
demo_trace (A, Program , RA, Depth + 1u , ! IO ) ,
i o . wr i t e_s t r ing ( n l_ identat ion (Depth ) ++ ” , ” , ! IO ) ,
demo_trace (B, Program , RB, Depth + 1u , ! IO ) ,
Result=and (RA, RB) ,
i o . wr i t e_s t r ing (

n l_ identat ion (Depth ) ++ ” ) ␣=␣” ++ s t r i n g ( Result ) ,
! IO

) .
demo_trace ( d i s j un c t i o n (A, B) , Program , Result , Depth , ! IO)

% t h i s meta−i n t e r p r e t e r w i l l NOT s h o r t c u t on succe s s o f A!
:− i o . wr i t e_s t r ing ( n l_ identat ion (Depth ) ++ ”OR( ” , ! IO ) ,

demo_trace (A, Program , RA, Depth + 1u , ! IO ) ,
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i o . wr i t e_s t r ing ( n l_ identat ion (Depth ) ++ ” , ” , ! IO ) ,
demo_trace (B, Program , RB, Depth + 1u , ! IO ) ,
Result=or (RA, RB) ,
i o . wr i t e_s t r ing (

n l_ identat ion (Depth ) ++ ” ) ␣=␣” ++ s t r i n g ( Result ) ,
! IO

) .
demo_trace ( negat ion (Goal ) , Program , Result , Depth , ! IO)

:− i o . wr i t e_s t r ing ( n l_ identat ion (Depth ) ++ ”NOT( ” , ! IO ) ,
demo_trace (Goal , Program , R, Depth + 1u , ! IO ) ,
Result=not (R) ,
i o . wr i t e_s t r ing (

n l_ identat ion (Depth ) ++ ” ) ␣=␣” ++ s t r i n g ( Result ) ,
! IO

) .
demo_trace ( atomic ( nu l l a ry ( Nul lary ) ) , Program , Result , Depth , ! IO)

:− i f Goals=get_nul lary (Program , Nul lary )
then

i o . wr i t e_s t r ing (
n l_ identat ion (Depth ) ++ name( Nul lary ) ++ ”␣:−␣ [ ” ,
! IO

) ,
demo_trace_list (

Goals ,
Program ,
Result ,
Depth + 1u ,
! IO

) ,
i o . wr i t e_s t r ing (

n l_ identat ion (Depth ) ++ ” ] ␣=␣” ++ s t r i n g ( Result ) ,
! IO

)
else i f bu i l t i n_nu l l a r y ( Nullary , R)
then

R=Result ,
Msg = ” bu i l t i n ␣” ++ name( Nul lary )

++ ”␣=␣” ++ s t r i n g ( Result ) ,
i o . wr i t e_s t r ing ( n l_ identat ion (Depth ) ++ Msg , ! IO)

else
except ion . throw (

”Unknown␣ nu l l a ry ␣ p r ed i c a t e : ␣” ++ name( Nul lary )
) .

demo_trace ( atomic ( unary (Unary , A) ) , Program , Result , Depth , ! IO)
:− Desc r ip t i on = name(Unary ) ++ ” ( ” ++ s t r i n g (A) ++ ” ) ” ,
( i f Fv_Goals=get_unary (Program , Unary )
then

i o . wr i t e_s t r ing (
n l_ identat ion (Depth ) ++ Desc r ip t i on ++ ”␣:−␣ [ ” ,
! IO

) ,
Goals = map(
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func (Fv_Goal)=apply_unary (Fv_Goal , A) ,
Fv_Goals

) ,
demo_trace_list (

Goals ,
Program ,
Result ,
Depth + 1u ,
! IO

) ,
i o . wr i t e_s t r ing (

n l_ identat ion (Depth ) ++ ” ] ␣=␣” ++ s t r i n g ( Result ) ,
! IO

)
else i f bui l t in_unary (Unary , A, R)

then
R=Result ,
Msg = ” bu i l t i n ␣” ++ Desc r ip t i on

++ ”␣=␣” ++ s t r i n g ( Result ) ,
i o . wr i t e_s t r ing ( n l_ identat ion (Depth ) ++ Msg , ! IO)

else
except ion . throw (

”Unknown␣unary␣ p r ed i c a t e : ␣” ++ name(Unary )
)

) .
demo_trace (

atomic ( binary ( Binary , A, B) ) ,
Program ,
Result ,
Depth ,
! IO

) :− Desc r ip t i on = name( Binary ) ++ ” ( ” ++ s t r i n g (A)
++ ” , ␣” ++ s t r i n g (B) ++ ” ) ” ,

( i f Fv2_Goals=get_binary (Program , Binary )
then

i o . wr i t e_s t r ing (
n l_ identat ion (Depth ) ++ Desc r ip t i on ++ ”␣:−␣ [ ” ,
! IO

) ,
Goals=map(

func (Fv2_Goal)=apply_binary (Fv2_Goal , A, B) ,
Fv2_Goals

) ,
demo_trace_list (

Goals ,
Program ,
Result ,
Depth + 1u ,
! IO

) ,
i o . wr i t e_s t r ing (

n l_ identat ion (Depth ) ++ ” ] ␣=␣” ++ s t r i n g ( Result ) ,
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! IO
)

else i f bu i l t in_b inary ( Binary , A, B, R)
then

R=Result ,
Msg = ” bu i l t i n ␣” ++ Desc r ip t i on

++”␣=␣” ++ s t r i n g ( Result ) ,
i o . wr i t e_s t r ing ( n l_ identat ion (Depth ) ++ Msg , ! IO)

else
except ion . throw (

”Unknown␣ b i l l a r y ␣ p r ed i c a t e : ␣” ++ name( Binary )
)

) .

:− pred demo_trace_list (
l i s t ( goa l ) : : in ,
program : : in ,
bool : : out ,
u int : : in ,
i o . s t a t e : : di ,
i o . s t a t e : : uo

) i s det .
demo_trace_list ( [ ] , _Program , Result , _Depth , ! IO) :− Result=no .
demo_trace_list ( [H | T] , Program , Result , Depth , ! IO) :−

demo_trace (H, Program , RH, Depth , ! IO ) ,
i o . wr i t e_s t r ing ( ” , ” , ! IO ) ,
demo_trace_list (T, Program , RT, Depth , ! IO ) ,
Result = or (RH, RT) .

:− func i d en ta t i on ( uint , s t r i n g )= s t r i n g i s det .
i d en ta t i on (N, Star t ) = (

i f N = 0u
then Star t
else i d en ta t i on (N − 1u , Star t ) ++ ”␣␣”

) .

:− func n l_identat ion ( u int )= s t r i n g i s det .
n l_ identat ion (N) = iden ta t i on (N, ”\n” ) .

% :− pred main( io . s t a t e : : di , i o . s t a t e : : uo ) i s de t .
main ( ! IO) :−

n u l l a r i e s ( Nu l l a r i e s ) ,
unary_ints ( UnaryInts ) ,
Program = program (

Nu l l a r i e s ,
UnaryInts ,
i n i t ,
i n i t ,
i n i t ,
i n i t ,
i n i t

) ,
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Query = atomic ( nu l l a ry ( ident ( ”p0” ) ) ) ,
demo_trace (Query , Program , Result , ! IO ) ,
i o . wr i t e_s t r ing ( ”\ nResult ␣=␣” ++ s t r i n g ( Result ) ++ ”\n” , ! IO ) .

:− pred n u l l a r i e s (map( ident_nul lary , l i s t ( goa l ) ) : : out ) i s det .
n u l l a r i e s (Map) :−

P0 = [
atomic ( nu l l a ry ( ident ( ” f a i l ” ) ) ) ,
d i s j un c t i o n (

atomic ( nu l l a ry ( ident ( ” f a l s e ” ) ) ) ,
atomic ( ’new␣unary ’ ( ident ( ”q1” ) , 3 ) )

) ,
negat ion ( atomic ( nu l l a ry ( ident ( ” t rue ” ) ) ) )

] ,
Map = se t ( i n i t , i dent ( ”p0” ) , P0 ) .

:− pred unary_ints (map( ident_unary ( i n t ) , l i s t ( fv_goal ( i n t ) ) ) ) .
:− mode unary_ints (out ) i s det .
unary_ints (Map) :−

Q1 = [
fv_atomic ( fv_binary_var_int ( ident ( ”>” ) , var0 , 5 ) ) ,
fv_atomic ( ’new␣ fv_binary ’ (

ident ( ”=” ) ,
”Hel lo , ␣world ! ” ,
”Hel lo , ␣world ! ”

) )
] ,
Map = se t ( i n i t , i dent ( ”q1” ) , Q1 ) .
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