
INSTITUT FÜR INFORMATIK
Lehr- und Forschungseinheit für

Programmier- und Modellierungssprachen

Oettingenstraße 67 D–80538 München

Grouping Structures for
Semistructured Data: Enhancing

Data Modelling and Data Retrieval

Sebastian Schaffert

Diplomarbeit

Beginn der Arbeit: 20. Oktober 2000
Abgabe der Arbeit: 18. April 2001
Betreuer: Prof. Dr. François Bry

Dipl. Inf. Dan Olteanu

Erklärung

Hiermit versichere ich, dass ich diese Diplomarbeit selbständig verfasst habe.
Ich habe dazu keine anderen als die angegebenen Quellen und Hilfsmittel ver-
wendet.

München, den 10. Mai 2001 Sebastian Schaffert

Zusammenfassung

Markup-Sprachen für semistrukturierte Daten wie XML gewinnen an Bedeu-
tung als Mittel für Datenaustausch und -speicherung. In dieser Diplomarbeit
wird eine Erweiterung für das semistrukturierte Datenmodell vorgeschlagen,
die es erlaubt, Daten mit speziellen Beziehungen zu gruppieren und dadurch
mehr Semantik auszudrücken. Ein Datenmodel wird vorgeschlagen und der
Einfluß auf Pattern Matching und Lokalisierung untersucht. Außerdem werden
Algorithmen vorgestellt, die mit auf dieser Weise erweiterten Daten umgehen
können.

Abstract

Markup languages for semistructured data like XML are of growing importance
as means for data exchange and storage. In this thesis, an enhancement for the
semistructured data model is proposed that allows to group data with spe-
cial relationships, thus allowing to express more semantics. A data model is
suggested and the implications on pattern matching and localization are inves-
tigated. Furthermore, algorithms are presented that make use of such enhanced
data.

Danksagung

TEXT

Contents

I Grouping Constructs for Semistructured Data 5

1 Introduction 6

1.1 Introduction . 6

1.2 Semistructured Data . 7

1.3 Motivation . 8

1.3.1 Example 1: Course of Studies 8

1.3.2 Example 2: Addressbook 11

1.4 Grouping Facets . 12

2 Representation of Grouping Constructs in tree based SSD
models 14

2.1 Representation through Attributes 14

2.2 Representation through Additional Nodes 15

2.3 Considerations about Expressive Power 17

3 Data Model: Trees with Grouping Constructs 19

3.1 Syntactical Representation of Grouping Constructs 19

3.1.1 Elementary Data Trees 20

3.1.2 Grouping Facets . 22

3.1.3 Data Trees with Grouping 23

3.2 Semantics of Data Trees with Grouping 23

3.2.1 Interpretation of Data Trees with Grouping 23

3.2.2 Databases and Patterns 26

3.2.3 Matching Patterns with Databases 28

1

Grouping Structures for Semistructured Data

II Matching and Querying 34

4 Matching and Querying 35

4.1 Patterns Redefined . 35

4.1.1 Patterns as building stones for querying 36

4.1.2 A new View on Patterns and Databases 36

4.2 A declarative Localization Language for SSD 36

4.3 Rooted vs. Unrooted Matching 38

5 Answer Semantics 40

5.1 Answer Semantics for Elementary Data Trees 40

5.1.1 Simulation as Result . 40

5.1.2 Maximal Simulation . 42

5.2 Answer Semantics for Data Trees with Grouping 43

5.2.1 Combining Results with Grouping Constructs 43

5.2.2 Extending the Results from the Simulation 45

5.2.3 Strict vs. Liberal Matching 47

6 Variables 50

6.1 Variables in Data Trees . 50

6.1.1 Two Properties of Variables 50

6.1.2 Representing the “joker” property 51

6.1.3 Representing the “assignment” property 51

6.1.4 Adding Variables to Data Trees 51

6.2 Interpretation of a Data Tree with Variables 51

6.3 Representing the Depth Facet: A Simple Approach 53

6.4 Variable Assignments . 55

6.4.1 Types of Variables . 55

6.4.2 Subtrees . 59

6.4.3 Singleton and Multiple Variables 60

6.4.4 Variable Assignments for Singleton Variables 61

6.4.5 Variable Assignments for Multiple Variables 62

III Algorithms 67

7 Data Trees 69

Sebastian Schaffert Page 2

Grouping Structures for Semistructured Data

7.1 Basic Data Structures . 69

7.2 Interpretation . 69

8 Simulation 75

8.1 Elementary Simulation . 75

8.1.1 Correctness . 79

8.2 Grouping Simulation . 80

8.2.1 Correctness . 84

9 Localization 86

9.1 Maximal Simulation . 86

9.1.1 Correctness . 88

IV Conclusion 90

10 Related Work 91

11 Prospects 92

11.1 Cleaner Definition of Interpretation 92

11.2 Combining Grouping Facets . 93

11.3 Arbitrary Graph Structures . 93

11.4 Non-Rooted Matching . 93

11.5 Combined Answer . 94

11.6 Improved Treatment of Depth Facet 94

11.7 More Investigation on Variables 94

11.8 Efficient Algorithms . 94

11.9 Implementations . 95

11.10Grouping Constructs for Query Optimization 95

V Appendix 96

12 Bibliography 97

13 Application Examples of Individual Grouping Facets 100

13.1 Sibling Relationships . 100

13.1.1 Connector Facet . 100

Sebastian Schaffert Page 3

Grouping Structures for Semistructured Data

13.1.2 Ordering Facet . 101

13.1.3 Repetition Facet . 102

13.2 Parent-Child Relationships . 104

13.2.1 Dependency Facet . 104

13.2.2 Selection Facet . 105

13.2.3 Exclusion Facet . 106

13.2.4 Depth Facet . 107

13.3 Combining Facets . 108

14 Sample Implementations and Data 109

14.1 Interpretation Algorithm . 109

14.1.1 The implementation . 109

14.1.2 Sample data . 112

14.1.3 Result for Sample Data 112

14.2 Simple Matching Algorithm . 114

14.2.1 The implementation . 114

Sebastian Schaffert Page 4

Part I

Grouping Constructs for
Semistructured Data

5

Chapter 1

Introduction

1.1 Introduction

Languages for semistructured data (SSD) like XML have by now gained
widespread acceptance as a data exchange format (see [Abi97] for an intro-
ductory work). Also growing is the importance of the SSD data model for
database management. Query languages like XQuery [xqu01] and its predeces-
sors QUILT [RCF00] and XQL [Rob99] are visible signs of this development.

In this paper, an enhancement called grouping constructs to the SSD data
model is suggested. This enhancement allows to establish explicit semantic
relationships between data items in semistructured databases. Usually these
relationships are given either implicitly through the meaning of element names
or are implemented in the application software processing the data.

In the first part, an overview about grouping constructs is given on two intro-
ductory examples. It is also discussed how these grouping constructs could be
introduced in existing SSD implementations like XML. The first part finishes
with a formal discussion of the proposed grouping constructs and the founda-
tions for a declarative localization language (similar to e.g. XPath [xpa99]).
This localization language not only copes with grouping constructs but also
uses them for a more efficient localization.

Extending this localization language is the main topic of the second part, where
data retrieval in SSD with grouping constructs is examined more thoroughly.
Furthermore, a method for computing aggregated answers is introduced. The
last chapter of this part covers the introduction of variables in SSD with and
without grouping.

Some algorithms for computing the ideas that have been presented before are
given in the third part.

The thesis finishes with an overview over related work and some suggestions for
future research.

In this introductory chapter, an overview over semistructured data is given,
followed by two examples to show the relevance of grouping constructs in two

6

Grouping Structures for Semistructured Data

different applications.

1.2 Semistructured Data

In this section, a short introduction about semistructured data is given. The
ideas presented here follow the proposals made in the introductory work [Abi97].
The reader may want to consult [Abi97] for a more thorough discussion.

Semistructured Data intends to fill a space between data that is completely
structured (relational databases) and data that is unstructured (binary images,
flowing text).

Naturally, this definition is very imprecise, as it may or may not apply to certain
types of data. But this also shows the necessity of such data models.

An example that is proposed in [Abi97] are the well-known BibTEX files used
for bibliographies in LATEX documents. Obviously, these contain some struc-
ture, like the denomination of “authors”, “year”, etc. However, much of this
information is optional. Thus, a completely structured data model would either
be very inconvenient or very large to cover all of the possibilities.

[Abi97] proposes the following main aspects of semistructured data:

• The structure is irregular. Much of the information is heterogeneous or
even missing.

• The structure is implicit. Often, the structure of the data only becomes
meaningful together with the application.

• The structure is partial. The data may e.g. contain flowing text or bitmaps
which are unstructured while other parts are well structured.

• Indicative structure vs. constraining structure. In completely structured
databases like relational databases, the structure is always enforced to
keep the data consistent. Together with the world wide web, it becomes
increasingly important to be able to avoid strict typing.

• A priori schema vs. a posteriori data guides. Traditional databases with
complete structure require to define a schema before even introducing any
data. Semistructured data on the contrary allows evolving schemas.

[Abi97] furthermore suggest two different models for representing SSD. A
lightweight model (OEM - [CGMH+94]) and a heavyweight model (ODMG).
Both are useful for certain kinds of applications.

For the purpose of this text it is sufficient to know that both models use directed
graphs. In many cases, however, it suffices to restrict the model to trees. This
is also done in this thesis.

Note that nowadays the most prominent representative of semistructured data
is XML (eXtensible Markup Language) [xml00b]. Nonetheless there are other

Sebastian Schaffert Page 7

Grouping Structures for Semistructured Data

kinds of semistructured data, notably XML’s precursor SGML [ISO86], but also
data formats like BibTEX [Pat88] or LATEX [Lam86].

1.3 Motivation

1.3.1 Example 1: Course of Studies

Consider the following example of a course of studies at the Munich University:

In the first 4 terms, some courses are optional while others are required. Thus
there are and and or connections between courses.

Terms Courses
Computer Sciences Mathematics Seminars

1 CS I Algebra I
and
Analysis I

2 CS II Algebra II
and
Hardware Basics

3 CS III Graph Theory Programming
and or
Applied Analysis System

4 CS IV Stochastic or
and or Hardware
Advanced Numerical or
Algorithms Mathematics Logics

While this table reminds of a standard database item like e.g. a (non-first normal
form) relation, the and and or connections show a very different semantics.
Obviously, a data model is needed using which grouping constructs like the
and and or connectives can be expressed and used during localization and data
retrieval in general. In the following we will see that other grouping constructs
are also desirable.

Let us first consider a similar example at a more abstract level:

Imagine that you want to store an information like a ∧ (b ∨ c). In a relational
database model, this would be achieved by transforming this to its conjunctive
normal form (a ∧ b) ∨ (a ∧ c) and then storing each of the conjuncts (a, b) and
(a, c) in a relation R (informally, the ∧ is between the columns, or attributes,
while the ∨ is between the rows, or tuples, of the table). This would result in
the relation R = {(a, b), (a, c)}.
However, this representation has two drawbacks:

• redundancy : The information about a is stored several times. This is
inefficient in both, space and computation, and error prone for updates.

Sebastian Schaffert Page 8

Grouping Structures for Semistructured Data

• information loss: The fact that b and c are and connected to the common
item a might be important from a semantic viewpoint. This information
has to be recomputed (i.e. the conversion to the conjunctive normal form
has to be reversed).

With the SSD data model things are even worse: While the relational model at
least has the connections and and or built-in (i.e. the and connections between
the columns and the or connections between the rows), in the SSD data model
it is not possible to express such information in an application independent
manner.

As semi-structured data, the previous course of studies example could be ex-
pressed as follows (an XML syntax is used here to ease the understanding for
the reader; any other SSD syntax would be possible).

<course_of_studies>
...
<term>

<number>4</number>
<computer_sciences>

<course>
CS IV

</course>
<course>
Advanced Algorithms

</course>
</computer_sciences>
<mathematics>

<course>
Stochastic

</course>
<course>
Numerical Mathematics

</course>
</mathematics>
<seminars>

<course>
Programming Course

</course>
<course>
System Course

</course>
...

</seminars>
</term>

</course_of_studies>

In this excerpt, some information is missing: It is not expressed which courses

Sebastian Schaffert Page 9

Grouping Structures for Semistructured Data

are optional and which are required. A common solution would be to provide
this information in an application dependent query interface.

However, this approach would not be portable since every application would
have its own data format. This would be unfortunate because it is the idea
of SSD to be application independent. Note that such semantic groupings
occur frequently in data exchange (e.g. in e-commerce catalogs, bioinformatics
databases [Kröar],etc.).

The proposal of this work is to add general constructs to the SSD data model
so as to allow the grouping of elements according to certain properties (“group-
ing facets”), thus trying to overcome the above mentioned deficiencies of the
relational and the standard semi-structured model.

With grouping facets the introductory example can be represented as follows.
Again, the XML syntax has been retained. Also note that grouping can be
expressed through other entities than through elements (see Chapter 2 for a
discussion on the topic).

<course_of_studies>
...
<term>

<number>4</number>
<computer_sciences>
<AND>

<course>
CS IV

</course>
<course>

Advanced Algorithms
</course>

</AND>
</computer_sciences>
<mathematics>
<OR>

<course>
Stochastic

</course>
<course>

Numerical Mathematics
</course>

</OR>
</mathematics>
<seminars>
<OR>

<course>
Programming Course

</course>
<course>

Sebastian Schaffert Page 10

Grouping Structures for Semistructured Data

System Course
</course>
...

</OR>
</seminars>

</term>
</course_of_studies>

1.3.2 Example 2: Addressbook

Now consider an example that is quite different than the previous example, but
shares nonetheless the necessity to have some abstract grouping constructs.

Imagine an address book consisting of entries for persons/organizations. Each
entry has a name, one or more postal addresses, any number of phone numbers
(including zero) and any number of email addresses (including zero).

Again, an XML syntax is chosen for convenience. In this XML syntax a sample
from this address book could look as follows:

<abook>
<entry>

<name>Sebastian Schaffert</name>
<address>

<street>Fruehlingstrasse 25</street>
<city>83278 Traunstein</city>

</address>
<email>schaffer@informatik.uni-muenchen.de</email>
<email>wastl@wastl.net</email>

</entry>

<entry>
<name>Mustermann GmbH</name>
<address>

<street>Hauptstrasse 12</street>
<city>88888 Irgendwo</city>

</address>
<address>

<street>Marktplatz 10</street>
<city>98765 Woanders</city>

</address>
<phone>555-12345</phone>
<phone>566-54321</phone>

</entry>
</abook>

As can be seen, there are entries that have several email addresses. What does

Sebastian Schaffert Page 11

Grouping Structures for Semistructured Data

this mean for someone that wants to send a message to this person? Should
the message be sent to both email addresses, only to the first or only to the
second? Or is it no use sending the message via email since the person only
checks his email occasionally?

The second entry, a company, doesn’t have an email address. The message
should be sent anyway, but to which address? Or is it preferable for this com-
pany to call by phone?

In most cases, this kind of information belongs to each individual entry, to the
data. Certainly, this could be implemented again in an application-dependent
manner, but obviously this is not very desirable since the idea of semi-structured
data is to carry such structural information in the data itself.

In the next section, grouping is investigated systematically and other grouping
facets than and and or are suggested.

After that, a matching technique for localization in a context with grouping
constructs is discussed.

1.4 Grouping Facets

Since our extension groups data items and adds additional information to the
already-existing structure, it is called grouping constructs. The individual
kind of grouping is called grouping facets. The following grouping facets are
suggested:

• connector : for grouping items with the connectors AND, OR and XOR
(the connector facet has one of the properties “AND”, “OR” and “XOR”).

• order : for specifying whether items are ordered or not (properties “or-
dered”, “not ordered”)

• repetition: for specifying whether items of the same type may be repeated
or not (properties “repetition allowed” and “repetition not allowed”).

• selection: for allowing a query to select/match a certain number of the
items (property “n to m”)

• exclusion: for excluding certain items (property “excluded”)

• depth: for allowing a pattern to span several levels in a matched tree
(property “n to m”).1

Grouping facets can be of importance in three areas: database modeling, query
patterns/schemas and answers to a query.

An informal discussion with extensive examples for each grouping facet can be
found in Appendix 13.

1Allowing infinity as value for m allows to express the classical quantifiers “*”, “+” and
“?” as “n to m” facets

Sebastian Schaffert Page 12

Grouping Structures for Semistructured Data

Not all of the mentioned grouping facets fit equally well to databases and
to patterns/schemas. While e.g. the connector facet may be of relevance in
both databases and patterns/schemas, the exclusion facet makes sense for pat-
terns/schemas only.

In this paper we deliberately impose the following restrictions on grouping
facets:

• the data model is currently limited to trees2

• only one grouping facet can be specified for a group of nodes

• the specified grouping facet always applies to all immediate children, not
all ancestors

The rationale for these restrictions is the focus on the novel issue. An extension
is possible (and desirable) in the future.

Note that XML-Schema [xml00a] and some of its precursors (XML-Data
[xml98], DDML [ddm99], etc.) all had a few constructs similar to some of
the above mentioned grouping constructs. However, they were only used for
grouping in a schema, not in the data. Furthermore they were lacking a sys-
tematic treatment of grouping constructs.

2Extensions to DAGs and forests do not pose principal problems

Sebastian Schaffert Page 13

Chapter 2

Representation of Grouping
Constructs in tree based SSD
models

There are two possible basic approaches to introduce grouping constructs in SSD
tree representations: One is using attributes and the other is adding grouping
nodes to the tree.

As the most common representation of tree based SSD models is the XML syn-
tax nowadays, some of the considerations and advantages/disadvantages dis-
cussed in this section are closely related to some of the properties of XML.
Other SSD models might require slightly different approaches.

These two representations both have their advantages and disadvantages and
are discussed in the next sections.

Afterwards, some considerations about the expressive power of these approaches
are made.

In this text, the attribute approach is chosen for the representation of grouping
constructs, thus deliberately restricting the possible groupings. However, the
ideas presented in this thesis are general enough so that they apply to both
kinds of representations.

2.1 Representation through Attributes

The first possibility is to represent the additional grouping information through
attributes carried by the elements that specify the kind of grouping that is done.

For sibling relationships like the order and connector facets, the attributes can
be carried by the parent element, specifying a relationship between all child
elements. Adding these attributes to the siblings themselves isn’t useful as this
would require to use some reference to other sibling elements.

14

Grouping Structures for Semistructured Data

Example 2.1.1
Consider the following tree structure:

A

B C D

Now imagine that you want to provide the grouping information that the child
elements should be considered unordered. Using attributes, this could be ex-
pressed like this:

A

B C D

ordered="no"

This representation has several advantages:

• it is simple

• it doesn’t modify the tree structure

• implementation of localization might be easier than with the other ap-
proach

However, there are disadvantages that are also worth considering:

• the attributes that are used require that the grammar of existing (XML-)
applications has to be changed so that a document that uses the applica-
tion can make use of them

• it is necessary that the special attributes become part of the (XML-) data
types so that they may be used in any application

• the expressive power is less than in the second approach (see below)

• combining different facets will most likely require special handling in the
localization algorithms

2.2 Representation through Additional Nodes

A different approach would be to add “special” nodes to the data tree that
are used just to express the grouping and carry the necessary information in

Sebastian Schaffert Page 15

Grouping Structures for Semistructured Data

attributes. Actually, this can be considered an extension of the attribute ap-
proach since the attributes are still the same, only it is now possible to use a
structure similar to “brackets”.

Sibling relationships can be expressed by adding the affected siblings to a spe-
cific grouping node and providing the grouping information in attributes of that
node.

In parent-child relationships, the additional element can be placed between the
(affected) children and the parent node.

Example 2.2.1
Again have a look at the previously used example:

A

B C D

The grouping that provides the information that the nodes are not ordered
could be provided like this, the G representing the grouping node:

B C D

A

�

ordered="no"

The advantages of this approach are that the expressive power is bigger (see
below) and it is probably easier to implement the combination of grouping
facets.

However, the disadvantages are also complementary to the advantages of the
attribute representation:

• the representation is more complicated

• it is not possible for a node to be in two different groups

• it modifies the tree structure and thus the document becomes less intu-
itively readable

• localization with grouping elements could become difficult

Sebastian Schaffert Page 16

Grouping Structures for Semistructured Data

Note that in XML, the last problem can be overcome by using namespaces
which can be ignored by applications.

2.3 Considerations about Expressive Power

When comparing the two approaches, one important criterion is the expressive
power of each representation. On first look, both seem to have the same possible
applications.

However, on a closer look it is possible to recognize that the attribute approach
doesn’t allow to express some of the information that can be expressed with
the element representation: With the latter it is also possible to only group a
subset of the child nodes. This becomes important if it is intended to combine
several of the above mentioned grouping facets.

Example 2.3.1
Imagine that you want to express a relation of ((a ∨ b) ∧ c) between the child
nodes of a node ”root” (The braces already indicate that several groupings are
necessary).

The appropriate tree structure using the node approach would look like this:

�
ordered="no"

ba

c
�

ordered="no"

boolean="and"

boolean="or"

Such a representation obviously cannot be achieved when using the attribute
approach.

However, the previous considerations only cover very simple cases of facet com-
bination. For more sophisticated combinations, the element approach can be-
come increasingly complicated since most of the facets have “different dimen-
sions”, i.e. the different groupings are very likely independent from each other.

Example 2.3.2
Imagine the following tree structure:

A

B C D

Sebastian Schaffert Page 17

Grouping Structures for Semistructured Data

Now consider that you want to express that the elements B,C and D should
be treated ordered and that there is an “XOR”-relationship between B and C
while C and D are “AND”-related.

A representation with the element approach is no longer possible since this
would require to add the child nodes to several group elements, thus breaking
the tree structure.

Since such relationships require a graph structure but the data only provides
a tree structure, it is obvious that it is not possible to express this additional
information directly in the data with “easy” means.

As this would require the use of a graph structure and combination of group-
ing facets will not be treated in this thesis, solutions to this problem are not
investigated any further.

Sebastian Schaffert Page 18

Chapter 3

Data Model: Trees with
Grouping Constructs

In this chapter, the semantics of grouping facets and the relationships between
them will be defined.

This chapter provides a formalism for semi-structured databases with grouping
structures. After introducing a syntactic representation, the semantics will be
defined.

Note that in this data model, we simply use attributes to represent grouping
constructs, not the additional nodes proposed in Chapter 2. However, for the
concept this is of no relevance.

3.1 Syntactical Representation of Grouping Con-
structs

In this document, we assume that semi-structured databases are of a tree- or
tree-like structure. The first definition will cover the elementary data tree
which can be used to represent such tree-structured databases. This defini-
tion will then later be extended to an enriched data tree (data tree with
grouping) also covering the grouping constructs.

The trees used here are always node-labelled, i.e. the nodes are carrying the
labels. Another common representation is to use edge-labelled trees. As it is
easy to convert one form into the other, it is just a matter of taste to choose
the one or the other.

The definitions given here suffice for the scope of this paper. Some concepts like
“tree”, “forest” and “graph” are used in this thesis with their standard meaning
in graph theory which can be found in many sources; some introductions are in
[Jun94] and [Knu97] (pages 308-402). Tree matching has also been addressed
extensively in [Kil92].

Note that the elementary data tree can be considered as a syntactic as well as

19

Grouping Structures for Semistructured Data

a semantic definition. Syntactically, it just represents the definition for a tree
structure. Semantically, it organizes data in a special way and therefore gives
meaning to it.

In contrast, the enriched data tree itself only represents syntactical structure.
The semantics for it are given in section 3.2.

In semi-structured databases like XML documents it is also possible to build
graph structures that are not limited to trees. This is achieved by using pointers
(like XLink and XPointer in XML; see [xpt00]).

In this approach, this possibility is left out consciously. There are several kinds
of links and often it is not obvious how to interpret them (see e.g. [FS00], page
2). Since the focus of this document is to define a complex set of grouping
structures, it is convenient to treat such pointers just as “syntactic sugar” and
use the simple tree structure as a base.

Note however, that the data model and localization techniques suggested here
are general enough so that they can also be extended to graph structures if this
might be necessary.

3.1.1 Elementary Data Trees

We will first introduce elementary data trees for representing tree-structured
databases. The next definitions are derived from definitions in [FS00] and
[Wad00].

In the following, let Vertices denote a set of vertices, and Labels a set of string
values used for labelling nodes. Furthermore, let Lists(X) denote the set of all
permutation lists over some set X.

Definition 3.1.1 (elementary data tree)
An elementary data tree DT is a tuple (Nodes, name, children, root) such
that

• Nodes ⊂ Vertices is a (finite) set of vertices. Elements in Nodes are
called “node”.

• name : Nodes→ Labels is a mapping from nodes to their element names

• children : Nodes → Lists(Nodes) is a function mapping nodes to a list
of their child nodes

• root ∈ Nodes is a distinguished element called the root node with ∀N ∈
Nodes : root /∈ children(N).

• ∀N,N ′ ∈ Nodes, N 6= N ′ : children(N) ∩ children(N ′) = ∅

This is in most respects a quite usual definition for a tree with one exception:
The child elements are always ordered. This is required because the data will
always be ordered in the syntax (assuming a reader in the western hemisphere,

Sebastian Schaffert Page 20

Grouping Structures for Semistructured Data

i.e. from left to right, from top to bottom). The property that the semantics of
the data is unordered will be achieved through the interpretation and matching
methods that are used (i.e. “unorder” is a property of the semantics and not
of the syntax of the data).

Notations. In this article, data trees will also be written as A(B1, . . . , Bn)
meaning a tree with root node A and subtrees B1, . . . , Bn in the given order
(like in a list) and A{B1, . . . , Bn} denoting a tree with root node A and the set
of subtrees B1, . . . , Bn in any order (like in a multiset).

The following example illustrates definition 3.1.1.

Example 3.1.1
Have a look at the simple tree and its representation as an elementary data
tree.

ED

C

A

B

F

Nodes = { A, B, C, D, E, F}
name(A) = ”A”, . . . , name(F) = ”F”
children(A) = [B, C]
children(C) = [D, E]
children(B) = [F]
root = A

This example is very simple. In a real data tree nodes will share the same name
or leaf nodes containing the same data. Nonetheless, each of them will be an
individual node, thus the denotation with underscore.

Note that a node in graph theory denotes a single item that is possibly con-
nected through edges with other nodes while in semi-structured databases a
node usually denotes an element together with its context, i.e. a whole subtree.
In this document, the notion of a node in graph theory is chosen, since this
allows a much easier specification of the abstract syntax and the semantics of
the grouping facets.

Terminology

Some terms that are frequently used in this thesis are introduced for elementary
data trees in this paragraph. Most terminology is in analogy to [Knu97] and
other sources about graph theory.

For each node N ∈ Nodes, if children(N) = ∅, N is called a leaf node. All
other nodes (i.e. all nodes where children(N) 6= ∅) are called inner nodes.

Example 3.1.2
In example 3.1.1 the leaf nodes are {D,E, F} and the inner nodes are {A,B, C}.

Also, each node has some “relatives”: Given some node N with children(N) 6=
∅. The nodes in children(N) are called children of N . For any node M ∈

Sebastian Schaffert Page 21

Grouping Structures for Semistructured Data

children(N), all other nodes in children(N) are called siblings. The node N
is called the parent of M .

Sometimes it will be necessary to talk about several trees. A forest is an
unordered set of zero or more disjoint trees.

3.1.2 Grouping Facets

The elementary data tree will now be extended to an enriched data tree
by adding the possibility to add grouping facets.

First, it will be necessary to define the possible grouping facets and the values
they can take. For an informal description of these grouping facets please refer
to Appendix 13.

Definition 3.1.2 (set of grouping facets)
For the following sections, let G be a set of the following grouping facets:

• connector facet - children are grouped with the boolean relationships
AND, OR and XOR.

• order facet - specifies whether child elements are ordered or not (“or-
dered” and “unordered”).

• repetition facet - restricts whether repetition of elements is allowed or
not (“allowed”, “not allowed”)

• selection facet - specify how many of the children have to match; values

– ”n to m”, n, m positive integers ≥ 0
– ”exactly n”

– ”some”

– ”any”

– ”all”

– ”none”

where for any node with n child elements

– ”exactly i” is an abbreviation for ”i to i”

– ”some” is an abbreviation for ”1 to n”

– ”any” is an abbreviation for ”1 to 1”

– ”all” is an abbreviation for ”n to n”

– ”none” is an abbreviation for ”0 to 0”

• exclusion facet - the child elements are excluded

The depth facet is left out consciously. It will be introduced together with
variables in 6.3 as the changes that are required are less if it is already the
possible to represent variables (which cover things that are yet “unknown” like
the depth in the depth facet).

Sebastian Schaffert Page 22

Grouping Structures for Semistructured Data

3.1.3 Data Trees with Grouping

Applying those grouping facets to (elementary) data trees leads to the following
definition:

Definition 3.1.3 (data tree with grouping)
A “data tree with grouping facets” (Nodes, name, children, grouping, root) is
a data tree such that:

• (Nodes, name, children, grouping, root) is an elementary data tree

• grouping : Nodes → G is a function mapping each node to a single
grouping facet

For shortness, data trees with grouping will also be called enriched data trees
(which reflects the additional value compared to elementary data trees).

As the combination of grouping facets is not a trivial task, this definition limits
the number of grouping facets that can be attached to a node to at most one.
The combination of grouping facets is a possible topic for future research.

Example 3.1.3
The following data tree contains the grouping facets “XOR” and “OR”.

ED

C

A

B

XOR

OR

Nodes = { A, B, C, D, E}
name(A) = ”A”, . . . , name(E) = ”E”
children(A) = [B, C]
children(C) = [D, E]
grouping(A) = [”OR”]
grouping(C) = [”XOR”]
root = A

3.2 Semantics of Data Trees with Grouping

The topic of this section will be to first define an interpretation of a data tree
with grouping facets and then to provide the notion of a model for a given
pattern.

3.2.1 Interpretation of Data Trees with Grouping

Grouping facets can be seen as defining for a single node and its children a set
of possible interpretations (in form of different elementary data trees).

Since some of the grouping facets (depth facet) are defined much easier together
with variables they are left out here.

Sebastian Schaffert Page 23

Grouping Structures for Semistructured Data

enriched subtree NG represented through subtrees
Nε(M1, . . . ,Mn) all N{M1, . . . ,Mn}
NAND(M1, . . . ,Mn) all N{M1, . . . ,Mn}
NOR(M1, . . . ,Mn) all N{P1, . . . , Pi} with {P1, . . . , Pi} ⊆

{M1, . . . ,Mn}\∅
NXOR(M1, . . . ,Mn) all N{Mi}, 1 ≤ i ≤ n

Nordered(M1, . . . ,Mn) N(M1, . . . ,Mn)
Nunordered(M1, . . . ,Mn) all N{M1, . . . ,Mn}
Nrepeat(M1, . . . ,Mn) N{M1, . . . ,Mn}, . . . , N{M1, . . . ,M1, . . . ,Mn, . . . ,Mn}
Ni to k(M1, . . . ,Mn) all N{P1, . . . , Pj} with {P1, . . . , Pj} ⊆

{M1, . . . ,Mn},i ≤ j ≤ k

Nexclude(M1, . . . Mn) all N{L1, . . . , Lk} with {L1, . . . , Lk} ∩
{M1, . . . ,Mn} = ∅

Table 3.1: Interpretation of grouping facets

The table is read as follows: The left column shows an enriched subtree that contains a
grouping facet. The right column gives the possible interpretations where the node N no
longer contains the grouping facet G (but the child nodes Mi still have theirs).
Note that the subtrees in the left column are always ordered, while in the interpretation
column they may be considered ordered or not. This reflects the property that unorder
is only relevant in the semantics and the matching. To get the real interpretation of an
unordered tree, it is necessary to consider all permutations of child nodes.

Note that the definitions presented here are not yet as precise as they could
be. This is due to the introductory character of this thesis. A more formal
approach is suggested in the chapter about “Ongoing Work”, section 11.1.

The interpretation of a data tree with grouping constructs is given in two steps.
The first definition shows how a single subtree with a given grouping facet at the
root node represents a whole “forest” (i.e. several trees) without this grouping
facet. In the second step, an algorithm is presented that generates the forest of
elementary trees for a data tree with grouping, i.e. all grouping facets will be
removed recursively and step by step.

Definition 3.2.1 (Interpretation of a Node with Grouping)
A given subtree N(M1, . . . ,Mn) with root node N and some grouping facet G ∈
grouping(N) represents the forest of subtrees with root node N and without
G, denoted as IG(N), as given in table 3.1.

IG(N) is called the interpretation of the node N with grouping facet G.

Having defined the interpretation of grouping facets for individual nodes it is
now possible to give an algorithm that generates all of the possible interpreta-
tions for a whole data tree with grouping facets.

Definition 3.2.2 (Interpretation of a Data Tree with Grouping)
Let EDT be an enriched data tree with grouping and Nodes its set of nodes.
The set of interpretations for the tree EDT, I(EDT), is generated as follows:

let N be the root node of EDT .

Sebastian Schaffert Page 24

Grouping Structures for Semistructured Data

• if N is a leaf node of EDT then the interpretation is just the node N
(I(EDT) = {N}). End.

• if N is an inner node of EDT

1. for each node M ∈ children(N), generate the set of interpretations
I(M) for the subtree with root M .

2. generate the set of interpretations I(N) for N following definition
3.2.1. Initialize the working set WS with I(N).

3. for all interpretations I in I(M): if there is an interpretation J in
WS where M ∈ children(N) (wrt J), add a new interpretation to
WS that equals J where the subtree with root M in J is replaced
with I.

4. I(EDT) is then the working set WS restricted to elementary data
trees.

Informally, the set of interpretations is generated by just recursively applying
the rules from definition 3.2.1 on the tree EDT beginning with the root node.
The only thing that should be stated explicitly is that rule 3 combines each
interpretation of the root node with all interpretations of the child nodes, which
will generally produce a very large set (space complexity O(n) ≈ exp).

Definition 3.2.3 (Model of a data tree with grouping)
Each of the elementary data trees DT ∈ I(EDT) is called a Model of EDT,
written DT |= EDT .

An implementation that generates the elementary data trees for trees with the
grouping facets AND, OR, XOR and ε is given in form of a Haskell program
in appendix 14.1. For pragmatic reasons, this implementation doesn’t generate
all possible permutations of the child elements.

Example 3.2.1
A simple data tree with grouping facets and its set of elementary presentations
is shown in the picture. Each of the elementary data trees is a model for the
enriched tree.

Sebastian Schaffert Page 25

Grouping Structures for Semistructured Data

A

B

D E

C

D

A

B C

A

B C

E

A

C

D

A

C

E

A

B

XOR

OR

One can easily see that the number of possible interpretations of a tree grows
exponentially with the number of grouping facets in the tree because it is nec-
essary to combine each of the grouping facets of the parent node with the ones
of the child trees.

This also shows the expressive power of grouping facets: It is possible to express
information that would usually require a large number of elementary data trees
in one single data tree with grouping facets.

3.2.2 Databases and Patterns

Defining semantics for semi-structured data with grouping facets will be of little
use if there is no possibility to use them for querying. Thus it is useful to talk
about databases and patterns.

Semi-structured databases and patterns are just simple data trees. The differ-
ence comes from the usage. While a database will usually consist of one ore
more data trees that contain some (useful) data, a pattern is used as a query
to such a database that either matches (and possibly binds variables) with the
database or not. Hence a pattern is just a declarative way to pose a query.

The usage also suggests a different way of interpreting grouping facets: In a pat-
tern with grouping facets it is often sensible to allow additional child elements
on the elementary data trees that are not part of the pattern, since usually a
query is much smaller than the database that is queried. This is a very liberal
strategy that implies that everything that is not explicitly excluded may or may
not be present.

Notations. Matching that allows additional child elements on the database
side will be called liberal matching while matching that requires that the
pattern matches the database exactly will be called strict matching.

However, there is a conflict between the intention of some grouping facets and
the liberal matching. An example is the “AND”-facet which may be inter-

Sebastian Schaffert Page 26

Grouping Structures for Semistructured Data

enriched subtree NG represented through forest of N without G
Nε(M1, . . . ,Mn) all N{M1, . . . ,Mn, R1, . . . , Rm}
NAND(M1, . . . ,Mn) all N{M1, . . . ,Mn, R1, . . . , Rm}
NOR(M1, . . . ,Mi) all N{P1, . . . , Pi, R1, . . . , Rm} with {P1, . . . , Pi} ⊆

{M1, . . . ,Mn}\∅
NXOR(M1, . . . ,Mn) all N{Mi, R1, . . . , Rm}, {M1, . . . ,Mn}\{Mi} ∩

{R1, . . . , Rm} = ∅, 1 ≤ i ≤ n

Nordered(M1, . . . ,Mn) N{M1, . . . ,Mn, R1, . . . , Rm} where the Mi have
to appear in the given order

Nunordered(M1, . . . ,Mn) all N{M1, . . . ,Mn, R1, . . . , Rm}
Nrepeat(M1, . . . ,Mn) N(M1, . . . ,Mn, R1, . . . , Rm),. . . ,

N(M1, . . . ,M1, . . . ,Mn, . . . ,Mn, R1, . . . , Rm)
Ni to k(M1, . . . ,Mn) all N{P1, . . . , Pj , R1, . . . , Rm} with

{P1, . . . , Pj} ⊆ {M1, . . . ,Mn}, i ≤ j ≤ k,
{R1, . . . , Rm} ∩ {M1, . . . ,Mn}\{P1, . . . , Pj} = ∅

Nexclude(M1, . . . Mn) all N{R1, . . . , Rm} with {R1, . . . , Rm} ∩
{M1, . . . ,Mn} = ∅

Table 3.2: Liberal interpretation of patterns with grouping facets

R1, . . . , Rm is a set of arbitrary subtrees (“rest”). As can be seen in the rules for XOR
and i to k, the interpretations for liberal matching also require a “not-list”, i.e. a list of
children that are explicitly forbidden. This is not required for strict matching since then
everything that is not there is forbidden.

preted as to restrict that the pattern must contain all of the children to match
successfully.

To solve this problem, we can assume for now that the user is able to chose for
each node whether to use strict or liberal matching. A more convenient solution
will be presented in sections 4.1 and 5.2.3 where the problem will be addressed
in terms of results of a query.

Table 3.2 extends the rules given in table 3.1 for liberal matching. (Remember
that N{A1, . . . , A2} represents the node N with the child trees Ai without
considering order, i.e. the children on the left side of the table may be mixed
with the additional children on the right side).

Generating a set of all interpretations for a pattern with liberal matching is
obviously not possible since it will result in an infinite number of models. How-
ever, given a database and such a pattern, it is a useful and calculable extension.
A relationship between patterns and databases will be discussed in the next sec-
tion.

Sebastian Schaffert Page 27

Grouping Structures for Semistructured Data

3.2.3 Matching Patterns with Databases

Matching

The intention of a relationship between databases and patterns is that there
should be the possibility to decide whether a given pattern “matches” with a
given database or not.

Obviously this is not sufficient for querying, since there should be more asso-
ciated to the result than “true” or “false”. Chapter 4 will be dedicated to the
topic on how to produce richer results out of the pattern matching.

At this point, pattern matching illustrates the semantics of data trees with
grouping facets. It is sufficient here to just consider the two cases (i.e. results)
“it matches” and “it does not match”.

“Matching” for elementary databases is related to the model relationship:

Definition 3.2.4 (Matching for elementary databases)
A (liberal) pattern P matches with an elementary database DB if the database
is a model of it, written DB |= P .

If the pattern is not intended to match liberally, there would be an easy way
to calculate whether a pattern matches with a database or not: The database
would have to be in the set of possible interpretations for the pattern, which
can be generated using the algorithm presented in appendix 14.1.

However, this approach is neither efficient nor does it suffice for liberal patterns,
since as stated above, the set of interpretations for the pattern is infinite.

Simulation for Graphs

Therefore, it is more convenient to use a definition for the model relationship
that respects the structure of both the pattern and the database. The definition
will use a technique called simulation which is, among others, being used in
the book [ABS00]. The advantage is that simulation is a topic that has been
extensively studied in other areas of computer sciences, so there is a large
number of results and algorithms that might be useful for grouping facets as
well (see e.g. [HHK96]).

Informally, the simulation just “walks down” the two graphs in parallel, check-
ing whether for a node in the one graph there exists a corresponding node in
the second graph while respecting the edges.

Notation. Given a binary relation R over the Cartesian product of two sets, a
pair (x, y) ∈ R is also written as xRy. Given a directed, labeled graph (V,E),
each edge label l induces a binary relation [l] on V, V , written x[l]y for each
pair (x, y).

Definition 3.2.5 (Simulation [ABS00])
Given Graphs G1 = (V1, E1), G2 = (V2, E2) and a set of labels L, a binary
relation R on V1, V2 is a simulation if it satisfies

Sebastian Schaffert Page 28

Grouping Structures for Semistructured Data

∀l ∈ L∀x1, y1 ∈ V1∀x2 ∈ V2(x1[l]y1 ∧ x1Rx2 ⇒ ∃y2 ∈ V2(y1Ry2 ∩ x2[l]y2))

On closer look on the definition, one can observe that this just describes a
mapping between two (labelled) graphs that ensures that the same structure is
kept.

Actually, simulation in [ABS00] is used for schema verification. This is not a
disadvantage since a pattern could also be viewed as a schema for a database.

In the next paragraphs, this definition will be modified and extended to data
trees.

Simulation for Elementary Data Trees

The simulation definition will be modified to fit with elementary data trees first.
This definition will then be extended to reflect data trees with grouping facets.

A simulation for data trees has to take into consideration the differences between
the labelled, directed graphs used in definition 3.2.5 and the unlabelled data
trees.

While in the original definition, the “matching criterion” is the name of the
label in the two trees, in data trees the matching criterion should be the name
of the node (which is irrelevant for the former). Since this doesn’t generate
any edge-relation, it will also be necessary to include the children-function of a
node.

Furthermore, as data trees are trees, the simulation for data trees is rooted, i.e.
the roots have to be in the simulation ([ABS00]).

Also, since we want to also implement the simulation later, it is useful to have
a constructive instead of a declarative definition.

Definition 3.2.6 (Elementary Simulation)
Given two elementary data trees DT and DT ′ with the set of nodes Nodes and
Nodes′ respectively. A binary relation R ⊆ Nodes × Nodes′ on DT and DT ′

is called an elementary simulation if it can be generated as follows:

• let n ∈ Nodes, n′ ∈ Nodes′ be the root nodes of DT and DT ′ respectively.
(n, n′) ∈ R if name(n) = name(n′)

• ∀n1, n2 ∈ Nodes ∀n′1 ∈ Nodes′ (n1Rn′1 ∧ n2 ∈ children(n1)) ∃n′2 ∈
Nodes′ (n′2 ∈ children(n′1) ∧ name(n2) = name(n′2))⇒ n2Rn′2

If R is an elementary simulation on the two data trees DT and DT ′, we shall

write DT
sim−→R DT ′.

The first rule provides a starting point for the simulation. Without it, the
simulation relation would be empty, as the second rule always requires at least
one element in the simulation to add further elements to it. It is possible to use
a different pair than the two root nodes as the starting point and thus providing

Sebastian Schaffert Page 29

Grouping Structures for Semistructured Data

non-rooted simulations. In this paper, however, this possibility is not pursued
any further (see also section 4.3).

Example 3.2.2
The next figure shows two elementary data trees DT1 and DT2.

A

B

F

A

ED

B C B

Pattern DTDatabase DT1 2

1 2 3

The branches at the first level in the database DT1 are numbered so they can
be differentiated easier. The two B will be denoted B1 and B2 according to the
branch number, but the name is still B.

Using Definition 3.2.6, three simulations R,S and T between DT2 and DT1

can be constructed: R = {(A,A), (B,B1)} , S = {(A,A), (B,B2)} and T =
{(A,A), (B,B1), (B,B2)}.

One might already observe that this definition allows liberal matching, i.e. the
nodes in the data tree DT ′ might have additional child elements that don’t
have a corresponding node in DT . This is also reflected through the arrow in
the sim−→R notation.

Actually, strict matching would be achieved through bisimulation which en-
forces the simulation relation into both directions (i.e. from DT to DT ′ and
vice versa). Bisimulation is a topic that is relevant in e.g. process algebra and
schema verification. It will not be discussed extensively in this thesis as the use
for matching is very restricted.

Obviously (liberal) pattern matching between an elementary database and an
elementary pattern can be achieved thus, DT being the pattern and DT ′ the
database. An implementation of this matching would traverse the pattern recur-
sively from the root to the leaves, on the way trying to establish the simulation
relationship R.

A sample implementation in Haskell that performs this simulation for a pattern
and a database in form of XML documents can be found in appendix 14.2.

Algorithms for tree matching will be discussed in ???.

Sebastian Schaffert Page 30

Grouping Structures for Semistructured Data

Näıve Matching: Simulation for Data Trees with Grouping

For data trees with grouping, we will first present a simulation approach that
seems straightforward for the task. In Section 5.2.1, we will see that this ap-
proach needs further refinement.

The extension of the elementary simulation for data trees with grouping will
have to take into consideration the interpretations IG for the data trees.

Definition 3.2.7 (Grouping Simulation)
Given two enriched data trees DT and DT ′ with grouping facets and their
set of nodes Nodes and Nodes′ respectively. An elementary simulation R ⊆
Nodes×Nodes′ is a grouping simulation on DT and DT ′ if it satisfies

∃ I ∈ IG(DT) ∃ I ′ ∈ IG(DT ′) (I sim−→R I ′ ⇒ DT
sim−→R DT ′)

If R is a grouping simulation on DT and DT with grouping, then we shall write

DT
sim−→

g

R DT ′ instead of DT
sim−→R DT ′.

Informally speaking, the grouping simulation first generates the forest of ele-
mentary data trees for each of the two enriched data trees and then tries to find
an elementary simulation between at least one elementary data tree of the first
forest and one of the other forest.

The following example illustrates the application of Definition 3.2.7 on data
trees with grouping.

Example 3.2.3
In the following figure we give two data trees DT1 and DT2. DT1 can be seen
as the pattern and DT2 as the database.

A A

D E

CB F

DT 2

OR

XOR

XOR

DT 1

CB D

Following definition 3.2.7 (grouping simulation), the interpretations for the two
data trees are first generated. Of the 15 interpretations of DT2, only the first
two and the last 4 are given in this figure.

Sebastian Schaffert Page 31

Grouping Structures for Semistructured Data

AA A

Interpretations DT1

CB D

1 2 3

A A

B FC

D

C

E

A A A A

B C

D

C

E

F

14 151312

Interpretations DT2

B F

1 2

A grouping simulation on DT1 and DT2 corresponds to an elementary sim-
ulation on one interpretation of DT1 and one interpretation of DT2. In this
example, there are three elementary simulations on interpretations of DT1 and

DT2, 1 sim−→R 12, 2 sim−→S 13 and 2 sim−→T 14. Note that the semantics of the

XOR facet forbids elementary simulations such as 1 sim−→R 1

It is important to note that in practice it is not necessary that all of the in-
terpretations for each of the data trees is generated. Instead, this can be done
step-by-step when recursively traversing the data trees beginning with the root
(like in lazy evaluation of functional programming). Thus it is possible to avoid
generating the interpretations for a node in many cases. This is comparable to
a branch and bound search.

Sebastian Schaffert Page 32

Grouping Structures for Semistructured Data

This may in many cases reduce the execution time of a simulation algorithm
(although it doesn’t reduce the complexity, of course).

An implementation for simulation with grouping facets is again presented in
form of a Haskell program in appendix ???.

In section 5.2.1 we will show a much more efficient way to generate the matching
result for data trees with grouping by just comparing the individual facets.

Strict and Liberal Matching on the Interpretation Level

In the previous sections, strict and liberal matching was used at the node
level, i.e. to determine whether there might be additional child elements in
the database or not.

However, there is also a different application of strict and liberal matching,
when grouping constructs are used: In the previous definition, it was sufficient
that there is at least one interpretation of the pattern that has an elementary
simulation with at least one interpretation of the database. This could be called
a liberal matching between interpretations.

Some applications might want to handle this differently: Either of the two
∃ could be replaced with a ∀, thus creating something like a strict matching
between the interpretations.

Sebastian Schaffert Page 33

Part II

Matching and Querying

34

Chapter 4

Matching and Querying

The matching with grouping facets that has been discussed so far has been
used to show how the grouping facets may be used while the actual result
wasn’t investigated any further than “the pattern matches” or “the pattern
does not match”.

However, for database querying the main issue is to return some value (after all,
the person posing the query will in most cases assume that his pattern already
matches with the structure of the database).

The solutions presented in the next sections show how to use the simulation-
based pattern matching to produce query results.

Querying is not covered completely, there is much more to it than just pattern
matching. A full-fledged query language should provide things like the possi-
bility to join results, simple data manipulation and selection/projection of data
items. All this will not be discussed here.

Nonetheless, pattern matching is a first building stone for querying. Several
characteristics are presented in this chapter. In the first step, variables like
used in many query languages are introduced. Two properties are worked out
and their application to data trees is investigated.

After that, a possibility to generate results out of simulation-based matching is
suggested.

At first, however, we will again have a look upon patterns and databases and
their relationships in terms of querying.

4.1 Patterns Redefined

It is now possible to refine the definition of patterns that was used in the
previous sections with regards to querying.

35

Grouping Structures for Semistructured Data

4.1.1 Patterns as building stones for querying

Patterns in querying are used as the first step of fetching the data out of a
database. If a pattern matches with the database, this will in general return
the fragment of the database that matched, if it does not match, the query fails.

In the case of a match, the data will be further processed using commonly known
querying techniques like joins, arithmetic operations, structural transformation,
etc, but also again applying a refined pattern to the query result. For semi-
structured data, such techniques are covered for example in the works of the
XML Query working group ([xqw]) and in languages like the very recent XQuery
([xqu01]), XQL ([Rob99]) or Quilt([RCF00]). Structural transformation is done
e.g. in XSL ([xsl00]) where input trees can be transformed to different result
trees.

Each of the mentioned query languages is based on some sort of localization
language: XQL and XSL use XPath ([xpa99]) to locate data in the tree while
SQL is based on the notion of tuples in the tuple calculus where the position or
name of the attribute is relevant (these tuples are actually just “flat” patterns).

Hence the patterns are a way to localize the data in the database and return
some reference to it. The data can then be manipulated in further steps. So
the pattern can be seen as the first building stone of the query.

4.1.2 A new View on Patterns and Databases

In this context, patterns also have a slightly changed meaning than in the
previous chapter.

First, the result from a pattern matching will no longer be “true” or “false”, but
a fraction of the database. Thus, while the information in the pattern is mainly
relevant for the matching process, the information contained in the database
(including grouping facets) is mainly relevant in the result. Discussion about
this will be the topic of the sections 6 and 5.

This also requires a slightly different view on the matching process which has
the advantage that liberal matching can be used in all cases. This view will be
explored in section 5.2.3.

4.2 A declarative Localization Language for SSD

Most data retrieval systems have some sort of localization language. For the
most commonly used representation of semistructured data, XML, the localiza-
tion language is XPath [xpa99]. XPath, however, is a navigational language as
it requires to give the exact path to the data that is to be localized.

On the other hand, a declarative localization language (like the unification in
Prolog [SS94]) would allow to specify the whole graph of possible choices, thus
allowing to provide a context for the localization that is not restricted to the

Sebastian Schaffert Page 36

Grouping Structures for Semistructured Data

path. Also, it would be possible to retrieve all data items that are in some way
“connected”, not only one at a time.

Informally, using a tree pattern it is specified how the result should look like
instead of how it can be found [Kil92].

Example 4.2.1
Imagine an XML document that just contains an address entry that should be
displayed in a suitable HTML document.

<address>
<given>Sebastian</given>
<name>Schaffert</name>
<street>Frühlingstrasse 25</street>
<city>83278 Traunstein</city>

</address>

A typical XSLT stylesheet using XPath would probably look like this:

...
<xsl:template match="/">
<HTML>

<HEAD>...</HEAD>
<BODY>
<TABLE>
<TR>
<TD>Given Name:</TD>
<TD><xsl:apply-templates select="/address/given"/></TD>

</TR>
<TR>
<TD>Last name:</TD>
<TD><xsl:apply-templates select="/address/name"/></TD>

</TR>
...

</TABLE>
</BODY>

</HTML>
</xsl:template>
...

Now consider the following program in Prolog, that is equivalent in terms of
the transformation:

document(html(head(...),
body(table(tr(td(’Given Name:’),td(X)),

tr(td(’Last name:’),td(Y)),...)))) :-
address(given(X),name(Y),Z1,Z2).

Sebastian Schaffert Page 37

Grouping Structures for Semistructured Data

address(given(Sebastian),
name(Schaffert),
street(Frühlingstrasse 25),
city(83278 Traunstein)).

A query for document(X) would bind the wanted document to the variable X.
This example can easily be extended to use more complicated structures found
in the XSL transformation language.

Using the presented tree-patterns and grouping constructs, we get such a declar-
ative localization language for semistructured data. The intention of the next
chapters is to examine how it is possible to use the simulation-based pattern
matching for localization in semistructured data with and without grouping.

4.3 Rooted vs. Unrooted Matching

In Chapter 3.2, the simulation between patterns and databases was always
rooted, i.e. the root nodes of the database and pattern were inserted into the
simulation as a starting pair when the names matched.

This is not the most general approach. One could also imagine that the pattern
does not necessarily start at the root of the database but matches with some
subtrees in the database, which would be desirable for many applications.

Example 4.3.1
The following figure shows a database and a non-rooted pattern for it that could
match with two subtrees of the database:

D

A

D E

C

XOR

GF

D

GFB

Pattern

OR

Database

GF

It is possible to reflect this property in the rooted matching by using the depth
facet. As we will see later (section 6.3), calculating the depth facet is not
trivial and very time consuming. Furthermore, generating the result out of

Sebastian Schaffert Page 38

Grouping Structures for Semistructured Data

such a simulation produces results with much overhead (in form of the whole
ancestors of the matched subtrees) which might reduce the effect of the selection.

Example 4.3.2
Using the depth facet with a *-node, it is possible to express the previously
used pattern like in the following figure:

Pattern

GF

D

*

On the other hand, finding appropriate starting pairs for the non-rooted simu-
lation is not very difficult and may have performance advantages compared to
the calculation of the depth facet.

This topic is left open for further discussion here. While rooted simulation is
used in this paper, it is not difficult to modify the simulation definitions to also
include non-rooted simulations.

Sebastian Schaffert Page 39

Chapter 5

Answer Semantics

Results for a matching can be of various forms. In this chapter, the topic of
answer semantics is introduced in two steps.

First, only elementary data trees are considered. The easiest approach is to
use the information that is already contained in the simulation relation. Since
this has some serious drawbacks, we also introduce the notion of a “maximal
simulation” for generating more convenient answers for matching on elementary
data trees.

After that, we extend the results from the elementary matching to data trees
with grouping. A more efficient approach to matching is introduced, allowing
the matching to be calculated by just comparing the facets of database and
pattern. This also allows to compute a combined answer for the otherwise many
possible simulations. After that, some topics that are relevant for localization
in practice are treated.

In Chapter 6, the answer semantics will be extended by introducing variables,
thus providing even more capabilities.

5.1 Answer Semantics for Elementary Data Trees

5.1.1 Simulation as Result

So far, simulation has only been used to test the model relationship between
two data trees (one denoted “the pattern” and the other “the database”). The
contents of the set defined by the simulation were of no interest.

On closer examination one can notice that this set contains the information
which parts of the database matched with the pattern. Actually, the fragment
matched by the pattern can be considered the (or “one”) result of a pattern
matching, as this is the data the user intended to retrieve for further processing.

We will see later that there is also some more data to retrieve (section 5.2.2),
but for the moment it suffices to assume that the simulation defines the full
result.

40

Grouping Structures for Semistructured Data

In fact, this result comes natural since it is also in a model relationship with
the database.

As we are now interested in the actual content of the simulation, it does no
longer suffice to find only one simulation between a pattern and a database.
Now it is necessary to find all of the simulations at every position where more
than one choice of a matching partner exists. Such positions are very common
in enriched data trees due to the manifolded interpretations of grouping facets.

An important question is how to present the results of these simulations to the
user. Certainly it is possible to return the set of elementary data trees (from
the interpretation of the pattern) that have simulations with the database.

Example 5.1.1
Consider the two elementary data trees given in the next figure.

A

B

F

A

ED

B C B

Pattern DTDatabase DT1 2

1 2 3

The branches at the first level in the database DT1 are numbered so they can
be differentiated easier. The two B will be denoted B1 and B2 according to the
branch number, but the name is still B.

There are three simulations R,S and T between DT2 and DT1: R =
{(A,A), (B,B1)} , S = {(A,A), (B,B2)} and T = {(A,A), (B,B1), (B,B2)}.
The possible results generated from these simulations are shown in this figure:

A A

ED

BB

F

B

F ED

B

A

21 1 2

Some nodes are shown dashed. These are not part of the actual simulation and
would thus not be contained in the result. They are shown here to underline
difference between the trees. Discussion about including such nodes in the

Sebastian Schaffert Page 41

Grouping Structures for Semistructured Data

results is done in Section 5.2.2.

5.1.2 Maximal Simulation

The technique shown in the previous example is very simple but not very conve-
nient, since there are several answers for one query. Hence it would be beneficial
to have a combined representation of the results of a matching which covers all
of the possible simulations for a pattern and a database.

[ABS00] uses a maximal simulation which is essentially the simulation that
“contains” all other simulations.

The following proposition (which is called “fact” in [ABS00], page 136) is the
base for the maximal simulation:

Proposition 5.1.1
If G1

sim−→R1 G2 and G1
sim−→R2 G2 then G1

sim−→R1∪R2 G2.

The maximal simulation is the union over all simulations between two data
trees.

Obviously, the maximal simulation supersumes all other possible simulations,
in other words at every point in the matching process where it is possible to
match the pattern with several options in the database, all of them are chosen.

The maximal simulation therefore generates the result that covers all match-
ings. The following example shows this for the sample data that has been used
previously:

Example 5.1.2
For the database and pattern in the previous example, the result tree gener-
ated from the maximal simulation is the tree generated by simulation T which
supersumes the simulations R and S.

B

F ED

B

A

1 2

=

According to [ABS00] there are several efficient algorithms for calculating the
maximal simulation.

Sebastian Schaffert Page 42

Grouping Structures for Semistructured Data

5.2 Answer Semantics for Data Trees with Grouping

5.2.1 Combining Results with Grouping Constructs

The maximal simulation still has some problems if used as a result.

First, with grouping facets it is still possible that there are several maximal
simulations between a pattern and a database. The reason for this is that
the interpretation function from 3.2 is used in the simulation definition. This
interpretation can generate elementary data trees that don’t contain each other.

Example 5.2.1
Again, a database and a pattern for it:

A A

B

D

B

C

XOR

Database Pattern

B
C

The three interpretations for the database are given in the next figure:

A A A

B

C

B

D

C

1 2 3

There are two maximal simulations for this database and pattern, one between
the pattern and interpretation 1 and the other between the pattern and inter-
pretation 2 of the database.

This will generate the following results:

Sebastian Schaffert Page 43

Grouping Structures for Semistructured Data

A A

B

C

B

D

The reasons for this problem are obvious: When a data tree with grouping is
first transformed in a forest of elementary data trees, each of the elementary
data trees may contain different child nodes so that the union of all simulations
would not be a simulation any more.

The second problem is that the information about the other (smaller) possible
results is supersumed by the maximal simulation and therefore lost.

A solution that allows to overcome both of the mentioned problems is grouping
inheritance. Based on the maximal simulation and the relationships given in
table 5.1, page 49, the grouping constructs are carried over to the result, thus
creating a combined result.

This combined result actually allows to aggregate all of the possible maximal
simulations into one result.

The relationships in the table are currently limited so as no properties can be
combined that come from different facets (e.g. from connector and order facet).
The issue of facet combination will be a topic of further research (see Section
11.2), as it has many implications that have to be investigated. Also, only the
relationships for the connector, order and selection facet are given, but it is
possible to provide them for most of the other facets using a similar approach,
but possibly with some problems resulting from the exclusion of certain nodes
(e.g. the exclusion facet would require that there is no simulation to or from
the child nodes).

The idea behind this approach is that it would thus be possible to generate a
result for the pattern matching between data trees with grouping by restricting
the matching to the simple case of matching between elementary data trees and
then just using the relations between grouping facets given in table 5.1. This
can be seen as a “matching on a semantic level”.

Example 5.2.2
In example 5.2.1, inheriting the grouping facets will result in the following result
tree:

Sebastian Schaffert Page 44

Grouping Structures for Semistructured Data

A

B

D

B

C

XOR

Obviously, such matching is much more efficient than first generating the pos-
sible interpretations for the data trees like in Definition 3.2.7.

Example 5.2.3
Recall again example 3.2.3 on page 31 that has been used to illustrate the
application of the grouping simulation. On the left side you can see the three
maximal simulations and on the right side the result obtained by grouping
inheritance.

A A

C

A

B B

A

C C

D E D E

Result Combined

XOR

XOR

5.2.2 Extending the Results from the Simulation

A problem of the results generated by maximal simulations has not yet been
addressed: They only contain the nodes that directly matched with the pattern.

Usually, this information is already known, however, since it is contained in
the pattern. The real interest of the query is in the elements that are not
contained in the pattern, i.e. siblings and other children of the current data (In
the previous examples, these nodes were shown dashed).

The problem is illustrated by the following example (given for simplicity in an
XML syntax):

Example 5.2.4
The following fragment of an XML document (which is just an elementary data
tree in this form) represents an address book with several entries:

Sebastian Schaffert Page 45

Grouping Structures for Semistructured Data

<addressbook>
...
<entry>

<name>Schaffert</name>
<given>Sebastian</given>
<address>

...
</address>

</entry>

<entry>
<name>Olteanu</name>
<given>Dan</given>
<address>

...
</address>

</entry>
...

</addressbook>

A pattern to this database that selects all of the entries that belong to someone
with last name “Schaffert” could look like this:

<addressbook>
<entry>

<name>Schaffert</name>
</entry>

</addressbook>

Now the problem is that the result generated from the pattern matching is just
the pattern as there is only one simulation for this pattern and database (since
both are elementary data trees and it is assumed that only one entry has a
name “Schaffert”). It does not contain the address part of the entry, which
would be the information one is usually interested in.

So it would be reasonable for the result to not only include the nodes that
match but also the siblings and children.

However, this is not practical since it would always return the whole database
(and thus negate the intention of the pattern matching) because all of the
children of the root node are also contained.

A solution to this problem would be to let the user specify at which position
the children should also be included. For this thesis it suffices to just have the
option to include all or only the matched children of a node, but it is possible
to have further refinements that specify more accurately to which children the
property applies, in breadth (e.g. “all children after” or “the n-th child”) as
well as in depth (only the immediate children or all of the descendent).

Sebastian Schaffert Page 46

Grouping Structures for Semistructured Data

Example 5.2.5
In an implementation, the pattern for the previous example could be refined
as follows, assuming that the “result” attribute defines whether all or only the
matched children should be retrieved.

<addressbook>
<entry result="all-children">

<name>Schaffert</name>
</entry>

</addressbook>

The result could be the whole entry from the database that matches.

An implementation of this property could also maintain a pointer to the
database for each of the nodes in the result. This would allow the user to
specify which of the nodes to expand at a later point, after further process-
ing the result that has been obtained from the first matching. An approach
following this idea is the introduction of variables covered in Chapter 6.

Due to the time constraints of this thesis and the fact that the solutions sug-
gested here are not difficult to implement but add to the complexity of the
matching, the algorithms and implementation of the simulation-based match-
ing presented in this paper do not support this additional property.

5.2.3 Strict vs. Liberal Matching

With the inheritance of grouping facets and the extended results from the last
section, another problem can be solved: As mentioned before, in some cases it
is desirable to have strict matching instead of liberal matching. An example
is the “AND” grouping facet that specifies that all of the children have to be
in the matching partner while liberal matching would allow additional child
elements in the database that are not in the pattern.

With the two techniques introduced in the last section, the problem can be
solved. Liberal matching can be used in all cases while the restriction is inher-
ited to the result of the pattern matching.

This is not obvious and needs further explanation. First it is necessary to recall
once again what a user intends to say when he specifies a grouping facet in a data
tree. He provides additional data about how the data should be interpreted.

Nothing is lost in liberal matching, it is just possible that a result contains more
of a database than with strict matching. Since the grouping facet is carried on
to the result, the information about the data is still available.

Example 5.2.6
Consider the following database and pattern for it where the node “C” in the
pattern has a property of “all-children” like introduced above.

Sebastian Schaffert Page 47

Grouping Structures for Semistructured Data

A

D

A

D

Database Pattern

C

E

C

AND

With liberal matching, the pattern obviously matches with the database. The
result using grouping facet inheritance and the “all-children” property of the
node “C” would be:

A

D E

C

AND

In the result the information from the database is still preserved, it is not really
relevant in the matching process.

Sebastian Schaffert Page 48

Grouping Structures for Semistructured Data

Connector Grouping Facet in the
database pattern combined result
ε ε ε
AND ε AND
OR ε OR
XOR ε XOR
ε AND AND
AND AND AND
OR AND AND
XOR AND —∗

ε OR OR
AND OR AND
OR OR OR
XOR OR XOR
ε XOR XOR
AND XOR —∗

OR XOR XOR
XOR XOR XOR
unordered ε unordered
ordered ε ordered, if children in pattern appear in the same

order as in the database, — otherwise
ε unordered unordered
unordered unordered unordered
ordered unordered ordered, if children in pattern appear in the same

order as in the database, — otherwise
ε ordered ordered
unordered ordered ordered
ordered ordered ordered, if children in pattern appear in the same

order as in the database, — otherwise
i to k l to m — if result contains less than max(i, l) children
i to k l to m — if l < k or m < i
i to k l to m max(i, l) to min(k, m)

Table 5.1: Combining Results with Grouping Constructs
For a database with the grouping facet in the left column and a pattern
with the grouping facet in the center column, the result based on the
maximal simulation between the data trees without considering the
grouping will inherit the grouping facet in the right column.
A dash (—) indicates, that the inheritance fails and there is no group-
ing simulation.

∗AND and XOR will not generate a match if the number of elements is larger
than 1

Sebastian Schaffert Page 49

Chapter 6

Variables

In most pattern matching languages (like functional and logic programming
languages) it is possible to use variables to act as place-holders for some data
that should be matched. In this chapter we will discuss what are actually the
properties of these place-holders and how they might be introduced into data
trees and our simulation-based matching.

Furthermore, a way to represent the depth facet based on such place-holders is
presented.

6.1 Variables in Data Trees

6.1.1 Two Properties of Variables

Variables in declarative languages (as used in e.g. functional and logic pro-
gramming) actually have two properties: One is the property to bind to certain
values (from now on called assignment property) and the other is the joker
property, which allows them to match with any other value (possibly restricted
by type).

While these often occur together, this is no necessity: On the one hand one
might know the node name of a node and is interested in the subtree it matches
with (see Section 5.2.2). On the other hand, it might be that one wants to
match with any node and is not really interested in what is matched.

Thus, it is reasonable to separate these two properties and introduce each of
them individually into data trees. Actually, the “joker” property can be repre-
sented similar to a grouping facet with an interpretation, while the “assignment”
property only becomes relevant in the simulation (i.e. the matching algorithm).

The name “variable” or “variable node” in this document is used to identify
the “assignment” property, since this is the property which usually represents
the meaning of variables. The “joker” property will be called “joker”.

50

Grouping Structures for Semistructured Data

6.1.2 Representing the “joker” property

The “joker” property can be represented as a special node that has its own
semantics and interpretation function. These can be defined similar to the
grouping facets (see section 6.2).

For data trees, this special node will be denoted as “?” with name(?) = ”?”. A
formal representation of data trees with variables is given in Section 6.1.4.

6.1.3 Representing the “assignment” property

The impact of the “assignment” property on the data tree syntax is not very
big: it is necessary to somehow identify the nodes that can be bound. This is
achieved by simply adding a partial function “vname”:

Definition 6.1.1 (Variable Names)
The notion of data trees defined in 3.1.1 and 3.1.3 is extended by the (partial)
function vname : Nodes→ Labels which assigns to all nodes that should bind
a value a variable name by which the assignment can be identified.

With this definition, it is possible to identify variable assignments (and thus
the common notion of “variables”) by a name. Since it doesn’t have an impact
on the semantics of the data (at least as long as each variable name only occurs
once), further discussion of this topic will be delayed until the discussion of
variable assignments (section 6.4).

6.1.4 Adding Variables to Data Trees

To summarize the new properties, here is a new definition for “data trees with
variables”.

Definition 6.1.2 (Data Tree with Variables)
A data tree with variables DB is an “enriched data tree” with the following
modifications:

• Nodes ⊂ Vertices ∪ {?} is a (finite) set of vertices.

• vname : Nodes → Labels is a partial mapping from nodes to their
variable names. It is possible that several variable nodes share the same
name, i.e. |image(vname(V))| ≥ 1.

6.2 Interpretation of a Data Tree with Variables

Variable assignment only becomes relevant in the definition of the simulation.
This will be discussed in the sections about the results of a matching (sections
5 and 6.4).

Sebastian Schaffert Page 51

Grouping Structures for Semistructured Data

enriched subtree NG represented through the forest
?(M1, . . . ,Mn) all N{M1, . . . ,Mn, R1, . . . , Rm} with N ∈

Vertices

Table 6.1: Interpretation of data trees with variables

The only change in the semantics is because of the introduction of the “joker”
node (?-Node).

Informally, the ?-Node “matches” with all imaginable nodes, i.e. all (sub-) trees
with any root node and the same children are models for it.

Representation of this property can easily be achieved by extending the notion
of the interpretation function that is already used for grouping facets. In fact,
the ?-Node can be seen as a pseudo-grouping-facet.

Definition 6.2.1 (Interpretation of a Data Tree with Variables)
The (liberal) interpretation function IG(N) defined in 3.2.1 and in table 3.2 for
data trees with grouping facets is extended by the rule for variable nodes given
in table 6.1.

Obviously, this definition doesn’t require any change to the simulation definition
used for enriched data trees. This is also the main advantage of this approach.

Example 6.2.1
Consider the enriched data tree with the joker node in the next example.

A

B

F

?

C

XOR

Assume that there is a universe consisting of a set of nodes Vertices =
{”A”, ”B”, ”C”, ”D”, ”E”, ”F”}. The following interpretations exist for the
data tree:

Sebastian Schaffert Page 52

Grouping Structures for Semistructured Data

A A

C

A

C

A

C

A

C

A

C

B

F

A

A B

C

C D E F

6 754321

As can be seen in the previous example, the set of interpretations for a data
tree with variables can get very large. In an implementation of the simulation,
it is not necessary to generate all imaginable interpretations from Vertices. It
is sufficient to take into consideration the nodes in the matching partner (i.e.
its set of nodes). Furthermore the tree structures of both data trees can be
used to limit the set of candidates.

6.3 Representing the Depth Facet: A Simple Ap-
proach

This section will show one possible way to represent the depth facet within the
framework provided so far. The depth facet will be interpreted on the base of
the ?-node.

The presentation of the algorithms later in this paper will refrain from imple-
menting the depth facet because it is very time-consuming and doesn’t fit into
the time frame of this thesis. Efficient ways of calculating variable depth in trees
are e.g. given in [MSB01] where it is possible to provide regular expressions
over edges.

Recall that the depth facet allows to specify at what depth the children of a
node may occur. A representation of this property is possible based on the
?-node, repeated the number of times that are specified as upper and lower
bounds.

The syntactical representation of the depth facet could be done through the
following extension:

Definition 6.3.1 (Depth Facet)
The depth facet can be represented through the following nodes:

• ∗-node - the node spans an arbitrary depth including zero

• +-node - the node spans an arbitrary depth excluding zero

• m− n-node - the node spans an arbitrary depth between m and n

Sebastian Schaffert Page 53

Grouping Structures for Semistructured Data

An informal definition of the semantics is already given in this definition. For
the next step we should first consider what should actually be expressed by the
depth facet. This is best achieved by using an example.

Example 6.3.1
Assume a tree like the one given in the following figure:

A

B 2−4

M M1 n

What data trees should match with these fragments?

The case is relatively simple, when n = 1. The fragment will then match with
any N with a descendent M1 at a level of 2 to 4 below A. The interpretation
of the fragment thus is the set of the following enriched data trees:

M1

M1

?

?

?

?

?

M1

A

B

?

?

A

B ?

A

B ?

This also shows the relation between the ?-node and the depth facet.

It becomes more complicated if n > 1, because this means that any of the
child nodes Mi can occur at any level between 2 and 4 below the parent node
N . A possibility would be to reduce the child elements to 1 by creating a
new fragment for each of the child elements, i.e. if n = 2 this would generate
the fragments A(”2− 4”(M1)) and A(”2− 4”(M2)) which would then again be
interpreted as above.

Sebastian Schaffert Page 54

Grouping Structures for Semistructured Data

As shown in the above example, the depth facet will produce a very large set
of interpretations (infinite because of the ?-node, but still very large if only
generated for a “small universe”.

An implementation of the depth facet is possible by generating the set of inter-
pretations based on the nodes and structure of the two trees matched. However,
using this approach is very inefficient and it is desirable to investigate further
approaches of representing and implementing the depth facet.

6.4 Variable Assignments

Variable assignments bind a certain variable (or: variable name) to a certain
value. In Section 6.4.1, we discuss the possible options for the values of such a
binding.

After that, the simulation based matching is extended to support variables.
There are several issues that have to be addressed there, most notably the dif-
ferentiation between singleton variables (variables that occur at most once) and
multiple occurrences of the same variable. We will see that while matching with
singleton variables is relatively simple, the case is considerably more difficult
with multiple occurrences.

6.4.1 Types of Variables

To define variables, it is important to know what exactly variables should be
bound to (i.e. what “type” a variable has). The types that come to mind are
“node”, “subtree” and “path”.

The three types will be introduced shortly in the following together with their
advantages and disadvantages.

First, we introduce an example that will be used to demonstrate the different
aspects of the variable types.

Example 6.4.1
The following figure shows a simple database and a pattern containing a vari-
able. In this and the following figures, variables will always be denoted as a
box instead of a circle. The variable name is given on the right lower corner of
the box, in this case “X”.

Sebastian Schaffert Page 55

Grouping Structures for Semistructured Data

ED

C

A

B

Database

?

A

X

Pattern

EE

The following three simulations exist between the pattern and the database.
The nodes that are not part of the simulation are again shown dashed.

B

E

B

EED

C

ED

C

A

1 2 3

AA

Node Type

The node type is the basic notion of a variable. The variable will be assigned
exactly the node it matched with.

Example 6.4.2
In the running example of this section, X will be assigned the values ”B” and
”C”.

The advantage of this approach is that it requires just minimal changes to the
pattern matching introduced so far. There would just have to be an extra set
containing mappings from variables to single nodes.

The disadvantage, as can be seen easily in the example, is that the information
that is gathered thus is only very limited, since a variable will only match with
a certain node (which is carrying the information), tearing the information bit
out of its context.

Example 6.4.3
In our example, the information about the child node ”D” of ”C” is missing.

Sebastian Schaffert Page 56

Grouping Structures for Semistructured Data

Subtree Type

The second possibility is to match a variable with a whole subtree (i.e. with a
mapping to the root node of a subtree and preserving the structure beneath it).
All child nodes of the variable node can then be viewed as additional constraints
to the matching that are nonetheless contained in the result.

A more formal description of a subtree is given in Section 6.4.2.

Example 6.4.4
The following assignments for X are possible when using a subtree-oriented
approach for matching:

ED

CB

E

In this approach, the additional context of the matched node is preserved.
However, the approach is more difficult to handle in terms of implementation
than the node-only approach.

Note that it is also possible to solve the problem of fetching the context of
certain nodes from Section 5.2.2.

Path Type

One other disadvantage of the subtree approach comes with multiple occur-
rences of a variable: In some cases it might be desirable, that a variable only
gets assigned one node or a certain path, that should be repeated at another
position.

Example 6.4.5
In the following figure, the variable X should bind to a path only that is repeated
at a different position in the database, but has different child elements.

A

B

D E D

F G C

B

Database

A

??

CF

X X

Pattern

Sebastian Schaffert Page 57

Grouping Structures for Semistructured Data

The disadvantages are mostly shared with the node type, but implementing
this approach will probably lead to some difficulties. Also, a representation of
this assignment will probably be not very convenient.

For the variable assignment we choose a combination of the node and the subtree
type, as it is easy to introduce into data trees and intuitive to the user. This
combination will be introduced in the next section. It might be possible to cover
the path type with a special equality relationship for multiple occurrences. The
need of equality relationships will be discussed for multiple variables in Section
6.4.5.

Combining Node and Subtree Type

Since the node type and the subtree type have complementary advantages and
disadvantages, it would be best to find a solution that takes the advantages of
both.

The idea is very simple: Let the variable “point” to the node, but keep the node
in its context, i.e. in the database. This is similar to a “copy-by-reference”
instead of a “copy-by-value” of the parameters for functions in common pro-
gramming languages.

Example 6.4.6
Again consider the example used previously in this section. After matching the
pattern with the database, the variable ”X” could have two “pointers” into the
database to the nodes ”B” and ”C”. These are denoted as dashed, red arrows
in the next figure.

ED

C

A

B

Database

?

A

X

Pattern

EE

This approach has the simplicity of the node type and the information of the
subtree approach.

Thus, it will suffice in practice to interpret variables as pointers to the database.
Fetching the required data out of that (which also includes greedy and non-
greedy subtrees) is then up to the user.

Localization with variables is then just adding pointers to certain parts of the
database (which arguably covers the idea of localization very well).

Changing the simulation definition to cope with such variables appears to be

Sebastian Schaffert Page 58

Grouping Structures for Semistructured Data

rather simple. If every variable occurs only once in a pattern and database, this
is true. But for multiple occurrences, it will be necessary to actually compare
assignments. Therefore, we still need to introduce the notion of subtrees even
if the actual matching only assigns pointers.

6.4.2 Subtrees

As discussed above, variables will point to “subtrees”. In this section a notion
for subtrees of a data tree is given. This is necessary to be able to compare
subtrees, which will be needed in Section 6.4.5.

A subtree will generally extend from a given root node to some or all of the
leaf nodes. This can be achieved by using the transitive closure of the map-
ping children() as the maximal node set for a given root and inheriting the
underlying tree structure.

First we introduce the notion of the descendants of a node:

Definition 6.4.1 (Descendants)
For an arbitrary Node N in a data tree DT , a node N ′ is called a descendant
of N if it satisfies:

• either N ′ ∈ children(N)

• or ∃M : M is a descendant of N and N ′ ∈ children(M)

The set of all descendents of a node N with respect to a data tree DT shall be
written descendantsDT (N).

Having defined the notion of descendants, it is now easy to describe subtrees:

Definition 6.4.2 (Subtree)
Let DT = (Nodes, name, children, root) be an (enriched or elementary) data
tree, N ∈ Nodes an arbitrary node in DT . A subtree with root N
(Nodes′, name, children, N) over DT is defined as a data tree with root node
N and Nodes′ ⊆ descendantsDT (N) ∪ {N} with the restriction that for every
node 6= N in Nodes′ the parent node must also be contained in Nodes′.

A subtree is called greedy, if it spans to all of the leafs in the underlying tree
structure (i.e. Nodes′ = descendantsDT (N) ∪ {N}). The greedy subtree with
root node N over DT will be denoted as subtreeDT (N).

Thus a subtree with root N can contain any children of N in the underlying
structure if it at least contains the immediate parents of each node.

A “greedy” subtree is the complete subtree for a node up to the leafs. As
already noted above, variables will be bound to greedy subtrees.

Example 6.4.7
The following figure shows a data tree DT and some subtrees in it. Also, a tree
that is not a subtree is shown. The nodes that are in the subtree are shown
solid, all others dashed.

Sebastian Schaffert Page 59

Grouping Structures for Semistructured Data

ED

C

A

B

F

DT

ED

C

A

B

F

ED

C

A

B

F

Subtree with root A Subtree with root A

ED

C

A

B

F

Greedy Subtree with root C

ED

C

A

B

F

Subtree with root F

ED

C

A

B

F

No Subtree

Note that with the differentiation between greedy and non-greedy subtrees it is
possible to describe the problem with extended results (results containing more
than the nodes in the pattern) in Section 5.2.2 more accurately.

6.4.3 Singleton and Multiple Variables

When investigating pattern matching with variables, it is necessary to consider
whether each variable only occurs once or may occur several times in the pat-
tern. The implications of this decision are big: While matching with only one
occurrence only requires simple assignment, multiple occurrences of the same
variable require that each of the assignments of a variable have the same value.
The latter requires the implementation of backtracking over the possible vari-
able assignments and also influences the simulation-based pattern matching to
a big extent.

Programming languages that use pattern matching handle it differently: Most

Sebastian Schaffert Page 60

Grouping Structures for Semistructured Data

functional languages like Haskell allow only one occurrence of a variable in
a pattern (and none in the database!). See e.g. [Tho99], page 122. Logical
programming languages, on the other hand, allow variables to occur an arbitrary
number of times as long as certain conditions are satisfied (“occurs check”). See
e.g. [SS94], page 87ff. In logic programming, pattern matching with multiple
occurrences of variables is also called unification.

In this paper, we will first only investigate the case where a variable may only
occur once and only in the pattern. Such variables will also be called singleton
variables.

Some proposals are then made on how to handle multiple occurrences of vari-
ables (called multiple variables).

6.4.4 Variable Assignments for Singleton Variables

As discussed in Section 6.4.1, variables will be interpreted as references to the
database. Handling this in an implementation is very simple, as the required
relationship is already given in the simulation between a database and a pattern.

Example 6.4.8
Consider the example used in Section 6.4.1. For convenience, it is given again
in the next figure.

ED

C

A

B

Database

?

A

X

Pattern

EE

In the next figure, the maximal simulation {(A,A), (?, B), (?, C)} between the
pattern and the database is shown with dashed, red arrows.

ED

C

A

B

Database

?

A

X

Pattern

EE

(A,A)

(?,B)

(?,C)

Sebastian Schaffert Page 61

Grouping Structures for Semistructured Data

As can be seen in the example, the pointers from the variable named ”X” into
the database already exist – they just have to be taken from the simulation.

After this informal investigation, it is now possible to define the notion of a
variable assignment.

Definition 6.4.3 (Variable Assignment)
Let DT be an (enriched) data tree (database) and P be an (enriched) data tree
(pattern) with singleton variables. Furthermore, let N ∈ P be a node with
|vname(N)| > 0 (i.e. a variable).

If there is a (grouping) simulation R between P and DT (P
sim−→

g

R DT),
then the variable assignment for vname(N) with respect to R, writ-
ten σR(vname(N)), is the subset of R limited to all tuples containing N
(σR(vname(N)) = {(M,M ′)|(M,M ′) ∈ R ∧M = N}).

Example 6.4.9
In example 6.4.8, the variable assignment for ”X” in the maximal simulation
R is σR(”X”) = {(?, B), (?, C)}.

6.4.5 Variable Assignments for Multiple Variables

Since the topic of variable assignments with multiple occurrences of a variable
is a very complex topic (see unification in [SS94], pages 87ff.), we only pro-
vide a sketch here on how to deal with such variables in our data trees. It is
not very difficult to provide a clear formalism, but developing algorithms and
implementations involves more work.

The main issue with multiple occurrences of a variable is that it is necessary
to ensure that every occurrence of the same variable gets the same assignment.
This not only involves the necessity to have a backtracking over the assignments
for each variable, but it also restricts the set of possible simulations between
two data trees.

Example 6.4.10
The following example shows a database and a pattern that contains the variable
named ”X” two times. The numbers on the E and F are only used for better
identification. The name of the nodes are still ”E” and ”F”,

Sebastian Schaffert Page 62

Grouping Structures for Semistructured Data

E
X

C

ED

C

A

B

Database Pattern

E

A

E
X

B

F F21

1 2 1 2

�

The only simulation between the Pattern and the database is R =
{(A,A), (B,B), (C,C), (E1, E2), (E2, E1)}. One could imagine a variable as-
signment for ”X” like {(E1, E2), (E2, E1)} because the two assignments match.

Now consider the slightly modified database in the next figure:

E
X

C

ED

C

A

B

Database Pattern

E

A

E
X

B

F

1 2 1 2

G

Now, a variable assignment is not possible, because the two assignments won’t
match.

Furthermore, note that there is still the simulation R between the pattern and
the database, if we apply the simulation definition used so far. However, this is
not desirable, because this simulation does not provide a variable assignment
for ”X”.

As can be seen in the example, some sort of equality relationship will be needed
to support multiple occurrences of variables. There are several ways to define
equality, we have already used one of them throughout the document: Simu-
lation. Informally, we can say that if there are two or more occurrences of a
variable, it is necessary that there is a bisimulation between the subtrees where
the assignments of the occurrences point to.

Sebastian Schaffert Page 63

Grouping Structures for Semistructured Data

Definition 6.4.4 (Bisimulation)
A relation R between two elementary data trees DT1 and DT2 is called an

elementary bisimulation, written DT1
sim←→R DT2, if DT1

sim−→R DT2 and

DT2
sim−→R DT1.

A relation R between two data trees with grouping DT1 and DT2 is called

a grouping bisimulation, written DT1
sim←→

g

R DT2, if DT1
sim−→

g

R DT2 and

DT2
sim−→

g

R DT1.

Note that the grouping bisimulation as it is defined here doesn’t ensure complete
structural equality (isomorphism. In each direction it is sufficient that there
exists an interpretation that has a simulation with some interpretation of the
other subtree. This may in many cases not represent the intention of the user.
However, it is not difficult to provide a different equality relationship that is
stricter than this one. Especially, it will have no influence on the form of the
simulation with multiple variables.

Example 6.4.11
Consider the two elementary data trees DT1 and DT2 in the next figure.

A

B

A

BB

DT DT1 2

The two trees are bisimular (for each of the nodes in both trees exists a corre-
sponding node in the other tree), but obviously not isomorph, as the structure
is different.

Other equality relationships between trees are imaginable. Isomorphism on
graphs is one of them, ensuring complete structural equality.

Now that we have an equality relationship, we can define a simulation with
multiple variables. To do so, we will have to merge the ideas from Definitions
3.2.6 and 6.4.3 and then limit the possible simulations by the bisimulation.

For simplicity, we will first show the idea on elementary data trees.

Definition 6.4.5 (Elementary Simulation with Multiple Variables)
Let DT1 be an elementary data tree with variables and DT2 be an elemen-
tary data trees without variables, Nodes1 and Nodes2 be their respective set

of nodes. A simulation R between them (DT1
sim−→R DT2) is a elementary

simulation with multiple variables if it satisfies:

∀N1, N
′
1 ∈ Nodes1∀N2, N

′
2 ∈ Nodes2 : vname(N1) = vname(N ′

1) ∧ (N1, N2) ∈
R ∧ (N ′

1, N
′
2) ∈ R ⇒ ∃SsubtreeDT2(N2)

sim←→S subtreeDT2(N
′
2)

This definition explicitly limits the variables to occur only in the pattern. An

Sebastian Schaffert Page 64

Grouping Structures for Semistructured Data

extension to the database is possible, but can be complicated if the same variable
occurs in the pattern and in the database (think e.g. of liberal matching).

Example 6.4.12
In the previous example (Example 6.4.10), the bisimulation between the two
assignments of “X” is highlighted with dashed circles.

An extension to data trees with grouping can be done in several ways. The
first would be to just take Definition 3.2.7 and then use an elementary simula-
tion with multiple variables instead of the elementary simulation between the
interpretations of the enriched trees.

Example 6.4.13
Consider the following data trees with grouping facets (these are from the above
example with slight modifications.

E
X

C

1 E
X

B

2
ED

C

A

B

Database

E

A

F F21

1 2

Pattern

XORXOR

XOR

G

The interpretations that can be generated for the database and pattern are
given in the following figure:

A

C

A

D

C

A

E

F2

2 E
X

C

A

1

A

E
X

B

2

A

B

E

F1

1

Database Pattern

1 2 3 1 2 3

G

Several problems arise. First, there is no single maximal simulation between
the forest from the database and the forest from the pattern, there are actually

Sebastian Schaffert Page 65

Grouping Structures for Semistructured Data

two of them. Which of the variable assignments is the right one?

Furthermore, in the above example, the two occurrences of variables are as-
signed in different simulations so actually its only a singleton variable assign-
ment for each of the simulations.

Obviously, this approach also shares the disadvantages of the grouping sim-
ulation, namely that the interpretations have to be generated. Furthermore,
variable assignments will no longer point directly to the database, but to the
individual interpretations of the database.

A second possibility is to use the combined result from Section 5.2.1 and its
underlying maximal elementary simulation. The variables would be carried to
the result and then point back into the database. This would allow assignments
that point immediately into the database, however, the semantics may be dif-
ferent and it is not yet investigated how to solve the bisimulation in that case (a
grouping bisimulation in our current definition just needs to find one interpre-
tation on either side, but the intention will often be to have all interpretations).

Example 6.4.14
In the same example as before, a variable assignment can be realized like in the
next figure, using the combined result from database and pattern.

E
X

C

1 E
X

B

2ED

C

A

B

Database

E

A

F F21

1 2

Combined Result

XORXOR

XOR

The final choice and formalism is left open at this point. Further investigations
of this topic are planned for future research.

Sebastian Schaffert Page 66

Part III

Algorithms

67

Grouping Structures for Semistructured Data

In this part, the basic algorithms for data trees with grouping are given: Gen-
erating the interpretations for a data tree with grouping is the first, followed
by the algorithms for elementary and grouping simulation. Last but not least,
an algorithm for calculating the maximal simulation is presented.

The algorithms are given in a Pascal-like pseudo-code, which uses some con-
structs that are not necessarily part of Pascal but are common in other pro-
gramming languages. Also, some more abstract data types are used in their
intuitive way (e.g. “Sets”), which should be obvious to the reader.

Most of the algorithms are first introduced on a lengthy example which adds
to the understanding of the pseudo-code presented afterwards and also shows
why the algorithm generates what it intends to.

After presenting the pseudo-code, each step is commented as seems appropriate.

We refrain from presenting a proof of correctness for the algorithms. Most
of the steps are derived immediately from the definitions of the corresponding
concepts and should be illustrated by the examples.

Sebastian Schaffert Page 68

Chapter 7

Data Trees

In this chapter we will shortly resume the definitions from chapter 3 for further
use in this part.

First again have a look at elementary and enriched data trees. Then we re-
peat (with slight modifications) the algorithm presented in Definition 3.2.1 to
generate the set of elementary representations for a data tree with grouping.

7.1 Basic Data Structures

For easier reference, the definitions for elementary and enriched data trees are
shortly resumed here.

An elementary data tree DT is a tuple (Nodes, name, children, root), where
Nodes is the set of nodes, name is a function mapping nodes to their names,
children a function mapping to the set of child nodes and root is the root node
of DT .

An enriched data tree or data tree with grouping is
a tuple (Nodes, name, grouping, children, root) such that
(Nodes, name, children, root) is an elementary data tree and grouping is
a function mapping each node to a set of grouping facets.

7.2 Interpretation

In Definition 3.2.1, an algorithm is presented that produces the possible inter-
pretations for an enriched data tree. It is repeated here for convenience.

Let EDT be an enriched data tree with grouping and Nodes its set of nodes.
The set of interpretations for the tree EDT, I(EDT), is generated as follows:

let N be the root node of EDT .

• if N is a leaf node of EDT then the interpretation is just the node N
(I(EDT) = {N}). End.

69

Grouping Structures for Semistructured Data

• if N is an inner node of EDT then do

1. for each node M ∈ children(N), generate the set of interpretations
I(M) for the subtree with root M .

2. generate the set of interpretations I(N) for N following definition
3.2.1. Initialize the working set WS with I(N).

3. for all interpretations I in I(M): if there is an interpretation J in
WS where M ∈ children(N) (wrt J), add a new interpretation to
WS that equals J where the subtree with root M in J is replaced
with I.

4. I(EDT) is then the working set WS restricted to elementary data
trees.

So, as can be seen in the second item, it will first be necessary to be able to
generate the interpretations of a single node without recursing to the children.
This can be achieved using the table in definition 3.2.1.

Example 7.2.1
Consider the following tree with grouping:

ED

C

A

B

XOR

OR

For the node “A”, the algorithm will return a set of interpretations like given
in the next figure (Note that the child nodes still have their grouping facets):

A

B

ED

C

XOR

B

ED

C

XOR

A A

Thus, it is necessary to duplicate the node “A” several times and attach a
different set of child nodes to it. The complete table for this is given in Definition
3.2.1.

Algorithm 7.2.1
The algorithm for generating the interpretations of a single node consists of

Sebastian Schaffert Page 70

Grouping Structures for Semistructured Data

a function called nodeinterpretations. This function takes the node as an
argument and returns the set of interpretations for this node.

It is assumed that there exists a function named removegrouping that simply
eliminates the grouping of the node. Also, we assume a function called grouping
which returns the grouping facet of the node. Furthermore, we need a function
called clone which just duplicates a node without the references to the children,
and a procedure addChild that adds a child node to the node.

(00) FUNCTION nodeinterpretations(VAR node: Node): Set;
(01) VAR S: Set; g: Grouping; child, nnode: Node;
(02) BEGIN
(03) G := grouping(node);
(04) CASE G OF
(05) AND: S := { removegrouping(node) };
(06) XOR: S := {};
(07) FOREACH child IN children(node) DO
(08) BEGIN
(09) nnode := clone(node);
(10) addChild(nnode,child);
(11) S := S UNION { nnode };
(12) END;
(13) ...
(14) ESAC
(15) RETURN S;
(16) END;

For space reasons, the algorithm is only given for the “AND” and “XOR” case,
which is sufficient to show the idea.

In line 03, the grouping of the node is fetched and then used in the case selection
beginning with line 04. The AND case is simple, we just return the node together
with its children, but without grouping (line 05). The case is more difficult for
XOR: It is necessary to generate new nodes that equal the given node and then
attach to each of them exactly one child node of the original node (lines 06 to
12).

One can imagine, that other facets like “OR” or “ordered”/“unordered” need
even more code structures to generate all of the interpretations.

The algorithm for generating the individual interpretations for a node will now
be used in an algorithm that generates the elementary representations for a
whole data tree with grouping.

Again, the algorithm is first demonstrated on a simple example.

Example 7.2.2
Consider again the tree that has already been used for the interpretations of an
node.

Sebastian Schaffert Page 71

Grouping Structures for Semistructured Data

ED

C

A

B

XOR

OR

The following set of node interpretations is first generated from the root node
“A”. This will be the working set S for this node.

A

B

ED

C

XOR

B

ED

C

XOR

A A

In the next step, we (recursively) generate the interpretations for all of the child
nodes of the root node “A”. Since there is only one grouping left (below the
“C”), we only need the knowledge of the node interpretation.

B

B

D E

D E

C

C C

XOR

Finally, all occurrences of children of “A” that have new interpretations are
replaced in the set S with their new values, splitting up entries if necessary.
The new set is called S′ here.

Sebastian Schaffert Page 72

Grouping Structures for Semistructured Data

A

C

A

C

A

C

D DE E

B

A

B

A

ED

CB

A

XOR

B BC C

A A

ED
XOR

S

S’

The algorithm can now be presented in the pseudo-code language, performing
the same steps as in the example:

Algorithm 7.2.2
The algorithm consists of a function that takes as an argument the root node
of the data tree with grouping and returns a set of elementary data trees, the
interpretations for this tree.

(00) FUNCTION interpretations(VAR root: Node) : Set
(01) VAR R,S: Set; node, interp1, interp2: Node;

(02) BEGIN
(03) IF children(root) = {} THEN RETURN { root };

(04) R := nodeinterpretations(root);

(05) FOREACH node IN children(root) DO
(06) BEGIN
(07) S := interpretations(node);

(08) FOREACH interp1 IN R DO
(09) BEGIN

(10) IF node IN children(interp1) THEN
(11) BEGIN
(12) <remove interp1 from R>

Sebastian Schaffert Page 73

Grouping Structures for Semistructured Data

(13) FOREACH interp2 IN S DO
(14) BEGIN
(15) <add interp1 to R where node is replaced with interp2>
(16) END;
(17) END;
(18) END;
(19) END;

(20) RETURN R;
(21) END;

Line 03 shows the recursion stop. If the set of children is empty, there is only
a single interpretation, namely the node itself.

In line 04, the set of node-interpretations is generated according to Algorithm
7.2.1 and stored in the variable R. The loop beginning in line 05 generates the
interpretations for each of the subtrees (recursion case) and then replaces for
each interpretation in R the child element that has just been treated with its
elementary representations (lines 08 to 18). In line 12 the current interpretation
is removed from R and then again added according to the number of elementary
child nodes for the current child in lines 13 to 16.

Sebastian Schaffert Page 74

Chapter 8

Simulation

In this chapter we will introduce some basic algorithms that demonstrate how
to calculate the simulation relation between two data trees for elementary data
trees and data trees with grouping.

8.1 Elementary Simulation

For the elementary simulation, we need the following data structures:

• two elementary data trees DT1 and DT2 with their sets of nodes Nodes1

and Nodes2 and root nodes root1 and root2.

• a set of pairs R denoting the simulation between the two data trees

We want to calculate the simulation between DT1 and DT2, i.e. DT1
sim−→R DT2.

To achieve this, a “divide et impera” (divide and conquer) approach is chosen.

We will first introduce the method informally with an example. The principle
is the following: For a given node N in DT1, if the name of the node is equal
with the/a corresponding node in DT2, and there is a simulation for all of the
subtrees of child nodes in DT1 on subtrees of child nodes in DT2, then there is
also a simulation for this node.

Example 8.1.1
Consider the database and pattern in the following figure.

A A

ED

B C B

Pattern DTDatabase DT1 2

B

F F

75

Grouping Structures for Semistructured Data

The simulation algorithm will first begin with the root nodes of the two trees
(“rooted simulation”). As already described, it will be necessary that the names
of the two tested nodes are equal and there is a simulation between all child
subtrees of the pattern and some child subtrees of the database.

In the next figure, the equality between the two root nodes is shown with a
red arrow (and red dashed circles), while the simulation for the subtrees of the
children that is still to be found is shown in green.

A A

ED

B C B

Pattern DTDatabase DT1 2

B

F F

=

?

After having established that the root nodes are equal, we try to find a simu-
lation for all of the children in the pattern (in our example only one).

There are two child subtrees in the database that have the same root node as
the subtree in the pattern (denoted with red). These are candidates and will
provide a simulation if there is also a simulation for the children (denoted with
blue/dotted and green/dashed). There has to be a simulation between the child
subtree with root ”F” in the pattern and one of the children marked green so
that the middle ”B” will get into the simulation. Similarly, there has to be a
simulation on ”F” in the pattern and (one of) the child subtrees marked blue.

A A

ED

B C B

Pattern DTDatabase DT1 2

B

F F

=
=

?

?

The last step is simple, as the two subtrees consist of a root node only. There
is only one possibility to fulfill the conditions in the example:

Sebastian Schaffert Page 76

Grouping Structures for Semistructured Data

A A

ED

B C B

Pattern DTDatabase DT1 2

B

F F

Thus, the result of the calculation will be the simulation given in the next figure:

A A

ED

B C B

Pattern DTDatabase DT1 2

B

F F

Now that we have introduced the algorithm on a simple example, we will for-
malize it in a pseudo-code notation that somewhat resembles the Pascal line
of programming languages. R is the set that will contain the simulation after
processing. root1 and root2 are the node sets of DT1 and DT2 respectively.

Algorithm 8.1.1 (Simulation for Elementary Data Trees)

(00) function simulation(root1:Node, root2:Node, VAR R:Relation)
(01) :boolean
(02) VAR S,T: set; flag: boolean;
(03) BEGIN
(04) IF name(root1) <> name(root2) THEN RETURN false;

(05) T := {};
(06) FOREACH node1 IN children(root1) DO
(07) BEGIN
(08) flag := false;
(09) FOREACH node2 IN children(root2) DO
(10) BEGIN
(11) S := {};
(12) IF simulation(node1,node2,S) THEN
(13) BEGIN
(14) flag := true;
(15) T := T UNION S;
(16) break;

Sebastian Schaffert Page 77

Grouping Structures for Semistructured Data

(17) END;
(18) END;
(19) IF NOT flag THEN RETURN false;
(20) END;

(21) R := R UNION { (root1,root2) } UNION T;
(22) RETURN true;
(23) END;

(24) BEGIN
(25) set R := {};
(26) IF simulation(root1,root2,R)
(27) THEN write("Simulation: ",R);
(28) ELSE write("No simulation");
(29) END;

A reader not familiar with the C/Java branch of programming languages may
wonder about the break statement used in line 16. It just leaves the current
embracing loop.

As this algorithm is not very pleasant to look on, the most important steps are
described in the next few paragraphs.

The function simulation declared in line 00 takes three arguments: the root
nodes of the two trees that should be tested and the set that will contain the
relation. The latter is a reference as the function will add tuples to it. The
return value of the function is a boolean value that tells whether the simulation
was successful or not.

Line 04 tests whether the two root nodes are equal. If not, the function im-
mediately returns false. If yes, for all of the child nodes of root1 (line 06)
we test whether there is a simulation on some other child node of root2 (lines
07 to 20). If the test is successful, we have found a simulation that satisfies
the condition for the selected child node. We add the found simulation to our
current simulation and break the loop (lines 12 to 17. In line 19, the variable
flag indicates whether we found a corresponding node for node1 in the children
of root2. If not, there is no simulation and the function returns false.

If line 21 is reached, a simulation for all of the child nodes of root1 has already
been found. Thus, the pair (root1,root2) can be added to the simulation and
the function can return success. Obviously, if root1 does not have child nodes
and the test from line 04 was successful, we immediately reach this point.

Lines 24 to 29 make the initial call for the function simulation, beginning with
the root nodes of DT1 and DT2.

Sebastian Schaffert Page 78

Grouping Structures for Semistructured Data

8.1.1 Correctness

In the next paragraphs it will be shown that Algorithm 8.1.1 really provides
what we defined as a “simulation” before.

For the proof, it is first necessary to introduce a short lemma which shows a
relation between the simulation on two data trees and the simulations on their
subtrees (see definition 6.4.2):

Lemma 8.1.1
Given any two data trees DT and DT ′ with root nodes r and r′ respectively.

1. If there is a simulation G between DT and DT ′ (written

DT
sim−→G DT ′), the following holds: ∀n ∈ children(r) ∃n′ ∈

children(r′) such that subtreeDT (n) sim−→G subtreeDT ′(n′)

2. If there exists a simulation G such that ∀n ∈ children(r) ∃n′ ∈
children(r′) such that subtreeDT (n) sim−→G subtreeDT ′(n′) is satisfied
and (r, r′) ∈ G, G is also a simulation between DT and DT ′.

Proof. 1. Assume that DT consists of only the node r. The condition holds
trivially as r does not have any child nodes and (r, r′) ∈ G. Now assume that
r has more than zero children. If the root nodes r and r′ are removed from
DT and DT ′, G\{(r, r′)} is still a simulation on the remaining forest. Thus the
condition is satisfied. 2. Assume that DT consists of only the node r. Again,
the condition is satisified trivially, as (r, r′) ∈ G. Assume that r has more than
zero children. G is a simulation between the forests that remain when removing
r and r′ from DT and DT ′. Thus, adding (r, r′) suffices to generate a simulation
between DT and DT ′.2

With this lemma, it is now possible to proof the correctness and completeness
of Algorithm 8.1.1.

Proposition 8.1.1
For any two elementary data trees DT1 and DT2, if and only if there is at least
one elementary simulation between DT1 and DT2, algorithm 8.1.1 succeeds (i.e.
has a return value of true) and returns one elementary simulation between DT1

and DT2.

Proof Sketch. Proposition 8.1.1 can be proven using a structural induction
over the structure of DT1. First, it is to be shown that if there is a simulation
between DT1 and DT2 and DT1 only consists of one node, then Algorithm 8.1.1
succeeds and returns the correct simulation (trivial). The induction step, when
DT1 consists of more than one element and there is a simulation between DT1

and DT2, can be proven by first investigating the equality of the root nodes
(which is provided by the fact that there is a simulation), thus avoiding the
unsuccessful return in line 04. Then the problem is reduced to the child nodes
in DT1, where it is to be shown that if there is a simulation between DT1 and

Sebastian Schaffert Page 79

Grouping Structures for Semistructured Data

DT2, then there is also a simulation between each of the child trees in DT1 and
one of the child trees in DT2 (Lemma 8.1.1). This will avoid the unsuccessful
return in line 18. With this result, it is possible to reduce the problem to the
induction hypothesis (line 11). In the other direction, it is necessary to show
that if Algorithm 8.1.1 succeeds, there is also a simulation between DT1 and
DT2. This can again be achieved using structural induction: If DT1 consists of
only one node, Algorithm 8.1.1 only succeeds when the root nodes of DT1 and
DT2 are equal (line 4) and thus there is a simulation. The induction step again
compares the root nodes and reduces the problem to the child trees; if there is
a simulation of each of the child nodes in DT1 then there is also a simulation
between DT1 and DT2 if the root nodes are equal (Lemma 8.1.1.2

8.2 Grouping Simulation

A very näıve approach for calculating the grouping simulation would be to just
combine the algorithms for generating the interpretation and the algorithm for
calculating the elementary simulation (Algorithm 8.1.1).

However, calculating the simulation thus is not very efficient, as it would first
be necessary to calculate all of the interpretations of both data trees. This has
already been mentioned in Section 3.2.

We improve this approach such that it takes into consideration whether it is
necessary in terms of the simulation to compute the interpretation at a certain
node or not. The interpretations for a certain node are only computed if they
are needed in the current step of the calculation.

With such an improvement it is possible to restrict the number of generated
interpretations in most cases, especially with a relatively large database com-
pared to a relatively small pattern. This is comparable to a branch-and-bound
search: While the complexity of the problem isn’t reduced, it may save a lot of
processing time in practice.

Example 8.2.1
Again, we illustrate the steps that are performed on a simple example. In
the following figure we have a database and pattern with grouping constructs.
Please note that there is some undefined part with grouping below the node
”C” in the database.

A A

B

F

G

IH

Pattern DT2

ED

B C

Database DT1

B

F
OR

XOR

OR

XOR

Sebastian Schaffert Page 80

Grouping Structures for Semistructured Data

Obviously, generating the interpretations for these two trees would be very time-
and space-consuming. The improved approach, however, works differently. For
every node that is processed, we first check whether it is even a candidate, i.e.
whether the name is equal to the one currently tested. If yes, the interpretations
are generated. If no, this is not necessary.

In the example, the first step would require to generate the interpretations for
the root node. This can be done by using the Algorithm 7.2.1 for generating
the interpretations for a single node presented before:

A

Pattern DT2

A A A A

ED

B C

Database DT1

B

F
OROR

B

F

G

IH

=

1 2 3 21

In the next step, we try to find a simulation from one of the party generated
interpretations of the pattern to one of the partly generated interpretations
of the database. Obviously, in the figure it would not even be necessary to
compute any further since one can see the simulation between interpretation 1
of the pattern and interpretation 1 of the database. However, we assume that
it would first be necessary to find a simulation between interpretation 2 of the
pattern and some of the interpretations of the database. The parts that are
marked red already have completed the algorithm while the green parts are still
to be tested:

AA A A

ED

B C

Database DT1

B

F
OR

1 2 3

Interpretation 2 of Pattern

OR

G

IH

?

=

As one can see, there is no possibility to fulfill the equality relationship between
the node names with any of the three interpretations in the database. Therefore,
it is not necessary to investigate the interpretation 2 of the pattern any further,
so the ”OR”-facet will not be expanded.

Similarly, if the interpretation 1 of the pattern should find a corresponding

Sebastian Schaffert Page 81

Grouping Structures for Semistructured Data

interpretation in the database, it is not necessary to investigate the node ”C”
any further. Thus, the simulation algorithm doesn’t care about what is below
the ”C” and whether it contains grouping constructs or not.

In contrast, if we would have generated the interpretations for the two data
trees beforehand, it would have mattered what is below the ”C” and below the
”G”.

In the following algorithm we assume that there exists a function
interpretations(Node) that generates all of the interpretations for a given
node, but does not recurse to the subtrees. The result of this function is a set
containing combinations of child elements of the parameter node.

Example 8.2.2
In the following figure, the result of applying the interpretation function on the
tree on the left side is shown as sets in the red, dashed circles.

A

B

F
OR

G

IH

B

F
OR

G

IH

B

F
OR

G

IH

OR

If nodeinterpretations is applied to a node without grouping, it will just
contain one set of all child nodes.

In order to save space we will use a more compact notation for the FOREACH
statement. FOREACH a IN A, b IN B should construct all possible combina-
tions of elements in A and B.

Algorithm 8.2.1 (Simulation for Data Trees with Grouping)

(00) function gsimulation(root1:Node, root2:Node, VAR R:Relation)
(01) :boolean
(02) VAR S,T,I,J: set; flag_node, flag_interp: boolean;
(03) BEGIN

(04) IF name(root1) <> name(root2) THEN RETURN false;

(05) IF children(root1) = {} THEN
(06) BEGIN

Sebastian Schaffert Page 82

Grouping Structures for Semistructured Data

(07) R := R UNION {(root1,root2)};
(08) RETURN true;
(09) END;

(10) I := nodeinterpretations(root1);
(11) J := nodeinterpretations(root2);

(12) FOREACH interp1 IN I, interp2 IN J DO
(13) BEGIN
(14) T := {};
(15) flag_interp := true;
(16) FOREACH node1 IN children(interp1) DO
(17) BEGIN
(18) flag_node := false;
(19) FOREACH node2 IN children(interp2) DO
(20) BEGIN
(21) S := {};
(22) IF gsimulation(node1,node2,S) THEN
(23) BEGIN
(24) flag_node := true;
(25) T := T UNION S;
(26) break;
(27) END;
(28) END;
(29) flag_interp := flag_interp && flag_node;
(30) END;

(31) IF flag_interp THEN
(32) BEGIN
(33) R := R UNION {(root1,root2)} UNION T;
(34) RETURN true;
(35) END;

(36) END;
(37) RETURN false;
(38) END;

(39) BEGIN
(40) set R := {};
(41) IF simulation(root1,root2,R)
(42) THEN write("Simulation: ",R);
(43) ELSE write("No simulation");
(44) END;

Again, the algorithm needs some explanation. Lines 00 to 04 stay unchanged
except for the name of the procedure. Lines 05 to 09 are the recursion stop,

Sebastian Schaffert Page 83

Grouping Structures for Semistructured Data

root1 does not have any more child nodes. Lines 09 and 10 generate the
interpretations for the root nodes of the two trees, but only if the names match
and without recursing to the children.

The loop that begins in line 12 tries all possible combinations of interpretations
from the two data trees. Since we don’t know beforehand which of the inter-
pretations provide a simulation, we use a temporary set T to store simulation
results (line 14) from the children.

The boolean variable flag_interp indicates that we assume that the interpre-
tations match at first. This is possibly modified later (line 29), when we find
out that one of the nodes from the first interpretation doesn’t have a partner
in the second interpretation. Similarly, we use the variable flag_node that will
be set to true if a partner has been found for the node.

For each combination, all nodes are chosen stepwise from the interpretation of
the first tree (line 16). This is similar to choosing the children of root1 in
Algorithm 8.1.1, line 06. For each node, we try to find a corresponding node in
the interpretation of the second tree. This is again done by recursively calling
the gsimulation function in line 22.

If there is a simulation for all of the nodes in the first interpretations to some
nodes in the second interpretation, the variable flag_interp will have the value
true and we will add the temporary set T and the pair (root1,root2) to the
simulation R. After that, we can return success (lines 31-35).

If the function didn’t return true for at least one of the combinations, we can
safely return the value false, as there is no simulation between interpretations
of the two trees.

8.2.1 Correctness

Proposition 8.2.1
For any two data trees DT and DT ′ with grouping. If and only if there is

at least one grouping simulation G between DT and DT ′ (DT
sim−→

g

G DT ′),
Algorithm 8.2.1 succeeds (i.e. has a return value of true) and returns a grouping
simulation.

Proof. Let us first assume that there is a grouping simulation between DT
and DT ′, i.e. there exists an interpretation I in the interpretations of DT
such that there exists an interpretation I ′ in the interpretations for DT ′ that
there is an elementary simulation between I and I ′. This also means that the
two root nodes of DT and DT ′ are equal since each of the interpretations is
rooted. Thus line 04 will not return false. For the rest, it suffices to show
that the variable flag_interp does not get false for at least one combination
of interpretations, since this would break the loop and thus the algorithm will
return failure. Without loss of generality we can assume that the loop in line 12
will at some point select the combination of the interpretations I and I ′. Lines
16-30 effectively do the elementary simulation between the two interpretations,
which has already been proven in Proposition 8.1.1, just that failure would set

Sebastian Schaffert Page 84

Grouping Structures for Semistructured Data

the variable flag_interp to false. The assumption however was, that there
is an elementary simulation between I and I ′, thus the variable will keep it’s
initial value of true and the algorithm will return success.

Let us now assume that there is no grouping simulation between DT and DT ′,
i.e. there exists no pair of combinations from interpretations of DT and DT ′

such that there is an elementary simulation between the two. Either the two
roots of DT and DT ′ are unequal. Then the algorithm will return failure in
line 04. Or some nodes deeper in the tree don’t match, which is covered by
the recursion in line 22, so that each node will be “root” at some point in the
recursion.2

Sebastian Schaffert Page 85

Chapter 9

Localization

9.1 Maximal Simulation

Calculating the maximal simulation between two data trees actually only re-
quires minor changes to Algorithm 8.1.1. Where it is sufficient in Algorithm
8.1.1 to find for each child of the first root node the “first” matching child in
the children of the second root node, we just need to retrieve “all” matching
children from that set.

Example 9.1.1
Consider the two trees given in the next figure.

A A

D

B C B

Pattern DTDatabase DT1 2

B

F FEF

Calculating the elementary simulation would result in the following matching:

A A

D

B C B

Pattern DTDatabase DT1 2

B

F FEF

Thus, in order to calculate the maximal simulation, it would be necessary to

86

Grouping Structures for Semistructured Data

not only choose the first alternative for matching B, but also to investigate the
other possible match:

A A

D

B C B

Pattern DTDatabase DT1 2

B

F FEF

?

Since the second branch also matches, it can be added to the simulation, thus
creating the maximal simulation between DT1 and DT2.

A A

D

B C B

Pattern DTDatabase DT1 2

B

F FEF

The modified algorithm for the maximal simulation just requires to remove the
break statement in line 16. This will provide that the inner loop checks all of
the children of root2 instead of stopping after the first match.

The boolean variable flag will indicate whether the simulation was successful
or not and allow to abort in the latter case.

Algorithm 9.1.1 (Maximal Simulation for Elementary Data Trees)

(00) function maxsimulation(root1:Node, root2:Node, VAR R:Relation)
(01) :boolean
(02) VAR S,T: set; flag: boolean;
(03) BEGIN
(04) IF name(root1) <> name(root2) THEN RETURN false;

(05) T := {};
(06) FOREACH node1 IN children(root1) DO
(07) BEGIN
(08) flag := false;
(09) FOREACH node2 IN children(root2) DO
(10) BEGIN
(11) S := {};

Sebastian Schaffert Page 87

Grouping Structures for Semistructured Data

(12) IF maxsimulation(node1,node2,S) THEN
(13) BEGIN
(14) flag := true;
(15) T := T UNION S;
(16) (* break; *)
(17) END;
(18) END;
(19) IF NOT flag THEN RETURN false;
(20) END;

(21) R := R UNION { (root1,root2) } UNION T;
(22) RETURN true;
(23) END;

(24) BEGIN
(25) set R := {};
(26) IF simulation(root1,root2,R)
(27) THEN write("Simulation: ",R);
(28) ELSE write("No simulation");
(29) END;

9.1.1 Correctness

Again, it would be handy to proof the correctness of this algorithm using a
simple proposition.

Proposition 9.1.1
For every two data trees DT and DT ′. If there is a simulation between DT
and DT ′, Algorithm 9.1.1 always finds the maximal simulation between DT
and DT ′.

Since there is at most one maximal simulation, completeness is trivial. For the
proof it thus suffices to show correctness.

Proof. First it is shown that Algorithm 9.1.1 always finds a simulation between
the two data trees if there is at least one. Since Algorithm 9.1.1 is just a slightly
modified version of Algorithm 8.1.1, the result from Proposition 8.1.1 can be
used. It suffices to show that the missing break-statement doesn’t influence
the result. This is trivial, since the boolean variable flag in line 14 will never
modify it’s value after switching to true and the set T just gets additional tuples
and does not loose anything.

Second, it is necessary to show that Algorithm 9.1.1 always finds the maximal
simulation between the two data trees. Assume there is only one simulation
between DT and DT ′. This will also be the maximal simulation and thus Algo-
rithm 9.1.1 succeeds. If there is more than one simulation, then the “branching”
would occur with the break statement in line 16. Without this statement, the

Sebastian Schaffert Page 88

Grouping Structures for Semistructured Data

algorithm tries all branches (lines 06 and 09) and thus T will contain the union
over all possible simulations, which is the maximal simulation.2

Sebastian Schaffert Page 89

Part IV

Conclusion

90

Chapter 10

Related Work

Parts of this work have been accepted for the WebH2001 conference in Septem-
ber 2001 [BOS01].

A different approach to localization queries in SSD is used by XPath [xpa99].
The difference between XPath and our localization approach is that the local-
ization is done by a path instead of a tree and the result usually is a set of
nodes instead of a combined answer.

Inspirations for the topic have originated from the paper [MSB01], where match-
ing for elementary data trees with aggregated answers has been proposed. How-
ever, our work goes beyond and presents an enriched SSD data model based
on adding grouping constructs, i.e. aggregated trees also for databases and pat-
terns.

A collection of tree matching problems, called tree inclusion problems, has been
addressed in [Kil92], where the ordered/unordered node-labeled tree model has
been used. [Kil92] provides also an extension of tree inclusion problems by
logical variables used to extract substructures of the pattern instances and to
express equality constraints on them.

The work presented here is also related to semantic modeling in general, see
e.g. [HK87] and [Tha00].

91

Chapter 11

Prospects

The data model we described in this paper is by no means complete. Many
issues are still ongoing work . This section provides a quick overview over this
ongoing work. Also, possible research directions for the future are shown.

11.1 Cleaner Definition of Interpretation

The current definition for the interpretation of a data tree with grouping (Def-
initions 3.2.1 and 3.2.2 is very vague and unprecise. A more formal approach
would be useful.

A cleaner definition could be inductively defined as follows:

First, a basic case is formulated that covers the trivial and the inductive case:

I(N()) = {N()}
I(N(T1, . . . , Tn)) = {N(T ′

1, . . . , T
′
n)|T ′

i ∈ I(Ti), 1 ≤ i ≤ n}

The difference between N{. . .} and N(. . .) could be solved with the following
two interpretations. Note however, that the semantics here is slightly different
than in the table presented earlier.

I(NG{}) = {I(NG()}
I(NG{T1, . . . , Tn}) = {I(NG(Tπ(1), . . . , Tπ(n))) | π permutation of {1, . . . , n}}

For the connector facet, the interpretations might look as follows:

I(NAND()) = . . .

I(NAND(T1, . . . , Tn)) = I(N(T1, . . . , Tn))

I(NOR()) = . . .

I(NOR(T1, . . . , Tn)) =
⋃
{I(N(P1, . . . , Pk)) | (P1, . . . , Pk) ⊆ (T1, . . . , Tn), 1 ≤

k ≤ n}

92

Grouping Structures for Semistructured Data

I(NXOR()) = . . .

I(NXOR(T1, . . . , Tn)) = {N(T ′
i) | T ′

i ∈ I(Ti), 1 ≤ i ≤ n}

Note however, that there are difficulties in this formalism: It is not clear how
to treat grouping facets on leaf nodes.

This formalism has not been chosen for the thesis as it will require more research
for some of the mentioned problems and also it will be necessary to develop such
rules for all of the possible grouping facets.

11.2 Combining Grouping Facets

A topic that has not been addressed in this paper is the combination of several
grouping facets for the same group of nodes.

At first glance, the issue may seem trivial, but it is not: Combining facets can
give very different meanings to a set of nodes (consider e.g. the AND-connector
and the depth facet).

For example, in some cases it might be relevant in which order the grouping
facets of a node are interpreted (the two choices are not confluent). Other
combinations might not make sense at all, how should they be interpreted?

Therefore, refining the semantics presented in Section 3 so as to accommodate
multiple grouping is worth investigating.

11.3 Arbitrary Graph Structures

In this paper we restricted the model to tree structured databases. However, it
would also be desirable to extend this to databases having an arbitrary graph
structure.

In some areas, the extension to graph structures is quite simple. The simulation
definitions, for example, have been used for real graphs in other fields already.
Other areas, like the matching with variables and especially the depth facet,
may need further modifications.

11.4 Non-Rooted Matching

In this paper, matching algorithms always begin with the root of the database
and the pattern.

However, in many applications it might be desirable to match some pattern with
some substructure of the database. As already discussed in Section 4.3, such
matching can be achieved using the depth facet. But as we have seen in Section
6.3, the representation and calculation of the depth facet is neither convenient
nor efficient, so there might be other means to calculate such matching.

Sebastian Schaffert Page 93

Grouping Structures for Semistructured Data

While the simulation technique allows the use of non-rooted matching, research
is necessary in the field of answer semantics and implementation.

11.5 Combined Answer

The table given in section 5.2 for the combined answer only covers three of the
grouping facets. An extension to the other grouping facets is desirable.

Furthermore, a deeper discussion of each of the combinations, also with respect
to implementations, will be necessary.

11.6 Improved Treatment of Depth Facet

The interpretation and treatment of the depth facet has only been introduced
shortly in this paper. There already exist more efficient means of representing
such structures.

Inspirations can come from the fields of formal languages and especially regular
expressions that have been investigating on the topic of efficient calculation of
dynamic-length structures (see e.g. [MSB01]). Furthermore, similar topics have
already been investigated in graph theory like [Kil92].

11.7 More Investigation on Variables

Variables have only been covered very shallow. Many possibilities can be inves-
tigated in future works, especially with multiple occurrences. Different, more
convenient equality relationships can be introduced and examined.

Possibly there is also a way to have a “combined answer” for variables like the
one that has been proposed for matching without variables.

Also, algorithms for matching with variables have not been given, as they can
pose serious problems. Ideas to overcome this problem can come from “unifi-
cation” that is e.g. used in logic programming (see [SS94]). Much research has
already been done in this area.

11.8 Efficient Algorithms

The algorithms presented in this paper show the idea of matching with group-
ing constructs, but they are not necessarily the most efficient algorithms for
calculating the results.

Tree matching in general has for example been investigated in [Kil92]. Further
approaches could use indexing structures over the children of a node, similar to
path indices used in theorem proving (see [EO93] and [Niv99]), which is similar
in terms of tree/graph matching.

Sebastian Schaffert Page 94

Grouping Structures for Semistructured Data

11.9 Implementations

One of the main issues is to bring the presented ideas into an algorithmic form.
Currently finished is an implementation of matching with and without grouping,
but generating results like presented in Section 6 is not yet possible.

Implementations of the interpretation and elementary simulation have been
given in form of a Haskell program in Appendix 14. Grouping simulation has
been implemented in Java, but is left out of this thesis due to space reasons.

11.10 Grouping Constructs for Query Optimization

Query languages for semi-structured data are currently very new. Due to the
richness of the concept compared to the well-investigated relational databases,
query optimization is at the moment very limited.

Grouping Constructs could provide an approach to optimize a query to some
data due to the fact that many elementary data trees are aggregated to one
data tree with grouping.

One could imagine algorithms that generate results in an aggregated answer,
thus not only representing the results in a more compact way but also poten-
tially providing a more efficient way of calculating the results.

Sebastian Schaffert Page 95

Part V

Appendix

96

Bibliography

[Abi97] Serge Abiteboul. Querying semi-structured data. Technical re-
port, INRIA-Rocquencourt, 1997.

[ABS00] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the
Web. From Relations to Semistructured Data and XML. Morgan
Kaufmann Publishers, San Francisco, CA, 2000.

[BDS95] P. Buneman, S. Davidson, and D. Suciu. Programming constructs
for unstructured data. In DBLP, 1995.

[BOS01] François Bry, Dan Olteanu, and Sebastian Schaffert. Towards
grouping constructs for semistructured data. In WebH2001 –
International Workshop on Electronic Business Hubs (to appear),
http://www.comp.nus.edu.sg/ icom/misc/WORKSHOP/index.html,
2001.

[CGL99] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.
Modeling and querying semi-structured data. Network and Infor-
mation Systems, 2(2):253–273, 1999.

[CGMH+94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Pa-
pakonstantinou, J. Ullman, and J. Widom. The TSIMMIS
project: Integration of heterogenous information sources. In In-
formation Processing Society of Japan, 1994.

[dam00] Defense Advanced Research Projects Agency. The DARPA Agent
Markup Language (DAML), 2000.

[ddm99] W3C, http://www.w3.org/TR/NOTE-ddml. Document Defini-
tion Markup Language (DDML) Specification, Version 1.0, Jan.
1999.

[EO93] N. Eisinger and H. J. Ohlbach. Deduction systems based on res-
olution. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson,
editors, Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming - Vol 1: Logical Foundations. Oxford, Clarendon Press,
pages 183–271. 1993.

97

Grouping Structures for Semistructured Data

[FKS00] Wenfei Fan, Gabriel M. Kuper, and Jérôme Siméon. A Unified
Constraint Model for XML. Temple University, Bell Laboratories,
2000.

[FS00] Wenfei Fan and Jérôme Siméon. Integrity Constraints for XML.
Temple University, Bell Laboratories, 2000.

[HHK96] Monika R. Henzinger, Thomas A. Henzinger, and Peter W. Kopke.
Computing simulations on finite and infinite graphs, July 1996.

[HK87] Richard Hull and Roger King. Semantic database modeling: Sur-
vey, applications, and research issues. ACM Computing Surveys,
19(3):201–260, September 1987.

[ISO86] International Standards Organization (ISO). ISO 8879. Informa-
tion processing – text and office systems – Standard Generalized
Markup Language (SGML), 1986.

[JTM92] R. Durbin J. Thierry-Mieg. Syntactic definitions for the ACeDB
data base manager. Technical report, MRC-LMB xx.92, MRC
Laboratory for Molecular Biology, Cambridge, 1992.

[Jun94] Dieter Jungnickel. Graphen, Netzwerke und Algorithmen. BI Wis-
senschaftsverlag Mannheim, 1994.

[Kil92] Pekka Kilpeläinen. Tree matching problems with application to
structured text databases. PhD thesis, Department of Computer
Science, University of Helsinki, 1992.

[Knu97] Donald E. Knuth. The Art of Computer Programming: Funda-
mental Algorithms. Addison Wesley, 3rd edition, 1997.

[Kröar] Peer Kröger. Modeling of biological data. Master’s the-
sis, Institute for Computer Sciences, University of Munich,
http://www.pms.informatik.uni-muenchen.de/lehre/projekt-
diplom-arbeit/biological-data.html, 2001, to appear.

[Lam86] Leslie Lamport. LATEX: A Document Preparation System.
Addison-Wesley, 1986.

[MSB01] Holger Meuss, Klaus Schulz, and François Bry. Towards aggre-
gated answers for semistructured data. In International Confer-
ence on Database Theory, 2001.

[Niv99] Hans De Nivelle. Datastructures for resolution, 1999.

[oil02] On-To-Knowledge IST Programme,
http://www.ontoknowledge.org/oil/. Ontology Inference Layer
(OIL), 1999-2002.

[Pat88] Oren Patashnik. BibTEXing. Documentation for general BibTEX
users, 8 February 1988.

Sebastian Schaffert Page 98

Grouping Structures for Semistructured Data

[RCF00] Jonathan Robie, Don Chamberlin, and Daniela Florescu.
QUILT: an XML query language. http://www.almaden.ibm.com
/cs/people/chamberlin/quilt euro.html, March 2000.

[Rob99] Jonathan Robie. XQL: XML Query Language.
http://metalab.unc.edu/xql/xql-proposal.xml, August 1999.

[SS94] Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT Press,
Cambridge, Massachusetts, second edition, 1994.

[Tha00] Bernhard Thalheim. Entity-Relantionship Modeling. Foundations
of Database Technology. Springer, 2000.

[Tho99] Simon Thompson. Haskell: The Art of Functional Programming.
Addison-Wesley, second edition, 1999.

[Wad00] Philip Wadler. A formal semantics of patterns in XSLT. Bell
Labs, Lucent Technologies, March 2000.

[xml98] W3C, http://www.w3.org/TR/1998/NOTE-XML-data-0105/.
XML-Data, Jan. 1998.

[xml00a] W3 Consortium, http://www.w3.org/TR/2000/WD-xmlschema-
0-20000407/. XML Schema, 4 2000.

[xml00b] W3 Consortium, http://www.w3.org/XML/. XML Specification,
2000.

[xpa99] W3 Consortium, http://www.w3.org/TR/xpath. XML Path Lan-
guage (XPath), 1999.

[xpt00] W3 Consortium, http://www.w3.org/TR/xptr. XML Pointer
Language (XPointer), 2000.

[xqu01] W3 Consortium, http://www.w3.org/TR/xquery/. XQuery: A
Query Language for XML, Feb 2001.

[xqw] XML Query working group. http://www.w3.org/XML/Query.

[xsl00] W3 Consortium, http://www.w3.org/Style/XSL/. Extensible
Stylesheet Language (XSL), 2000.

Sebastian Schaffert Page 99

Chapter 13

Application Examples of
Individual Grouping Facets

This chapter contains some informal discussion of grouping constructs that has
been developed prior to the formal discussion in this thesis.

Nonetheless it might be useful to the reader as there are examples for each of
the grouping facets. Furthermore, the examples are mostly closer to real-world
applications than the “abstract” examples presented so far.

Note that there are additional facets as well as additional properties for some
facets which are not part of the previous discussion. This is mainly due to the
fact that they are either redundant or cannot be expressed properly with the
formalism that is proposed in Part 1.

13.1 Sibling Relationships

Two nodes are “siblings”, if they share the same immediate parent node in the
tree structure.

Sibling relationships specify facets of a group of data items at the same level in
the tree structure that models the data, i.e. between “siblings”.

The facets covered here include “connector”, “order” and the “repetition” facet.

13.1.1 Connector Facet

The Connector Facet describes connections between data items that are given
a “simple” connection information. Typically this will be some sort of boolean
connection like “and”, “or” and “xor”, but it is also conceivable that the infor-
mation is a user defined qualifier.

Example 13.1.1
Consider that you want to buy a car. Most likely you will first have to assemble
the “special” equipment that you want to have like air conditioning, radio, etc.

100

Grouping Structures for Semistructured Data

Now consider there is an electronic database containing all of the special equip-
ment that can be used. This database should contain some constraints to the
data, such that the user can only select a sensible configuration of the equip-
ment:

Since it is reasonable to assume that a car only can have one radio, all available
radio models would be “xor”-related. On the other hand, it will be possible to
have both a radio and air conditioning, so these would be ”and”-connected.

Also note that the relationship is not necessarily between only two data items
but also between the data items of a set of arbitrary length.

For some data types it will also be useful to already specify relational charac-
teristics in the schema, not only in the data itself. Hence it will be possible to
specify a default connection between elements (that may optionally be overrid-
den by individual data items, see ”Overriding” below).

Example 13.1.2
Imagine that you want to give a schema for a database containing cars that
clients have requested using the previously mentioned database for special
equipment.

It would be possible and sensible to specify that a car can only have one radio
in advance since a car with more than one (or no) radio is not very typical.
Thus we will specify in the schema that the default for the connection between
radios is ”xor”.

Summary

• the connection facet is applicable in both the data itself and in the schema
for a set of databases

• possible connections include boolean operations like ”and”, ”or” and
”xor” and user defined qualifiers

13.1.2 Ordering Facet

In XML datasets, all child nodes are always considered “ordered”, i.e. elements
with the same children but in different order are not considered equal. Although
the reason for this is obvious as XML originated from SGML where a dataset
always was a text document, this is not useful in many XML applications that
are just used as a database, e.g. in many electronic commerce applications.

In these applications it would be more convenient to be able to specify exactly
whether the child nodes of an element are to be considered ordered or not.

Example 13.1.3
Imagine that you have an addressbook with several address entries each having
between zero and several email addresses.

Sebastian Schaffert Page 101

Grouping Structures for Semistructured Data

While for many entries that have several email addresses the order in which they
are returned in a query is not important, it might be useful for some entries
where the first email address should be preferred over the others. Thus order
will be necessary in the latter case while it isn’t in the first example.

Again, this facet is not only applicable in the data itself but also in schemas
where the structural information for a whole set of possible applications is
specified.

Example 13.1.4
Again consider that you have an electronic addressbook consisting of address
entries. It is easy to see that the order between the entries is not important and
that this is an information that will be valid for every instance of an electronic
addressbook, at least if some query mechanism is provided (non-electronic ad-
dressbooks are usually ordered alphabetically, but this is just an “index” to
improve the query to the data items, so we can safely assume that address-
books do not require to be ordered).

When you compare this “addressbook database” to a (XML) document repre-
senting for example a book with chapters, sections, paragraphs and so on, it is
obvious that order is important in the book and that this statement is valid for
(almost) all books.

Additionally, it may sometimes be necessary to specify the criteria by which
elements should be ordered. A simple and obvious example is if some (generic)
application wants to insert a data item beneath a node. If the children of
the node are ordered, the application could insert the data item at the right
place by using the sorting criteria specified in the node and applying some sort
algorithm on it (which is then up to the application).

One special sort criterion can be a user defined preference of some items over
others, as mentioned in the example given above. Indeed, a preference is just a
order between elements.

Summary

• the ordering facet is applicable in the data as well as in the schema for
some database

• possible values are “ordered” or “unordered”

• it will be useful to specify the criteria by which a list of data items is
sorted

• preference can be expressed by using the ordering facet

13.1.3 Repetition Facet

In databases it is common that entries of the same type are repeated and thus
provide the same kind of information for a set of entries. This is a very simple

Sebastian Schaffert Page 102

Grouping Structures for Semistructured Data

property in ”flat” relational databases. However, if the database is structured
as a tree, this kind of repetition allows to represent much more information but
at the same time gets more complicated.

To allow to express this information more efficiently, a third sibling facet called
“repetition” is introduced. It specifies how often the nodes of a given type are
allowed to be repeated beneath the parent node.

It is useful to give both a lower and an upper boundary which can take integer
values between 0 and infinity. This will allow an exact specification of the
repetition and provide a reasonable integrity constraint.

The most obvious application of this repetition facet is in a schema (in fact
something similar is already part of XML-Schema). For each data type dec-
laration it is possible to specify exactly how often it may occur beneath each
parent.

Example 13.1.5
In the addressbook example it might be reasonable to limit the number of email
addresses to at least one and at most three addresses so that it is ensured that
every person can be reached by email and the choice is not too big.

This information can be specified in the schema for the addressbook database.

However, there is also a (not-so-obvious) application of repetition in the data
itself: The repetition facet can be used as an integrity constraint for some
specific dataset, specifying that a certain node can only have a constrained
number of occurrences of some data type as child nodes.

Example 13.1.6
Imagine that you have a database consisting of car models that you want to
equip with some special parts from another database (the one given above).

While it is reasonable to assume that most cars will only take one battery, there
are some models that will use between one and two batteries (e.g. camping
vans). Therefore, it should be possible to specify such an information for each
individual model and not for the whole database.

Summary

• the repetition facet is mainly applicable in schemas, however there are
also cases where they can be used efficiently in the data sets

• for the repetition facet there should be at least two attributes, one giv-
ing the minimum number of occurrences, the other giving the maximum
number

• these attributes should take integer values between 0 and infinity

Sebastian Schaffert Page 103

Grouping Structures for Semistructured Data

13.2 Parent-Child Relationships

There are also facets that give additional information about a parent-child
relationship, i.e. the connection is between data items at different levels in
the tree structure. Usually this provides some sort of restriction for either the
parent or the child element.

Of these, the “dependency”, the “selection”, the “exclusion” and the “depth”
facet will be introduced.

13.2.1 Dependency Facet

The “dependency” facet allows to express a dependency of some sort between
the parent element and the child elements, e.g. a partial or hereditary rela-
tionship. Possible values of this facet are “part-of”, “is-a”, “has” or any user
defined qualifier. Again, the three predefined values will cover most of the cases
but it is also possible for a user to specify his own qualifier.

Since all of these values depend on the direction of the relationship i.e. whether
the relation is from the parent to child or from the child to the parent, it will
be necessary to explicitly specify the direction.

Example 13.2.1
If you again consider the database that contains special equipment for cars, it
could be sensible to have an element “radio” that contains all of the possible
models as children:

Radio
/ | \

Sony Grundig Kenwood

However, if you have a look at the pure structure of this example and don’t
know what a Radio actually is (and a computer usually doesn’t), it can mean
anything! Hence it is useful to model the additional information that the rela-
tion is a “is-a” relation from the child to the parent.

Radio { relation="is-a", "child->parent" }
/ | \

Sony Grundig Kenwood

Using this facet can be reasonable in the data itself as well as in the schema for
a set of documents as an integrity constraint and a selection criterion.

Summary

• the dependency facet specifies a dependency-relationship between parent
and child elements

Sebastian Schaffert Page 104

Grouping Structures for Semistructured Data

• it is applicable in schemas as well as in the data itself

• possible values are “part-of”, “is-a”, “has” and user defined qualifiers

• the direction of the relationship has to be given explicitly

13.2.2 Selection Facet

The selection facet allows to specify that in case of a query a subset or sublist
from the child elements of the element carrying this facet should be selected.

Possible values are

• “all” (which is usually the default), all elements should be selected from
the child nodes

• “exactly n”, exactly n elements should be selected, n is a positive integer
number

• “between n and m”, between n and m elements should be selected

• “some”, any number but at least one should be selected

• “none”, none of the elements may be selected

Example 13.2.2
Imagine again that you have a database of car equipments. One possibility
would be to classify cars into “predefined” classes for a fixed price that allow
you to select e.g. 3 special options (like air conditioning, radio with compact
disc and airbag) from a set of e.g. 10 possibilities.

These values certainly overlap (“exactly n” equals “between n and n”, ...),
but are chosen because of the additional expressive power that is gained for
the reader and the implementation doesn’t become more complicated with the
redundant information.

The selection facet is applicable in both the data (where for a given set of nodes
the limits for selecting a subset of them can be specified) and in a schema where
this information can be provided for all occurrences of the given data type. In
most cases this facet will be used as a selection criterion and most likely no as
an integrity constraint.

Furthermore it is also possible to use this facet at a “higher” level in the schema
language by applying it to the structure of the schema document.

Example 13.2.3
Imagine that you want to create a schema for an element “a” that has at least
two of a given set of subnodes. You could realize this by using the selection
facet for the structure of the schema language, adding the information that of
the element a’s possible child nodes at least two have to occur.

Sebastian Schaffert Page 105

Grouping Structures for Semistructured Data

Note that it is possible to express all of the logical relations mentioned in the
“connector facet” by using the subset constructs: an “or”-relation can be an
“some”-selection, an “and”-relation can be an “all”-selection, “xor” is “exactly
1” and a “not”-relation is a “none”-selection. Still, this is a “parent-child”
relation because it also specifies a property of the parent by limiting the child
elements, i.e. the parent is the focus here, while in the logical relations, the
siblings are of interest.

Summary

• the “selection facet” allows to specify that a subset of the children with
certain restrictions should be selected

• it is applicable in the data as well as in the schema, and in the latter
it may be used as a “general” feature of all elements of a type and as a
structure to describe the data in the schema

• possible values are “all”, “exactly n”, “between n and m”, “some” and
“none”

13.2.3 Exclusion Facet

A problem of databases is that it is unstated whether the fact that an entry is
missing means that it it really not there or whether you just don’t know and it
might be inserted as a fact at a later point (non-monotony of negation).

Hence it will often be useful to explicitly state that an entry should be negated.
In the database itself this can be used as an integrity constraint for a parent
element, specifying that a data item of a specific kind must not be inserted,
thus avoiding the problem of non-monotony.

Example 13.2.4
Again consider an addressbook. Perhaps there is an entry of a person (per-
haps your grandmother) where you know that he/she will never have an email
address, so you might want to say that it is incorrect to add one there.

The exclusion facet also has a useful application in the schema for a query to
express that a certain node should not be among the child nodes of returned
nodes.

Example 13.2.5
Imagine that you want to query your addressbook for all people that don’t have
a telephone number in the entry. Using the exclusion facet, you could say that
there should not be a node of type “phone” below a node of type “entry”.

In the schema that specifies the structure of a database, it will probably be used
less frequently, since it doesn’t make sense to explicitly forbid the existence of
certain child elements as this information is already given if the said element
does not exist in the grammar.

Sebastian Schaffert Page 106

Grouping Structures for Semistructured Data

Summary

• the “exclusion facet” specifies that a (set of) specific nodes(s) may not
appear beneath the parent node

• it is applicable as an integrity constraint in the data and in a schema
for queries; application in the schema that specifies the structure doesn’t
seem useful

13.2.4 Depth Facet

As a last group facet, “depth” is introduced. With this facet, the upper and
lower limits of a group of data item’s depth below the parent (in the sense of the
levels of the data tree) can be expressed. Thus it is possible to skip a variable
number of levels between the parent and the child element.

Possible attributes are the upper and the lower limit, each taking positive inte-
ger values. The lower limit will then represent a structure like “at least n levels
below the parent” and by analogy the upper limit will represent “at most n
levels below the parent”.

It is obvious that this facet is only reasonably used in schemas that specify the
structure or a query to the database since the information is at a meta level
that describes the structure of the database and not the relationship between
the items themselves.

Example 13.2.6
Consider that you have a tree structure like the one given below:

P
/ \

A B

Now imagine that you want to specify that the node A should be at any depth,
while the node B should be either immediately below the parent or at most
3 levels below it. To provide this information, it will be necessary to name
the connections between the nodes such that the connection P-A carries the
information that it can span any number of levels while the connection P-B can
span any number between 1 and 3.

Summary

• the depth facet represents a variable number of skipped levels between a
parent and its children

• it is applicable in schemas only

Sebastian Schaffert Page 107

Grouping Structures for Semistructured Data

13.3 Combining Facets

In many applications it will make sense to combine several of the mentioned
grouping facets in one grouping structure and thus providing even more detailed
information about the data items.

Example 13.3.1
It would for example be possible to combine the selection and ordering facets
and in this way creating an integrity constraint that requires queries to not only
return a subset but an ordered sublist.

However, there are also some implications that have to be considered: Which
facets fit together (selection and ordering would obviously fit) and which do
not?

Sebastian Schaffert Page 108

Chapter 14

Sample Implementations and
Data

In this appendix, sample implementations for the interpretation- and elemen-
tary simulation algorithm are given. Both are written in the functional pro-
gramming language Haskell, which allows a very compact and declarative pre-
sentation. Note that the implementation does not follow the algorithms pre-
sented earlier very closely, due to the fact that we have to follow functional
programming paradigms.

An implementation for elementary and grouping simulation has also been done
in Java, but is not included here due to the space restrictions of this paper.

14.1 Interpretation Algorithm

14.1.1 The implementation

Here an implementation for the algorithm for generating the set of possible
interpretations for a data tree with grouping facets will be presented. The
algorithm is implemented as a Haskell program that takes an XML document
with grouping facets in the form of attributes as input and generates an XML
document with a root node <result> and all possible elementary data trees as
children of this root.

–

-- This Haskell programme provides an algorithm for generating
-- the set of possible interpretations for a data tree with
-- grouping facets

--
-- Usage: interpretXML <file.xml>
-- will send the interpretation of file.xml to STDOUT

109

Grouping Structures for Semistructured Data

import Prelude

import Xml2Haskell
import XmlTypes
import XmlCombinators
import XmlLib

-- Helper function: create the superset of a set
superset :: [a] -> [[a]]
superset [] = [[]]
superset (x:xs) = [x] : [x:l | l <- superset(xs), length(l) > 0]

++ superset(xs)

-- Do some (recursive) combinations of lists (cross-product of
-- all lists in the list).
-- The input is a list of lists, the output a list of lists
-- containing all possible combinations of single elements of
-- the input lists
recCombine :: [[a]] -> [[a]]
recCombine [] = [[]]
recCombine (x:xs) = [l:lr | l <- x, lr <- (recCombine xs)]

-- Filter function to remove a grouping attribute from a list of
-- attributes
removeGrouping :: String -> [Attribute] -> [Attribute]
removeGrouping s attr =

filter (\n -> not (n== ("grouping",AttValue [Left s]))) attr

-- Converts a data tree with grouping facets into a set of
-- elementary data trees

-- This set is then the set of possible interpretations for
-- the data tree.

-- Each of the elementary trees is a model for the data tree.
-- The function is an implementation of CFilter from HaXml
interpretXml :: CFilter

-- For elements that don’t have child nodes, the grouping facet
-- has no relevance
interpretXml (CElem (Elem n attr [])) = [(CElem (Elem n attr []))]

-- The main function

Sebastian Schaffert Page 110

Grouping Structures for Semistructured Data

interpretXml (CElem (Elem n attr children))

-- in the AND case the result is just one node, but interpretXml
-- has to be applied recursively

| ("grouping",AttValue [Left "AND"]) ‘elem‘ attr =
[(CElem (Elem n (removeGrouping "AND" attr) elem)) |

elem <- recCombine (map interpretXml children)]

-- For XOR, a separate node is generated for each child node, at
-- the same time applying interpretXml recursively to each child

| ("grouping",AttValue [Left "XOR"]) ‘elem‘ attr =
[(CElem (Elem n (removeGrouping "XOR" attr) [l3])) |

l2 <- (map interpretXml children), l3 <- l2]

-- OR is the most difficult case because there are a lot of
-- possible combinations. This is achieved by using the superset
-- function

| ("grouping",AttValue [Left "OR"]) ‘elem‘ attr =
[(CElem (Elem n (removeGrouping "OR" attr) elem)) |

l2 <- (superset children), length(l2) > 0,
elem <- (recCombine (map interpretXml l2))]

-- The default case is like the AND case

| otherwise = [(CElem (Elem n attr elem)) |
elem <- recCombine (map interpretXml children)]

-- process the input XML file with grouping facets and produce a
-- result set of elementary data trees without grouping facets
-- (in form of an XML document with root node <result>)
main = processXmlWith (mkElem "result" [interpretXml])

-- Compilation:
-- ghc -package text -package lang -o interpretXML interpretXML.hs

--

Sebastian Schaffert Page 111

Grouping Structures for Semistructured Data

14.1.2 Sample data

The following small XML document has been used as sample data to illustrate
the execution of the interpretation algorithm.

<?xml version=’1.0’?>

<!DOCTYPE A SYSTEM "test.dtd">

<C grouping="XOR">

<D/>
<E/>

</C>

14.1.3 Result for Sample Data

This is the result document generated from the example data.

<?xml version=’1.0’?>
<result>

<A>

<A>

<C>

<D/>
</C>

<A>

<C>

<E/>
</C>

<A>
<C>

<D/>
</C>

Sebastian Schaffert Page 112

Grouping Structures for Semistructured Data

<A>
<C>
<E/>

</C>

</result>

Sebastian Schaffert Page 113

Grouping Structures for Semistructured Data

14.2 Simple Matching Algorithm

14.2.1 The implementation

The simple matching algorithm performs a “simulation” between two elemen-
tary data trees, one of them the pattern and the other a database. Since the
simulation is “one-way”, the matching is liberal, i.e. the database may contain
more children than specified in the pattern for a successful matching.

–

-- This Haskell programme provides an algorithm for the simple
-- pattern matching between elementary databases and elementary
-- patterns

--
-- Usage: matching <database.xml> <pattern.xml>
-- will return "yes" if the pattern matches the database

import Prelude

import Xml2Haskell
import XmlTypes
import XmlCombinators
import XmlParse
import XmlLib

import IO

-- This is a simple recursive implementation of the simulation
-- algorithm for elementary data trees.
-- First argument: Database
-- Second argument: Pattern

-- Attributes and order are not considered, and if elements with
-- the same name and childs occur more than once below a single parent
-- they are treated as only one
matches :: Content -> Content -> Bool

matches (CElem (Elem a _ children1)) (CElem (Elem b _ children2))

-- if the names of the elements are different, they don’t match
| not (a==b) = False

-- if the element in the pattern has no children but the tagname
-- equals the one in the database, it matches (the database might
-- have additional children!)

Sebastian Schaffert Page 114

Grouping Structures for Semistructured Data

| length (children2) == 0 = True

-- else it returns true, if there exists a pair of a child node of
-- the database and a child node of the pattern that satisfies the
-- condition for each of the child nodes of the pattern
-- (looks complicated but isn’t! :-))

| otherwise = and [or [matches c1 c2 |
c1 <- children1] |

c2 <- children2]

-- Helper function
getContent :: Document -> Content
getContent (Document _ _ e) = (CElem e)

main = do
dbfp <- readFile "db.xml"
patfp <- readFile "pattern.xml"
putStrLn (show (matches

(getContent(xmlParse dbfp))
(getContent(xmlParse patfp))

)
)

--

Sebastian Schaffert Page 115

	I Grouping Constructs for Semistructured Data
	Introduction
	Introduction
	Semistructured Data
	Motivation
	Example 1: Course of Studies
	Example 2: Addressbook

	Grouping Facets

	Representation of Grouping Constructs in tree based SSD models
	Representation through Attributes
	Representation through Additional Nodes
	Considerations about Expressive Power

	Data Model: Trees with Grouping Constructs
	Syntactical Representation of Grouping Constructs
	Elementary Data Trees
	Grouping Facets
	Data Trees with Grouping

	Semantics of Data Trees with Grouping
	Interpretation of Data Trees with Grouping
	Databases and Patterns
	Matching Patterns with Databases

	II Matching and Querying
	Matching and Querying
	Patterns Redefined
	Patterns as building stones for querying
	A new View on Patterns and Databases

	A declarative Localization Language for SSD
	Rooted vs. Unrooted Matching

	Answer Semantics
	Answer Semantics for Elementary Data Trees
	Simulation as Result
	Maximal Simulation

	Answer Semantics for Data Trees with Grouping
	Combining Results with Grouping Constructs
	Extending the Results from the Simulation
	Strict vs. Liberal Matching

	Variables
	Variables in Data Trees
	Two Properties of Variables
	Representing the ``joker'' property
	Representing the ``assignment'' property
	Adding Variables to Data Trees

	Interpretation of a Data Tree with Variables
	Representing the Depth Facet: A Simple Approach
	Variable Assignments
	Types of Variables
	Subtrees
	Singleton and Multiple Variables
	Variable Assignments for Singleton Variables
	Variable Assignments for Multiple Variables

	III Algorithms
	Data Trees
	Basic Data Structures
	Interpretation

	Simulation
	Elementary Simulation
	Correctness

	Grouping Simulation
	Correctness

	Localization
	Maximal Simulation
	Correctness

	IV Conclusion
	Related Work
	Prospects
	Cleaner Definition of Interpretation
	Combining Grouping Facets
	Arbitrary Graph Structures
	Non-Rooted Matching
	Combined Answer
	Improved Treatment of Depth Facet
	More Investigation on Variables
	Efficient Algorithms
	Implementations
	Grouping Constructs for Query Optimization

	V Appendix
	Bibliography
	Application Examples of Individual Grouping Facets
	Sibling Relationships
	Connector Facet
	Ordering Facet
	Repetition Facet

	Parent-Child Relationships
	Dependency Facet
	Selection Facet
	Exclusion Facet
	Depth Facet

	Combining Facets

	Sample Implementations and Data
	Interpretation Algorithm
	The implementation
	Sample data
	Result for Sample Data

	Simple Matching Algorithm
	The implementation

