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Abstract

Probabilistic logic programming is a major part of statistical relational artificial intelligence,
where approaches from logic and probability are brought together to reason about and learn
from relational domains in a setting of uncertainty. However, the behaviour of statistical rela-
tional representations across variable domain sizes is complex, and scaling inference and learning
to large domains remains a significant challenge. In recent years, connections have emerged be-
tween domain size dependence, lifted inference and learning from sampled subpopulations. The
asymptotic behaviour of statistical relational representations has come under scrutiny, and pro-
jectivity was investigated as the strongest form of domain size dependence, in which query
marginals are completely independent of the domain size. In this contribution we show that
every probabilistic logic program under the distribution semantics is asymptotically equivalent
to an acyclic probabilistic logic program consisting only of determinate clauses over probabilistic
facts. We conclude that every probabilistic logic program inducing a projective family of distri-
butions is in fact everywhere equivalent to a program from this fragment, and we investigate
the consequences for the projective families of distributions expressible by probabilistic logic
programs.

KEYWORDS: probabilistic logic programming, asymptotic quantifier elimination, determinate
logic programs, projective families of distributions, finite model theory, distribution semantics

1 Introduction: Projectivity and statistical relational artificial intelligence

Statistical relational artificial intelligence has emerged over the last 25 years as a means
to specify statistical models for relational data. Since then, many different frameworks
have been developed under this heading, which can broadly be classified into those who
extend logic programming to incorporate probabilistic information (probabilistic logic
programming under the distribution semantics) and those who specify an abstract tem-
plate for probabilistic graphical models (sometimes known as knowledge-based model
construction).

∗ We would like to thank Manfred Jaeger for his encouragement and for helpful conversations about the
subject of this paper, and the anonymous reviewers for facilitating a clearer exposition of the material.
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Asymptotic analysis of probabilistic logic programming 803

Both classes share the distinction between a general model (a template or a proba-
bilistic logic program with variables) and a specific domain used to ground the model.
Ideally, the model would be specified abstractly and independently of a specific domain,
even though a specific domain may well have been involved in learning the model from
data.

However, a significant hurdle is the generally hard to predict or undesirable behaviour
of the model when applied to domains of different sizes. This extrapolation problem has
received much attention in the past years (Poole et al . 2014; Jaeger and Schulte 2020a).
Recently Jaeger and Schulte (2018; 2020a) have identified projectivity as a strong form
of good scaling behaviour: in a projective model, the probability of a given property
holding for a given object in the domain is completely independent of the domain size.
However, the examples of Poole et al. (2014) show that projectivity cannot be hoped
for in general statistical relational models, and Jaeger and Schulte (2018) identify very
restrictive fragments of common statistical relational frameworks as projective.

The question remains, however, whether those fragments completely capture the pro-
jective families of distributions expressible by a statistical relational representation. We
will show in this contribution that in the case of probabilistic logic programming under
the distribution semantics, this is true, as every projective probabilistic logic program is
equivalent to a determinate acyclic probabilistic logic program.

Our method will show that, moreover, every probabilistic logic program is asymptot-
ically equivalent to an acyclic determinate probabilistic logic program. This result is of
some independent interest, as it shows that the probabilities of queries expressed by a
logic program converge as domain size increases. Moreover, the asymptotic equivalence
provides an explicit representation using which the asymptotic query probabilities can
be computed.

This will be an application of an asymptotic quantifier elimination result for proba-
bilistic logic programming derived from classical finite model theory, namely from the
study of the asymptotic theory of first-order and least fixed point (LFP) logic in the
1980s (particularly 0–1 laws, applied in the form of Blass et al. (1985)).

This application is also methodologically interesting as it opens another way in which
classical logic can contribute to cutting-edge problems in learning and reasoning. That the
theory developed around 0–1 laws would be a natural candidate for such investigations
may not surprise, as it is highly developed and is itself in the spirit of “finite probabilistic
model theory” (Cozman and Mauá 2019, Section 7), and one might hope for more cross-
fertilisation between the two fields in the future.

1.1 Outline of the paper

We will first formally introduce the framework of families of distributions and the notion
of projectivity that we will refer to throughout.

In the following section, we present the abstract distribution semantics, which bridges
the gap between the tools from finite model theory and the semantics of probabilistic
logic programming. We also discuss asymptotic quantifier elimination and introduce the
main classical results from finite model theory.

We introduce LFP logic, an adequate representation for (probabilistic) logic programs.
We then give the necessary background on the asymptotic behaviour of LFP logic. We
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804 F. Q. Weitkämper

harness the relationship between probabilistic logic programming and LFP distributions
to show that every probabilistic logic program is asymptotically equivalent to an acyclic
determinate probabilistic logic program.

In the following section, we will apply this analysis to study the projective families of
distributions expressible in probabilistic logic programming. We see that every projective
logic program is actually everywhere equivalent to an acyclic determinate logic program,
and we derive some properties for the projective distributions expressible in this way.
For the case of a unary vocabulary, we show that only very few projective families of
distributions are expressible in probabilistic logic programming, and we give a concrete
example to highlight that point.

Finally, we conclude the paper with a brief discussion of the complexity of asymptotic
quantifier elimination and some impulses for further research.

Proofs to all the statements made here can be found in Appendix A in the supplemen-
tary material.

1.2 Notation

An introduction to the terminology of first-order logic (FOL) used in this paper can be
found in Appendix B.1, in the supplementary material. We just point out here that we
use P(A) to indicate the power set of a set A and �x as a shorthand for a finite tuple
x1, . . . , xn of arbitrary length.

1.3 Projectivity

We will introduce projective families of distributions in accordance with Jaeger and
Schulte (2018; 2020a), where one can find a much more detailed exposition of the terms
and their background. As we are interested in statistical relational representations as
a means of abstracting away from a given ground model, we will refer to families of
distributions with varying domain sizes.

Definition 1. A family of distributions for a relational vocabulary S is a sequence(
Q(n)

)
n∈N

of probability distributions on the sets Ωn of all S-structures with domain
{1, . . . , n} ⊆ N.

Definition 2. A family of distributions is called exchangeable if every Q(n) is invariant
under S-isomorphism.

It is called projective if, in addition, for all m < n ∈ N and all ω ∈ Ωm the following
holds:

Q(m)({ω}) = Q(n) ({ω′ ∈ Ωn|ω is the substructure of ω′ with domain {1, . . . , n} }) .
Projectivity encapsulates a strong form of domain size independence. Consider, for

instance, the query R(x), where R is a relation symbol in S. Then in an exchangeable
family of distributions, the unconditional probability of R(x) holding in a world is inde-
pendent of the precise interpretation of x, and depends only on the domain size. If the
family of distributions is projective, then the probability of R(x) is independent even
of the domain size. As an immediate consequence, this implies that the computational
complexity of quantifier-free queries is constant with domain size, since queries can al-
ways be evaluated in a domain consisting just of the terms mentioned in the query itself.
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Projectivity also has important consequences for the statistical consistency of learning
from randomly sampled subsets (Jaeger and Schulte 2018).

An important class of examples of projective families of distributions are those in which
R(a) is independent of P (b) for all R,P, a, b. For instance, consider a vocabulary S with
unary relations P and R, and a family of distributions in which for every domain element
a, P (a) and R(a) are determined independently with probabilities p and r respectively.
Then the probability that a subset A of a domain D has S-structure M is given by

p|a∈M |M |=P (a)| · (1− p)|a∈M |M |=¬P (a)| · r|a∈M |M |=R(a)| · (1− r)|a∈M |M |=¬R(a)|,

regardless of the size of D.
The work of Jaeger and Schulte (2020a) provides a complete characterisation of pro-

jective families of distributions in terms of exchangeable arrays (AHK representations).
However, it is not clear how this representation translates to the statistical relational
formalisms currently in use, such as probabilistic logic programming. We will see below
that there are indeed projective families of distributions that are not expressible by a
probabilistic logic program. Furthermore, Jaeger and Schulte (2020a) claimed in Proposi-
tion 7.1 of their paper an independence property for the subclass of AHK- distributions.
While this proposition proved to be incorrect for the class of AHK- distributions (Jaeger
and Schulte 2020b), we will see here that for a projective family of distributions induced
by a probabilistic logic program, the independence property holds.

In the remainder of this paper, we will investigate the interplay between the asymptotic
behaviour of logical theories as they have been studied in finite model theory and the
families of distributions that are induced by them. We therefore introduce a notion of
asymptotic equivalence of families of distributions.

2 Abstract distribution semantics

As a bridge between classical notions from finite model theory and probabilistic logic
programming, we introduce the abstract distribution semantics. It builds on the relational
Bayesian network specifications of Cozman and Maua (2019), which combine random
and independent root predicates with non-root predicates that are defined by first-order
formulas. Here we streamline and generalise this idea to a unified framework that we call
the abstract distribution semantics. In particular, we will generalise away from FOL to a
general logical language:

Definition 3. Let R be a vocabulary. Then a logical language L(R) consists of a collec-
tion of functions ϕ which take an R-structure M and returns a subset of Mn for some
n ∈ N (called the arity of ϕ). In analogy to the formulas of first-order logic, we refer to
those functions as L(R)-formulas and write M |= ϕ(�a) whenever �a ∈ ϕ(M).

The archetype of a logical language is the first-order predicate calculus, where an
R-formula ϕ defines a function ϕ(M) := {a ∈ M |M |= ϕ(a)} and |= is used in the
sense of ordinary first-order logic. The concept as defined here is sufficiently general to
accommodate many other choices, however, and we will later apply it to least fixed point
logic in particular.
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806 F. Q. Weitkämper

Definition 4. Let S be a relational vocabulary, R ⊆ S, and let L(R) be a logical
language over R. Then an abstract L-distribution over R (with vocabulary S) consists of
the following data:

For every R ∈ R a number qR ∈ Q ∩ [0, 1].
For every R ∈ S\R, an L(R)-formula φR of the same arity as R.

In the following we will assume that all vocabularies are finite. The semantics of an
abstract distribution is only defined relative to a domain D, which we will also assume
to be finite. The formal definition is as follows:

Definition 5. Let L(R) be a logical language over R and let D be a finite set. Let T be
an abstract L-distribution over R. Let ΩD be the set of all R-structures with domain D.

Then the probability distribution on ΩD induced by T , written Q
(D)
T , is defined as

follows:
For all ω ∈ ΩD, if ∃�a∈ �D∃R∈S\R : R(�a) � φR(�a), then Q(D)

T ({ω}) := 0

Otherwise, Q(D)
T ({ω}) := ∏

R∈R
(q

|{�a∈�D|R(�a)}|
R )× ∏

R∈R
(1− qR)|{�a∈�D|¬R(�a)}|

In other words, all the relations in R are independent with probability qR and the
relations in S\R are defined deterministically by the L(R)-formulas φR. We will illustrate
that with an example.

Example 1. Let R = {R,P}, S = {R,P, S}, for a unary relation R a binary re-
lation P and a unary relation S. Then an abstract distribution over (R) has num-
bers qR and qP which encode probabilities. Consider the FOL distribution T with
ϕS = ∃y (R(x) ∧ P (x, y)). For any domain D, Q(D)

T is obtained by making an indepen-
dent choice of R(a) or ¬R(a) for every a ∈ D, with a qR probability of R(a). Similarly,
an independent choice of P (a, b) or ¬P (a, b) is made for every pair (a, b) from D2, with
a qP probability of P (a, b). Then, for any possible R-structure, the interpretation of S
is determined by ∀xS(x) ↔ ϕS(x). The resulting family of distributions is not projec-
tive, since the probability of Q(a) increases with the size of the domain as more possible
candidates b for P (a, b) are added.

As this example has shown, abstract FOL distributions do not necessarily give rise to
projective families. If the ϕ are all given by quantifier-free formulas, however, then the
induced families of distributions are indeed projective. We call such abstract L(R) distri-
butions, in which L(R) is the class of quantifier-free FOL formulas over R, quantifier-free
distributions.

Proposition 6. Every abstract quantifier-free distribution induces a projective family of
distributions.

Quantifier-free distributions also hold a special role in model-theoretic analysis. In
particular, asymptotic quantifier elimination has been shown for various logics of interest
to artificial intelligence.

2.1 Asymptotic quantifier elimination

We introduce our notion of asymptotic equivalence for families of distributions:
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Definition 7. Two families of distributions (Q(n)) and (Q′(n)) are asymptotically equiv-
alent if lim

n→∞
sup

A⊆Ωn

|Q(n)(A)−Q′(n)(A)| = 0

Remark. In measure theoretic terms, the families of distributions (Q(n)) and (Q′(n)) are
asymptotically equivalent if and only if the limit of the total variation difference between
them is 0.

We extend the notion to abstract distributions by calling abstract distributions asymp-
totically equivalent if they induce asymptotically equivalent families of distributions. This
gives us the following setting for asymptotic quantifier elimination:

Definition 8. Let L(R) be an extension of the class of quantifier-free R-formulas. Then
L(R) has asymptotic quantifier elimination if every abstract L(R) distribution is asymp-
totically equivalent to a quantifier-free distribution over L(R).

It is well-known that first-order logic has asymptotic quantifier elimination.
Indeed, the asymptotic theory of relational first-order logic can be summarised as

follows (Ebbinghaus and Flum 2006, Chapter 4):

Definition 9. Let R be a relational vocabulary. Then the first-order theory
RANDOM(R) is given by all axioms of the following form, called extension axioms over
R:

∀v1,...,vr

⎛
⎝ ∧

1≤i<j≤r

vi 
= vj → ∃vr+1

⎛
⎝ ∧

1≤i≤r

vi 
= vr+1 ∧
∧
ϕ∈Φ

ϕ ∧
∧

ϕ∈Δr+1\Φ
¬ϕ

⎞
⎠
⎞
⎠ ,

where r ∈ N and Φ is a subset of

Δr+1 := {R(�x)|R ∈ R, �x a tuple from {v1, . . . , vr+1} containing vr+1} .
Fact 10. RANDOM(R) eliminates quantifiers, that is, for each formula ϕ(�x) there is a
quantifier-free formula ϕ′(�x) such that RANDOM(R) � ∀�x(ϕ(�x)↔ ϕ′(�x)).

It is sometimes helpful to characterise this quantifier-free formula somewhat more
explicitly:

Proposition 11. Let ϕ(�x) be a formula of first-order logic. Then:

1. ϕ′(�x) as in Fact 10 can be chosen such that only those relation symbols occur in ϕ′ that
occur in ϕ.

2. If every atomic subformula of ϕ contains at least one free variable not in �x, and
no relation symbol occurs with different variables in different literals, then either
RANDOM(R) � ∀�xϕ(�x) or RANDOM(R) � ∀�x¬ϕ(�x).

The importance of RANDOM(R) comes from its role as the asymptotic limit of the
class of all R-structures. In fact, it axiomatises the limit theory of R-structures even
when the individual probabilities of relational atoms are given by qR rather than 1

2 :

Fact 12. lim
n→∞

Q
(n)
T (ϕ) = 1 for all abstract distributions T over R and all extension

axioms ϕ over R.

Corollary 13. First-order logic has asymptotic quantifier elimination.
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808 F. Q. Weitkämper

3 Probabilistic logic programs as LFP distributions

We will now proceed briefly to discuss fixed point logics. Our presentation follows the
book by Ebbinghaus and Flum (2006, Chapter 8), to which we refer the reader for a
more detailed exposition. We begin by introducing the syntax.

As atomic second-order formulas occur, as subformulas of LFP formulas, we will in-
troduce second-order variables.

Definition 14. Assume an infinite set of second-order variables, indicated customarily
by upper-case letters from the end of the alphabet, each annotated with a natural number
arity. Then an atomic second-order formula ϕ is either a (first-order) atomic formula, or
an expression of the form X(t1, . . . , tn), where X is a second-order variable of arity n

and t1, . . . , tn are constants or (first-order) variables.

We now proceed to least fixed point formulas.

Definition 15. A formula ϕ is called positive in a variable x if x is in the scope of an
even number of negation symbols in ϕ.

A formula in least fixed point logic or LFP formula over a vocabulary R is defined
inductively as follows:

1. Any atomic second-order formula is an LFP formula.
2. If ϕ is an LFP formula, then so is ¬ϕ.
3. If ϕ and ψ are LFP formulas, then so is ϕ ∨ ψ
4. If ϕ is an LFP formula, then so is ∃xϕ for a first-order variable x.
5. If ϕ is an LFP formula, then so is [LFP�x,Xϕ]�t, where ϕ is positive in the second-order

variable X and the lengths of the string of first-order variables �x and the string of terms
�t coincide with the arity of X.

An occurrence of a second-order variable X is bound if it is in the scope of an LFP
quantifier LFP�x,X and free otherwise.

Fixed point semantics have been used extensively in (logic) programming theory (Fit-
ting 2002), and we will exploit this when relating the model theory of LFP to probabilistic
logic programming below.

We first associate an operator with each LFP formula ϕ:

Definition 16. Let ϕ(�x, �u,X, �Y ) be an LFP formula, with the length of �x equal to the
arity of X, and let ω be an R-structure with domain D. Let �b and �S be an interpretation
of �u and �Y respectively. Then we define the operator Fϕ : P(Dk)→ P(Dk) as follows:

Fϕ(R) :=
{
�a ∈ Dk|ω |= ϕ(�a,�b,R, �S)

}
.

Since we have restricted Rule 5 in Definition 15 to positive formulas, Fϕ is monotone
for all ϕ (i.e. R ⊆ Fϕ(R) for all R ⊆ Dk). Therefore we have:

Fact 17. For every LFP formula ϕ(�x, �u,X, �Y ) and every R-structure on a domain D

and interpretation of variables as in Definition 16, there is a relation R ⊆ Dk such that
R = Fϕ(R) and that for all R′ with R′ = Fϕ(R′) we have R ⊆ R′.

Definition 18. We call the R from Fact 17 the least fixed point of ϕ(�x, �u,X, �Y )
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Asymptotic analysis of probabilistic logic programming 809

Now we are ready to define the semantics of least fixed point logic:

Definition 19. By induction on the definition of an LFP formula, we define when an
LFP formula ϕ( �X, �x) is said to hold in an R-structure ω for a tuple �a from the domain
of ω and relations �A of the correct arity:

The first-order connectives and quantifiers ¬, ∨ and ∃ as well as ∧ and ∀ defined from
them in the usual way are given the usual semantics.

An atomic second-order formula X(�x,�c) holds if and only if (�a, �cω) ∈ A.
[LFP�x,Xϕ]�t holds if and only if �a is in the least fixed point of Fϕ(�x,X).

3.1 Probabilistic logic programming

Our discussion on probabilistic logic programming employs the simplification proposed
by Riguzzi and Swift (2018) and considers a probabilistic logic program as a stratified
Datalog program over probabilistic facts. This distribution semantics covers several dif-
ferent equally expressive formalisms (Riguzzi and Swift 2018; Raedt and Kimmig 2015).
Note that in particular, probabilistic logic programs as used here do not involve function
symbols, unstratified negation or higher-order constructs.

See Appendix B.2 in the supplementary material or the book by Ebbinghaus and Flum
(2006, Chapter 9) for an introduction to the syntax and semantics of stratified Datalog
programs in line with this paper.

We will use the notation (Π, P )�t for an intensional symbol P of a stratified logic
program Π to mean that “the program Π proves P�t”.

Definition 20. A probabilistic logic program consists of probabilistic facts and determin-
istic rules, where the deterministic part is a stratified Datalog program. We will consider
it in our framework of abstract distribution semantics as follows:
R is given by relation symbols R′ for every probabilistic fact pR :: R(�x), with qR′ := pR.

Their arity is just the arity of R.
S is given by the vocabulary of the probabilistic logic program and additionally the

R′ in R.
Let Π be the stratified Datalog program obtained by prefixing the program {R′(�x)←

R(�x)|R′ ∈ R} to the deterministic rules of the probabilistic logic program.
Then φP for a P ∈ S\R is given by (Π, P )�x.

The distribution semantics for probabilistic logic programming is related to the LFP
distribution semantics introduced above through the following fact (Ebbinghaus and
Flum 2006, Theorem 9.1.1):

Fact 21. For every stratifiable Datalog formula (Π, P )�x as above, there exists an LFP

formula ϕ(�x) over the extensional vocabulary R of Π such that for every R-structure ω
and every tuple �a of elements of ω of the same length as �x, ω |= ϕ(�a) if and only if
ω |= (Π, P )�a.

Remark. In fact, it suffices to consider formulas in the so-called bounded fixed point logic,
whose expressiveness lies between first-order logic and least fixed point logic (Ebbinghaus
and Flum 2006).

Notation. Although we have allowed second-order variables in the inductive definitions
above, we will assume from now on unless mentioned otherwise that LFP formulas do
not have free second-order variables.
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810 F. Q. Weitkämper

3.2 Asymptotic quantifier elimination for probabilistic logic programming

We discuss the asymptotic reduction of LFP to FOL by Blass et al. (1985) and con-
clude that abstract LFP distributions and therefore probabilistic logic programs have
asymptotic quantifier elimination.

The main theorem of Blass et al. (1985) shows that RANDOM(R) not only eliminates
classical quantifiers, but also LFP quantifiers:

Fact 22. Let ϕ(�x) be an LFP formula over R. Then there is a finite subset G of
RANDOM(R) and a quantifier-free formula ϕ′(�x) such that G � ∀�xϕ(�x)↔ ϕ′(�x).

Putting this together, we can derive the following:

Theorem 23. Least fixed point logic has asymptotic quantifier elimination.

To obtain a characterisation within probabilistic logic programming, however, we need
to translate quantifier-free first-order formulas back to stratifiable Datalog.

In fact, they can be mapped to a subset of stratified Datalog that is well-known from
logic programming:

Definition 24. A Datalog program, Datalog formula or probabilistic logic program is
called determinate if every variable occurring in the body of a clause also occurs in the
head of that clause.

Example 2. Examples of determinate clauses in this sense are R(x) :− P (x) or Q(x, y) :−
R(x). Indeterminate clauses include R(x) :− P (y) or R(x) :− Q(x, y).

Determinacy corresponds exactly to the fragment of probabilistic logic programs iden-
tified as projective by Jaeger and Schulte (2018, Proposition 4.3).

Indeed, Ebbinghaus and Flum’s (2006) proof of their Theorem 9.1.1 shows:

Fact 25. Every quantifier-free first-order formula is equivalent to an acyclic determinate
stratified Datalog formula.

Therefore, we can conclude from Proposition 6:

Proposition 26. Every determinate probabilistic logic program is projective.

We now turn to the main result of this subsection.

Theorem 27. Every probabilistic logic program is asymptotically equivalent to an acyclic
determinate probabilistic logic program.

4 Projective probabilistic logic programs

As an application of our results, we investigate the projective families of distributions
that are expressible by probabilistic logic programs.

The key is the following observation:

Proposition 28. Two projective families of distributions are asymptotically equivalent
if and only if they are equal.

As modelling in the distribution semantics often involves introducing auxiliary predi-
cates, the family of distributions we want to model will usually be defined on a smaller
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vocabulary than the abstract distribution (or probabilistic logic program) itself. We there-
fore note here that asymptotic equivalence is preserved under reduct. First we clarify how
we build reducts of distributions in the first place:

Definition 29. Let Q(n) be a distribution over a vocabulary S. Then its reduct Q(n)
S′ to a

subvocabulary S ′ ⊆ S is defined such that for any world ω ∈ ΩS′
n , Q(n)

S′ (ω) := Q(n)({ω′ ∈
ΩS

n |ω′
S′ = ω}).

Remark. Q(n)
T is the pushforward measure of Q(n) with respect to the reduct projection

from ΩS
n → ΩT

n .

We can now formulate preservation of asymptotic equivalence under reducts:

Proposition 30. The reducts of asymptotically equivalent families of distributions are
themselves asymptotically equivalent.

In combination, we obtain:

Theorem 31. Let L be a logical language with asymptotic quantifier elimination that
extends quantifier-free first-order logic. Let R ⊆ S be vocabularies, and let S ′ ⊆ S.
Furthermore let T be an L-distribution over R with vocabulary S. Lastly, let (Q(n)) be
the family of distributions induced by T .

Then the following holds: If Q(n)
S′ is projective, then there is a quantifier-free distribution

Tq over R with vocabulary S such that Q(n)
S′ is the reduct of the family of distributions

induced by Tq to S ′.
In particular, a projective family of distributions that can be expressed in probabilistic

logic programming at all can in fact be expressed already by a determinate probabilistic
logic program.

5 Implications and discussion

The results have immediate consequences for the expressiveness of probabilistic logic
programming.

We first discuss a particularly striking observation:

5.1 Asymptotic loss of information

Very insightful is the case of a probabilistic rule, that is, a clausal formula annotated with
a probability. Because of its intuitive appeal, this is a widely used syntactic element of
probabilistic logic programming languages such as Problog, and its semantics is defined by
introducing a new probabilistic fact to model the uncertainty of the rule. More precisely:

p :: R(�x) :− Q1(�x1, �y1), . . . , Qn(�xn, �yn),

(where �x are the variables appearing in R, �xi ⊆ �x) is interpreted as

p :: I(�x, �y);R(�x) :− Q1(�x1, �y1), . . . , Qn(�xn, �yn), I(�x, �y),

(where �y :=
⋃
�yi).

It is now easy to see from Proposition 11 that in the asymptotic quantifier-free rep-
resentation of this probabilistic rule, I will no longer occur, since it originally occurred
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implicitly quantified in the body of the clause. However, I was the only connection be-
tween the probability annotation of the rule and its semantics! Therefore, the asymptotic
probability of R(�x) is independent of the probability assigned to any non-determinate
rule with R(�x) as its head.

5.2 Expressing projective families of distributions

Our results also show how few of the projective families of distributions can be expressed
in those formalisms. This confirms the suspicion voiced in by Jaeger and Schulte (2020a)
that despite the ostensible similarities between languages such as independent choice
logic, which are based on the distribution semantics, and the array representation intro-
duced by Jaeger and Schulte (2020a), a direct application of techniques from probabilistic
logic programming to general projective families of distributions might prove challenging.

We start by displaying some properties shared by the projective distributions induced
by a probabilistic logic program.

Definition 32. A projective family of distributions has the Independence Property or
IP if for all S-formulas ϕ(x1, . . . xn) and ψ(x1, . . . xm) the events {1, . . . , n} |= ϕ and
{n+1, . . . , n+m} |= ψ are independent underQ(n+m). A projective family of distributions
(Q(n)) of S-structures has the Conditional Independence Property or CIP if for all n and
all quantifier-free S-formulas ϕ(x1, . . . xn) and every S-structure ω on a domain with
n− 1 elements, the events {1, . . . , n} |= ϕ and {1, . . . , n+1} \ {n} |= ϕ are conditionally
independent over {1, . . . , n− 1} |= ω under Q(n+1).

IP has been studied extensively in the field of pure inductive logic (Paris and Vencov-
ská 2015), while CIP is a generalisation of the property that Jaeger and Schulte (2020a)
claimed in their Proposition 7.1 for AHK- distributions, to arbitrary quantifier-free for-
mulas rather than worlds.

Example 3. Consider the quantifier-free abstract distribution with a probabilistic fact
R(x) with associated probability p and a binary predicate P (x, y) with definition φP =
x = y ∨ R(x). Then its induced family of distributions satisfies CIP and IP. However,
the reduct to the vocabulary {P} does not satisfy CIP; indeed, consider the domain
with elements {1, 2, 3}. Then there is just one {P}-structure ω with domain {1} that
has probability 1, namely the world where P (1, 1) is true. Consider the events P (1, 3)
and P (1, 2). They are not independent, since in fact P (1, 2) iff R(1) iff P (1, 3). Since
there is just one possible {P}-structure ω on {1}, conditioning on ω does not alter the
probabilities.

Proposition 33. Let (Q(n)) be a projective family of distributions induced by a
quantifier-free abstract distribution. Then (Q(n)) satisfies CIP. If it does not have any
nullary relation symbols, it also satisfies IP.

As mentioned above, one often expands the vocabulary of interest when modelling in
the distribution semantics. It is worth noting, therefore, that IP is trivially transferred
to reducts, while CIP is not (see Example 3 above). We can view our results as positive
or negative, depending on our viewpoint. We will begin with the positive formulation:
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Corollary 34. If a projective family of distributions is induced by a probabilistic logic
program, it satisifies CIP.

As CIP is a generalisation of the property claimed by Jaeger and Schulte (2020a) in
their Proposition 7.1, this shows that while the class of AHK- representations does not
satisfy this property (see the discussion in the appendix to Jaeger and Schulte’s corrected
version (2020b)), every projective family of distributions induced by a probabilistic logic
program does.

Since CIP does not transfer to reducts, however, we look towards IP for a property
that all projective families of distributions expressible in probabilistic logic programming
satisfy.

Corollary 35. Let S ′ ⊆ S be relational vocabularies without nullary relation symbols.
Then for every probabilistic logic program with vocabulary S, if the reduct (Q(n)

S′ ) is pro-
jective, (Q(n)

S′ ) satisfies IP.

If we allow nullary relations in S, we obtain finite sums of distributions with IP instead.

Proposition 36. Let S ′ ⊆ S be relational vocabularies, possibly with nullary relation
symbols. Then for every probabilistic logic program with vocabulary S, if the reduct (Q(n)

S′ )

is projective, (Q(n)
S′ ) is a finite sum of distributions satisfying IP.

It is natural to ask how strong the condition imposed by the previous results is, bringing
us to the negative part of our results. As a special case, we consider a unary vocabulary
S ′, which only has unary relation symbols, since the projective families of distributions
are very well understood for such vocabularies.

Here, de Finetti’s Representation Theorem (Paris and Vencovská 2015, Chapter 9) says
that the projective families of distributions in a unary vocabulary are precisely the poten-
tially infinite combinations of those that satisfy IP, while those projective families of dis-
tributions expressible in probabilistic logic programs are merely the finite combinations
of those satisfying IP; so, in some sense “almost all” projective families of distributions
in unary vocabularies cannot be expressed in probabilistic logic programming.

As a concrete example, we show that already in the very limited vocabulary of a
single unary relation symbol R, there is no probabilistic logic program that induces the
distribution that is uniform on isomorphism classes of structures:

Definition 37. Let S := {R} consist of one unary predicate, and let m∗ be the family
of distributions on S-structures defined by
m∗({ω}) := 1

|D|∗Nω
for a world ω ∈ ΩD, where Nω := |{ω′ ∈ ΩD|ω ∼= ω′}|.

This gives each isomorphism type of structures equal weight, and then within each
isomorphism type every world is given equal weight too.

m∗ is an important probability measure for two reasons; it plays a special role in finite
model theory since the so-called unlabeled 0-1 laws are introduced with respect to this
measure. Furthermore, it was introduced explicitly by Carnap (1950; 1952) as a candi-
date measure for formalising inductive reasoning, as part of the so-called continuum of
inductive methods. Paris and Vencovská (2015) provide a modern exposition of Carnap’s
theory.
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m∗ is easily seen to be exchangeable; it is also projective, and in fact an elementary
calculation shows that for any domain D and any {a1, . . . an+1} ⊆ D,

m∗
(
R(an+1)| {R(ai)}i∈I⊆{1,...,n} ∪ {¬R(ai)}i∈{1,...,n}\I

)
=
|I|+ 1

n+ 1
, (5.1)

(see any of the sources above for a derivation).

Proposition 38. Let S ′ be a finite vocabulary extending S from Definition 37. Then
there is no probabilistic logic program with vocabulary S ′ such that the reduct of the
induced family of distributions to S is equal to m∗.

5.3 Complexity results

Since the theory of random structures is decidable, the asymptotic quantifier results in
this paper provide us with an algorithmic procedure for determining an asymptotically
equivalent acyclic determinate program for any given probabilistic logic program, and
by extension a procedure for determining the asymptotic probabilities of quantifier-free
queries. What can we say about the complexity of this procedure? Since the operation
takes a non-ground probabilistic logic program as input and computes another proba-
bilistic logic program, the notion of data complexity does not make sense in this context.
Instead, program complexity is an appropriate measure.

In our context, the input program could be measured in different ways. Since our
analysis is based on the setting of abstract distributions, we will be considering as our
input abstract distributions obtained from (stratified) probabilistic logic programs . We
will furthermore fix our vocabularies R and S. Since the transformation acts on each φR
in turn and independently, it suffices to consider the individual φR as input. It is natural
to ask about complexity in the length of φR.

In fact, one can extract upper and lower bounds from the work of Blass et al. (1985),
who build on the work of Grandjean (1983) for analysing the complexity of their asymp-
totic results. The task of determining whether the probability of a first-order sentence
converges to 0 or 1 with increasing domain size, which is a special case of our transfor-
mation, is complete in PSPACE (Blass et al . 1985, Theorem 1.4). Therefore the program
transformation is certainly PSPACE-hard. On the other hand, asymptotic elimination of
quantifiers in LFP logic is complete in EXPTIME (Blass et al . 1985, Theorems 4.1 and
4.3), so the program transformation is certainly in EXPTIME.

In order to specify further, we note that for abstract first-order distributions, which
correspond to acyclic probabilistic logic programs, the transformation can be performed
in PSPACE:

Let R be of arity n. Then enumerate the (finitely many) quantifier-free n-types (ϕi) in
R. Now for any φRof arity n we can check successively in polynomial space in the length
of φR, whether the probability of ϕi → φRconverges to 0 or 1. Then φR is asymptotically
equivalent to the conjunction of those quantifier-free n-types for which 1 is returned.

In the general case of LFP logic, Blass et al. (1985) show that the problem of finding
an asymptotically equivalent first-order sentence is EXPTIME complete. However, to
represent stratified Datalog, only the fragment known as bounded or stratified LFP logic
is required (Ebbinghaus and Flum 2006, Sections 8.7 and 9.1). Therefore, the complexity
class of the program transformation of stratified probabilistic logic programs corresponds
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to the complexity of the asymptotic theory of bounded fixed point logic, which to the
best of our knowledge is still open.

6 Conclusion and further Work

By introducing the formalism of abstract distributions, we have related the asymptotic
analysis of finite model theory to the distribution semantics underlying probabilistic
logic programming. Thereby, we have shown that every probabilistic logic program is
asymptotically equivalent to an acyclic determinate logic program. In particular, this
representation provides us with an algorithm to evaluate the asymptotic probabilities of
quantifier-free queries with respect to a probabilistic logic program. We have also seen
that the asymptotic representation of a probabilistic logic program invoking probabilis-
tic rules is in fact independent of the probability with which the rule is annotated. We
applied our asymptotic results to study the projective families of distributions that can
be expressed in probabilistic logic programming. We saw that they have certain indepen-
dence properties, and that in particular the families of distributions induced on the entire
vocabulary satisfy the conditional independence property. We also see that at least in the
case of a unary vocabulary, only a minority of projective families of distributions can be
represented, excluding important example such as Carnap’s family of distributions m∗.

6.1 Further work

The analysis presented here suggests several strands of further research.
While some widely used directed frameworks can be subsumed under the probabilistic

logic programming paradigm, undirected models such as Markov logic networks (MLNs)
seem to require a different approach. Indeed, the projective fragment of MLNs isolated
by Jaeger and Schulte (2018) is particularly restrictive, since it only allows formulas in
which every literal has the same variables. Those are precisely the σ-determinate formulas
discussed by Domingos and Singla (2007); cf. also the parametric classes of finite model
theory (Ebbinghaus and Flum 2006, Section 4.2). It might therefore be expected that
if an analogous result to Theorem 27 holds for MLNs, they could express even fewer
projective families of distributions than probabilistic logic programs.

Beyond the FOL or LFP expressions used in current probabilistic logic programming,
another direction is to explore languages with more expressive power. Candidates for this
are for instance Keisler’s (1985) logic with probability quantifiers or Koponen’s (2020)
conditional probability logic. Appropriate asymptotic quantifier elimination results have
been shown in both settings (Koponen 2020; Keisler and Lotfallah 2009), allowing an
immediate application of our results there.

The asymptotic quantifier elimination presented here excludes higher-order program-
ming constructs from our probabilistic logic programs. Investigating the asymptotic the-
ory of impredicative programs under a formalised semantics such as that presented by
Bry (2020) could have direct consequences for the expressiveness of such more general
probabilistic logic programs.

Finally, the failure of the classical paradigm under investigation to express general
projective families of distributions suggests one may have to look beyond the current
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816 F. Q. Weitkämper

methods and statistical relational frameworks to address the challenge of learning and
inference for general projective families of distributions issued by Jaeger and Schulte
(2020a).

Supplementary material

To view supplementary material for this article, please visit http://dx.doi.org/10.
1017/S1471068421000314.
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