
F. Ricca, A. Russo et al. (Eds.): Proc. 36th International Conference
on Logic Programming (Technical Communications) 2020 (ICLP 2020)
EPTCS 325, 2020, pp. 303–312, doi:10.4204/EPTCS.325.40

c© Thomas Prokosch
This work is licensed under the
Creative Commons Attribution License.

A Low-Level Index for Distributed Logic Programming

Thomas Prokosch
Institute for Informatics, Ludwig-Maximilian University of Munich, Germany

prokosch@pms.ifi.lmu.de

A distributed logic programming language with support for meta-programming and stream process-
ing offers a variety of interesting research problems, such as: How can a versatile and stable data
structure for the indexing of a large number of expressions be implemented with simple low-level
data structures? Can low-level programming help to reduce the number of occur checks in Robin-
son’s unification algorithm? This article gives the answers.

1 Introduction and problem description

Logic programming originated in the 1970s as a result on work in artificial intelligence and automated
theorem proving [15, 21]. One important concept of logic programming always stood out: The clear
separation between the logic component and the control component of a program [22]. In today’s com-
puting landscape, where large amounts of (possibly streamed) data and distributed systems with parallel
processors are the norm, it becomes increasingly hard to program in an imperative style where logic and
control are intermingled.

Therefore, it is worthwhile to investigate how a logic programming language could deal with large
amounts of streamed and non-streamed data in a way such that it can adapt itself to changing circum-
stances such as network outages (“meta-programming”). Creating such a programming language is the
primary drive behind the author’s line of research.

The main components of a distributed logic programming language are

• a stable indexing data structure to store large amounts of expressions,

• a low-level unification algorithm with almost linear performance, and

• a distributed forward-chaining resolution-based inference engine.

Some of these components have already been investigated; the current status of the research is sum-
marized in this article. The missing parts are outlined in section 6.

2 Logical foundations

This section introduces standard algebraic terminology and is based on [31, 30].
Let v0,v1,v2, . . . denote infinitely many variables, letters a,b,c, . . . (except v) denote finitely many

non-variable symbols. vi (with a superscript) denotes an arbitrary variable.
An expression is either a first-order term or a first-order formula. Expressions are defined as follows:

A variable is an expression. A nullary expression constructor c consisting of the single non-variable
symbol c is an expression. If e1, . . . ,en are expressions then c(e1, . . . ,en) is an expression with expression
constructor c and arity n.

The fusion of the two distinct entities term and formula may seem unusual at first glance. This
perspective, however, is convenient for meta-programming: Meta-programming is concerned with the

http://dx.doi.org/10.4204/EPTCS.325.40
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

304 A Low-Level Index for Distributed Logic Programming

generation and/or modification of program code through program code. Thus, meta-programming ap-
plied to logic programming may require the modification of formulas through functions which may be
difficult to achieve when there is a strict distinction between terms and formulas. Commonly, a so-called
quotation is used to maintain such a distinction when it is necessary to allow formulas to occur inside of
terms. However, it was shown [4, 18, 20] that it is not necessary to preserve such a distinction and that
by removing it, the resulting language is a conservative extension of first-order logic [2].

Let E denote the set of expressions and V the set of variables. A substitution σ is a total function
V → E of the form σ = {v1 7→ e1, . . . ,vn 7→ en}, n≥ 0 such that v1, . . . ,vn are pairwise distinct variables,
and ∀i ∈ {1, . . . ,n} σ(vi) = ei, and σ(v) = v if v 6= vi. A substitution σ is a renaming substitution iff σ is
a permutation of variables, that is {vi | 1≤ i≤ n}= {ei | 1≤ i≤ n}. σ is a renaming substitution for an
expression e iff {ei | 1≤ i≤ n} ⊆V and for all distinct variables v j,vk in e the inequality σ(v j) 6= σ(vk)
holds.

The application of a substitution σ to an expression e, written σ(e), is defined as the usual function
application, i.e. all variables vi in e are simultaneously substituted with expressions σ(vi). The applica-
tion of a substitution σ to a substitution τ , written στ , is defined as (στ)x = σ(τ(x)).

3 Low-level representations

One of the most important aspects in designing efficient algorithms is finding a good in-memory repre-
sentation of the key data structures. The in-memory representation of variables, expressions, and substi-
tutions described in this section has already been published in [31, 30] and is based on the prefix notation
of expressions. The prefix notation is a flat representation without parentheses; the lack of parentheses
makes this representation especially suited for the flat memory address space of common hardware. For
example, the prefix notation of the expression f (a,v1,g(b),v2,v2) is f/5 a/0 v1 g/1 b/0 v2 v2.

A similar but distinct expression representation is the flatterm representation [5, 6].

3.1 Representation of expressions

An expression representation that is particularly suitable for a run-time system of a logic programming
language is as follows: Each expression constructor is stored as a compound of its symbol s and its arity
n. Each variable either stores the special value nil if the variable is unbound or a pointer if the variable is
bound. It is worth stressing that the name of a variable is irrelevant since its memory address is sufficient
to uniquely identify a variable. Two distinct expression representations do not share variables.

In order to be able to represent non-linear expressions, i.e. expressions in which a variable occurs
more than once, two kinds of variables need to be distinguished: Non-offset variables and offset vari-
ables. The first occurrence of a variable is always a non-offset variable, represented as described above.
All following occurrences of this variable are offset variables and are represented by a pointer to the
memory address of the variable’s first occurrence. Care must be taken when setting the value of an offset
variable: Not the memory cell of the offset variable is modified but the memory cell of the base variable
it refers to.

The type of the memory cell (i.e. expression constructor cons, non-offset variable novar, or offset
variable ofvar) is stored as a three-valued flag at the beginning of the memory cell. Assuming that a
memory cell has a size of 4 bytes, a faithful representation of the expression f (a,v1,g(b),v2,v2) starting
at memory address 0 is:

Thomas Prokosch 305

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

co
ns f/5 co
ns a/0

no
va

r

nil co
ns g/1 co
ns b/0

no
va

r

nil of
va

r

4

The offset variable at address 24 contains the value 4 which must be subtracted from its address
yielding 20, the address of the base variable the offset variable refers to.

Reading an in-memory expression representation involves traversing the memory cells from left to
right while keeping a counter of the number of memory cells still to read. Each read memory cell
decreases this counter by one, and the arities of expression constructors are added to the counter. Even-
tually, the counter will drop to zero which means that the expression has been read in its entirety.

In subsequent examples the expression representation is simplified to not include type flags.

3.2 Representation of substitutions and substitution application

An elementary substitution {vi 7→ e} is represented as a tuple of two memory addresses, the address
of the variable vi and the address of the first memory cell of the expression representation of e. A
substitution is represented as a list of tuples of addresses. Assume the representation of the expression
f (a,v1,g(b),v2,v2) starts at address 0 and the representation of the expression h(a,v3) at address 36,
then the substitution {v2 7→ h(a,v3)} is represented as the tuple (20,36):

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

f/5 a/0 nil g/1 b/0 nil 4 . . . h/2 a/0 nil

Substitution application simply consists of setting the contents of the memory cell of the variable
to the address of the expression representation to be substituted. After the substitution application
f (a,v1,g(b),v2,v2){v2 7→ h(a,v3)} memory contents is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

f/5 a/0 nil g/1 b/0 36 4 . . . h/2 a/0 nil

Observe that the contents of the offset variable at address 24 keeps its offset 4 unchanged, and that
the contents of the non-offset variable at address 20 contains an absolute address.

4 Storage and retrieval

Automated reasoning [34] relies upon the efficient storage and retrieval of expressions. Standard data
structures such as lists or hash tables can be used for this task but more specialized data structures,
known as term indexing [14, 36] data structures, can significantly improve the retrieval speed of expres-
sions [6, 36, 35]. Depending on the application, certain characteristics of a term indexing data structure
are beneficial. For meta-programming [2] the retrieval of expressions unifiable with a query as well as
retrieval of instances, generalizations, and variants of a query are desirable. For tabling [39, 32, 19],
a form of memoing used in logic programming, the retrieval of variants and generalizations of queries
needs to be well supported. In this section, which is based upon already published work [30], instance
tries are proposed. Instance tries are trees which offer a few conspicuous properties such as:

• Stability. Instance tries are stable in the sense that the order of insertions into and removals from
the data structure does not determine its shape.

• Versatility. Instance tries support the retrieval of generalizations, variants, and instances of a query
as well as those expressions unifiable with a query.

306 A Low-Level Index for Distributed Logic Programming

• Incrementality. Instance tries are based upon the instance relationship which allows for incremen-
tal unification during expression retrieval.

• Perfect filtering. Some term indexing data structures require that the results of a query are post-
processed [14]. Instance tries do not require such post-processing because querying an instance
trie always returns perfect results.

4.1 Review of related work

Term indexing data structures are surveyed in the book [14] and in the book chapter [36] the latter
containing some additional data structures which did not exist when the former was written. The latter
does not describe dated term indexing data structures.

Tries were invented in 1959 for information retrieval [1] while the name itself was coined one year
later [9]. Tries exhibit a more conservative memory usage than lists or hash tables due to the fact that
common word prefixes are shared and thus stored only once.

Coordinate indexing [16] and path indexing [38] consider positions (or sequences of positions, re-
spectively, so-called paths) of symbols in a term with the goal of subdividing the set of terms into subsets.
Both coordinate indexing and path indexing disregard variables in order to further lower memory con-
sumption making them non-perfect filters: Subject to these limitations, terms f (v0,v1) and f (v0,v0) are
considered to be equal which means that results returned from a query need to be post-processed to iden-
tify the false positives. Several variations of path indexing, such as Dynamic Path Indexing [23] and
Extended Path Indexing [12] have been proposed, none of which are stable or perfect filters.

Discrimination trees [25, 26] (with their variants Deterministic Discrimination Trees [11] and Adap-
tive Discrimination Trees [37]) were proposed as the first tree data structures particularly designed for
term storage. However, all of them are non-perfect filters, a shortcoming that Abstraction Trees [27] were
able to remedy. Substitution Trees [13] and Downward Substitution Trees [17] further refine the idea of
abstraction trees and have been recently extended to also support indexing of higher order terms [29].

While Code Trees [40] and Coded Context Trees [10] are also frequently used in automated theorem
provers both data structures are not versatile according to the characterization above.

4.2 Order on expressions

A total order on expressions ≤e is lexicographically derived from the total order ≤c:

• v1 <c v2 for variables v1,v2 with an order ≤v such that v1 <v v2,

• v <c s/a for variable v and non-variable symbol s with arity a,

• s/a1 <c s/a2 for non-variable symbol s and a1 < a2,

• s1/a1 <c s2/a2 for non-variable symbols s1,s2 with an order ≤nv such that s1 <nv s2.

4.3 Matching and unification modes

A versatile term indexing data structure needs to support the retrieval of expressions that are more general
than, a variant of, an instance of, or unifiable with a query. For the construction and querying of instance
tries, however, mutually exclusive definitions are required. Expression e1 is a variant (VR) of expression
e2 iff there exists a renaming substitution ρ for e1 such that e1ρ = e2. e1 is strictly more general (SG) than
e2 and e2 is a strict instance (SI) of e1 iff σ is a non-renaming substitution for e1 such that e1σ = e2. e1 and
e2 are only unifiable (OU) iff ∃σ (e1σ = e2σ), σ is most general, and σ is not a renaming substitution for

Thomas Prokosch 307

Figure 1: Example of an instance trie Figure 2: Instance trie using substitutions

both e1 and e2. e1 and e2 are non-unifiable (NU) iff ∀σ (e1σ 6= e2σ). A matching-unification algorithm
that is able to determine the mode for two expressions is given in Section 5.

4.4 Instance tries

An instance trie is a tree T such that
• Every node of T except the root stores an expression.

• Every child Nc of a node N in T is a strict instance of N.

• Siblings Ns in T are ordered by <e as described above.
Figure 1 shows an example of an instance trie storing six expressions. Figure 2 shows the same trie

using substitutions; this alternate representation is possible due to the strict instance relation between a
node and its children. In this representation, repeated application of substitutions to the root variable v0
along a path yields the corresponding expression. The use of substitutions gives two advantages: First,
common symbols are shared further reducing memory consumption. Second, querying an instance trie
can make use of incremental unification resulting in faster retrieval.

Retrieving expressions from an instance trie T requires the following steps:
1. Top-down left-to-right traversal of the tree.

2. Expression e of each node N is unified with the query q to determine the matching and unification
mode of e and q as outlined above.

All query modes except unification affect the traversal:
• Variant: The traversal can be interrupted as soon as an answer is found.

• Instance: If e is an instance of q then the sub-tree rooted at N does not need to be traversed: All
children of N necessarily store instances of q.

• Generalization: The traversal can ignore all child nodes of a node which is not strictly more general
than q.

Insertion of an expression e into an instance trie T involves first searching for a node N such that the
expression of N is more general than e and the expressions of all children of N are not more general than
e. If e is a variant of the expression in N then nothing is done. Otherwise, a new node N′ containing
expression e is inserted as a child of N (at the correct position among its siblings according to the order
<e defined above) and instances of e (found to the right of N′) are inserted below N′.

Deletion of an expression e from an instance trie T requires retrieving the node N containing expres-
sion e. If such a node is found then this node N is deleted and, after this deletion, each child node of N
is inserted into the node which, before the deletion, was the parent node of N.

308 A Low-Level Index for Distributed Logic Programming

5 Low-level unification

Unification, that is determining whether a pair of expressions has a most general unifier (MGU), is an
integral part of every automated reasoning system and every logic programming language. Nevertheless,
only little attention has been given to potential improvements which develop their full effect at machine
level or in an interpreter run-time. This section, based on previously published work [31], outlines a
unification algorithm which has been specifically developed for such an environment.

5.1 Review of related work

Since Robinson introduced unification [33], a wealth of research has been carried out on this subject [28,
3, 24, 8]. Nevertheless, only few algorithms are used in practice not only because more sophisticated
algorithms are harder to implement but also, unexpectedly, Robinson’s unification algorithm is still the
most efficient [17]! Consequently, Robinson’s unification algorithm has been chosen as a starting point
for the following unification algorithm.

5.2 A matching-unification algorithm

The algorithm unif(e1, e2) performs a left-to-right traversal of the representation of expressions e1
and e2 whose first addresses are e1 and e2, respectively. Let c, c1, c2 be addresses of memory cells in
the representation of e1 or e2. In each step of the algorithm two memory cells are compared based on
type and content using the following functions:

• type(c): Returns the type of the value stored at c, resulting in cons, novar, or ofvar.

• value(c): Value stored in memory cell c.

• arity(c): Arity of the constructor stored in memory cell c, or 0.

• deref(c, S): Creates a new expression from the expression representation at c and applies sub-
stitution S to it.

• occurs-in(c1, c2): Checks whether variable at c1 occurs in expression at c2.

The algorithm sets and uses the following variables: A (short for “answer”) is initialized with VR and
contains VR, SG, SI, OU, or NU. Variables R1 and R2, both initialized with 1, contain the number of
remaining memory cells to read. The algorithm terminates if R1 = 0 and R2 = 0. S1 and S2 contain
substitutions for variables in the expression representations of e1,e2 and are initialized with the empty
lists S1 := [], S2 := [].

In each step of the algorithm two memory cells c1 and c2 are compared (starting with e1 and e2,
respectively), with the following four possibilities for each cell, resulting in a total of 16 cases: type(ei)
= cons, type(ei) = novar, type(ei) = ofvar && deref(ei, Si) != nil, and type(ei) =

ofvar && deref(ei, Si) = nil.
Table 1 shows the core of the matching-unification algorithm. For clarity and because the table is

symmetric along its principal diagonal only the top-right half of the table contains entries. For space
reasons, the table is abbreviated; for the full table refer to [31].

5.3 Illustration of the matching-unification algorithm

An example should illustrate how the matching-unification algorithm works: Expression f (v1,v1) at
address e1=0 shall be unified with expression f (a,a) at address e2=20:

Thomas Prokosch 309

case cons novar ofvar && deref!=nil ofvar && deref=nil

cons continue or NU bind, dereference occurs check
change mode recursive call (bind and OU) or NU

novar bind to left bind, change mode bind, change mode
ofvar && dereference occurs check
deref!=nil recursive call (bind and OU) or NU
ofvar && bind
deref =nil

Table 1: Core of the matching-unification algorithm, abbreviated

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

f/2 nil 4 . . . f/2 a/0 a/0

1. Initialization: A := VR; R1 := 1; R2 := 1; S1 := []; S2 := []

2. type(e1) = cons, type(e2) = cons, value(e1) = value(e2)

Constructors f/2 and f/2 match with arity 2: R1 := R1+2 = 3; R2 := R2+2 = 3

3. Continue to next cell: Each cell consists of 4 bytes.

e1 := e1+4 = 4; e2 := e2+4 = 24; R1 := R1-1 = 2; R2 := R2-1 = 2

4. type(e1) = novar, type(e2) = cons

First, the non-offset variable at address e1=4 needs to be bound to the sub-expression starting
with the constructor a/0 at address e2=24 by adding the tuple (4,24) to the substitution S1 :=

[(4, 24)]. Note that no occurs check is required when introducing this binding; this is a speed
improvement with respect to some other unification algorithms such as Robinson’s algorithm [33]
or the algorithm from Martelli-Montanari [24].

Then, change the mode by setting A:=SG since the non-offset variable at e1=4 is strictly more
general than the expression constructor a/0 at e2=24.

5. Continue to next cell: Each cell consists of 4 bytes.

e1 := e1+4 = 8 ; e2 := e2+4 = 28; R1 := R1-1 = 1; R2 := R2-1 = 1

6. type(e1) = ofvar, type(e2) = cons

First, dereference e1 with S1 yielding address 24. Dereferencing address e2=28 yields 28. (The
memory cell at address 28 contains a constructor.) Then, call the algorithm recursively with ad-
dresses 24 and 28.

7. The recursive call confirms the equality of the expression constructors a/0 at address 24 and a/0
at address 28, returning to the caller without any changes to variables A, R1, R2.

8. Continue to next cell: Each cell consists of 4 bytes.

e1 := e1+4 = 12 ; e2 := e2+4 = 32; R1 := R1-1 = 0; R2 := R2-1 = 0

The algorithm terminates because R1 = 0 and R2 = 0. The result A = SG and S1 = [(4, 24)],
S2 = [] is returned to the caller. The result is correct since f (v1,v1) is strictly more general than
f (a,a).

310 A Low-Level Index for Distributed Logic Programming

6 Open issues and goals

While some progress towards a distributed logic programming language has already been made, there
are still further challenges:

• Instance tries have been fully specified and their implementation is currently ongoing. Upon com-
pletion an empirical evaluation of instance tries together with a variety of common term indexing
data structures need to verify the expected speed-up of instance tries.

• It is currently being investigated how stream processing can be integrated with logic programming.

• The forward-chaining resolution engine to derive the immediate consequences from a set of ex-
pressions in order to perform program evaluation has not been investigated so far.

Follow-up articles will report on each of those aspects of research.

References
[1] René de la Briandais (1959): File searching using variable length keys. In: Proceedings of the Western Joint

Computer Conference, pp. 295–298, doi:10.1145/1457838.1457895.
[2] Fraņcois Bry (2020): In Praise of Impredicativity: A Contribution to the Formalization

of Meta-Programming. Theory and Practice of Logic Programming 20(1), pp. 99–146,
doi:10.1017/S1471068419000024. Available at https://pms.ifi.lmu.de/publications/PMS-FB/

PMS-FB-2018-2/PMS-FB-2018-2-paper-second-revision.pdf.
[3] Dennis de Champeaux (1986): About the Paterson-Wegman Linear Unification Algorithm. Journal of Com-

puter and System Sciences 32(1), pp. 79–90, doi:10.1016/0022-0000(86)90003-6.
[4] Weidong Chen, Michael Kifer & David Scott Warren (1993): HILOG: A Foundation for Higher-Order Logic

Programming. Journal of Logic Programming 15(3), pp. 187–230, doi:10.1016/0743-1066(93)90039-J.
[5] Jim Christian (1989): Fast Knuth-Bendix Completion: Summary. In Nachum Dershowitz, editor: Rewriting

Techniques and Applications, 3rd International Conference (RTA’89), LNCS 355, Springer, pp. 551–555,
doi:10.1007/3-540-51081-8 136.

[6] Jim Christian (1993): Flatterms, Discrimination Nets, and Fast Term Rewriting. Journal of Automated
Reasoning 10(1), pp. 95–113, doi:10.1007/BF00881866.

[7] Maarten H. van Emden & Robert A. Kowalski (1976): The Semantics of Predicate Logic as a Programming
Language. Journal of the ACM 23(4), pp. 733–742, doi:10.1145/321978.321991.

[8] Gonzalo Escalada-Imaz & Malik Ghallab (1988): A Practically Efficient and Almost Linear Unification
Algorithm. Artificial Intelligence 36(2), pp. 249–263, doi:10.1016/0004-3702(88)90005-7.

[9] Edward Fredkin (1960): Trie Memory. Communications of the ACM 3(9), pp. 490–499,
doi:10.1145/367390.367400.

[10] Harald Ganzinger, Robert Nieuwenhuis & Pilar Nivela (2004): Fast Term Indexing with Coded Context Trees.
Journal of Automated Reasoning 32(2), pp. 103–120, doi:10.1023/B:JARS.0000029963.64213.ac.

[11] Albert Gräf (1991): Left-to-Right Tree Pattern Matching. In Ronald V. Book, editor: Rewriting Techniques
and Applications, 4th International Conference (RTA’91), LNCS 488, Springer, pp. 323–334, doi:10.1007/3-
540-53904-2 107.

[12] Peter Graf (1994): Extended Path-Indexing. In Alan Bundy, editor: 2nd Conference on Automated Deduction
(CADE), LNCS 814, Springer, pp. 514–528, doi:10.1007/3-540-58156-1 37.

[13] Peter Graf (1995): Substitution Tree Indexing. In Jieh Hsiang, editor: 6th International Conference on
Rewriting Techniques and Applications (RTA’95), LNCS 914, Springer, pp. 117–131, doi:10.1007/3-540-
59200-8 52.

http://dx.doi.org/10.1145/1457838.1457895
http://dx.doi.org/10.1017/S1471068419000024
https://pms.ifi.lmu.de/publications/PMS-FB/PMS-FB-2018-2/PMS-FB-2018-2-paper-second-revision.pdf
https://pms.ifi.lmu.de/publications/PMS-FB/PMS-FB-2018-2/PMS-FB-2018-2-paper-second-revision.pdf
http://dx.doi.org/10.1016/0022-0000(86)90003-6
http://dx.doi.org/10.1016/0743-1066(93)90039-J
http://dx.doi.org/10.1007/3-540-51081-8_136
http://dx.doi.org/10.1007/BF00881866
http://dx.doi.org/10.1145/321978.321991
http://dx.doi.org/10.1016/0004-3702(88)90005-7
http://dx.doi.org/10.1145/367390.367400
http://dx.doi.org/10.1023/B:JARS.0000029963.64213.ac
http://dx.doi.org/10.1007/3-540-53904-2_107
http://dx.doi.org/10.1007/3-540-53904-2_107
http://dx.doi.org/10.1007/3-540-58156-1_37
http://dx.doi.org/10.1007/3-540-59200-8_52
http://dx.doi.org/10.1007/3-540-59200-8_52

Thomas Prokosch 311

[14] Peter Graf (1995): Term Indexing. LNCS 1053, Springer, doi:10.1007/3-540-61040-5.

[15] C. Cordell Green (1969): Application of Theorem Proving to Problem Solving. In Donald E. Walker &
Lewis M. Norton, editors: Proceedings of the 1st International Joint Conference on Artificial Intelligence,
William Kaufmann, pp. 219–240. Available at http://ijcai.org/Proceedings/69/Papers/023.pdf.

[16] Carl Hewitt (1972): Description and Theoretical Analysis (Using Schemata) of Planner. Ph.D. thesis, Ar-
tificial Intelligence Laboratory, Massachusetts Institute of Technology. Available at http://hdl.handle.
net/1721.1/6916.

[17] Kryštof Hoder & Andrei Voronkov (2009): Comparing Unification Algorithms in First-Order Theorem Prov-
ing. In Bärbel Mertsching, Marcus Hund & Muhammad Zaheer Aziz, editors: KI 2009: Advances in Arti-
ficial Intelligence (KI’09), LNCS 5803, Paderborn, Germany, pp. 435–443, doi:10.1007/978-3-642-04617-
9 55.

[18] Yuejun Jiang (1994): Ambivalent Logic as the Semantic Basis of Metalogic Programming. In Pascal Van
Hentenryck, editor: Logic Programming, Proceedings of the Eleventh International Conference, MIT Press,
Santa Marherita Ligure, Italy, pp. 387–401.

[19] Ernie Johnson, C. R. Ramakrishnan, I. V. Ramakrishnan & Prasad Rao (1999): A Space Efficient Engine
for Subsumption-Based Tabled Evaluation of Logic Programs. In Aart Middeldorp & Taisuke Sato, editors:
Functional and Logic Programming, 4th Fuji International Symposium (FLOPS’99), LNCS 1722, Springer,
Tsukuba, Japan, pp. 284–300, doi:10.1007/10705424 19.

[20] Marianne B. Kalsbeek & Yuejun Jiang (1995): Meta-Logics and Logic Programming, chapter A Vademecum
of Ambivalent Logic, pp. 27–56. Computation and Complexity Theory, MIT Press. Available at https:
//www.illc.uva.nl/Research/Publications/Reports/CT-1995-01.text.pdf.

[21] Robert A. Kowalski (1974): Predicate Logic as Programming Language. In Jack L. Rosenfeld, editor:
Information Processing, Proceedings of the 6th IFIP Congress, North-Holland, pp. 569–574. Available at
http://www.doc.ic.ac.uk/~rak/papers/IFIP%2074.pdf.

[22] Robert A. Kowalski (1979): Algorithm = Logic + Control. Communication of the ACM 22(7), pp. 424–436,
doi:10.1145/359131.359136.

[23] Reinhold Letz, Johann Schumann, Stefan Bayerl & Wolfgang Bibel (1992): SETHEO: A high-performance
theorem prover. Journal of Automated Reasoning 8(2), pp. 183–212, doi:10.1007/BF00244282.

[24] Alberto Martelli & Ugo Montanari (1982): An Efficient Unification Algorithm. ACM Transaction on Pro-
gramming Language Systems (TOPLAS’82) 4(2), pp. 258–282, doi:10.1145/357162.357169.

[25] William McCune (1988): An indexing mechanism for finding more general formulas. Association for Auto-
mated Reasoning Newsletter 9.

[26] William McCune (1992): Experiments with Discrimination-Tree Indexing and Path Indexing for Term Re-
trieval. Journal of Automated Reasoning 9, pp. 147–167, doi:10.1007/BF00245458.

[27] Hans Jürgen Ohlbach (1990): Abstraction Tree Indexing for Terms. In: 9th European Conference on Artificial
Intelligence (ECAI’90), pp. 479–484.

[28] Michael Stewart Paterson & M.N. Wegman (1978): Linear Unification. Journal of Computer and System
Sciences 16(2), pp. 158–167, doi:10.1016/0022-0000(78)90043-0.

[29] Brigitte Pientka (2009): Higher-Order Term Indexing Using Substitution Trees. ACM Transactions on Com-
putational Logic (TOCL) 11(1), pp. 6:1–6:40, doi:10.1145/1614431.1614437.

[30] Thomas Prokosch & Fraņcois Bry (2020): Give Reasoning a Trie. In: 7th Workshop on Practical Aspects of
Automated Reasoning (PAAR’20), CEUR Workshop Proceedings, Aachen. To appear.

[31] Thomas Prokosch & Fraņcois Bry (2020): Unification on the Run. In Temur Kutsia & Andrew M. Marshall,
editors: The 34th International Workshop on Unification (UNIF’20), RISC Report Series 20-10, Research
Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria, pp. 13:1–13:5. Available at
https://www.risc.jku.at/publications/download/risc_6129/proceedings-UNIF2020.pdf.

http://dx.doi.org/10.1007/3-540-61040-5
http://ijcai.org/Proceedings/69/Papers/023.pdf
http://hdl.handle.net/1721.1/6916
http://hdl.handle.net/1721.1/6916
http://dx.doi.org/10.1007/978-3-642-04617-9_55
http://dx.doi.org/10.1007/978-3-642-04617-9_55
http://dx.doi.org/10.1007/10705424_19
https://www.illc.uva.nl/Research/Publications/Reports/CT-1995-01.text.pdf
https://www.illc.uva.nl/Research/Publications/Reports/CT-1995-01.text.pdf
http://www.doc.ic.ac.uk/~rak/papers/IFIP%2074.pdf
http://dx.doi.org/10.1145/359131.359136
http://dx.doi.org/10.1007/BF00244282
http://dx.doi.org/10.1145/357162.357169
http://dx.doi.org/10.1007/BF00245458
http://dx.doi.org/10.1016/0022-0000(78)90043-0
http://dx.doi.org/10.1145/1614431.1614437
https://www.risc.jku.at/publications/download/risc_6129/proceedings-UNIF2020.pdf

312 A Low-Level Index for Distributed Logic Programming

[32] I. V. Ramakrishnan, Prasad Rao, Konstantinos Sagonas, Terrance Swift & David Scott Warren (1999): Ef-
ficient Access Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1), pp. 31–54,
doi:10.1016/S0743-1066(98)10013-4.

[33] John Alan Robinson (1965): A Machine-Oriented Logic Based on the Resolution Principle. Journal of the
ACM 12(1), pp. 23–41, doi:10.1145/321250.321253.

[34] John Alan Robinson & Andrei Voronkov, editors (2001): Handbook of Automated Reasoning. Elsevier
Science Publishers.

[35] Stephan Schulz & Adam Pease (2020): Teaching Automated Theorem Proving by Example: PyRes 1.2. In
Nicolas Peltier & Viorica Sofronie-Stokkermans, editors: Automated Reasoning - 10th International Joint
Conference (IJCAR’20), Proceedings, Part II, LNCS 12167, Springer, pp. 158–166, doi:10.1007/978-3-030-
51054-1 9.

[36] R. Sekar, I. V. Ramakrishnan & Andrei Voronkov (2001): Handbook of Automated Reasoning, chapter Term
Indexing, pp. 1853–1964. 2, Elsevier Science Publishers, doi:10.1016/B978-044450813-3/50028-X. Avail-
able at http://www.cs.man.ac.uk/~voronkov/papers/handbookar_termindexing.ps.

[37] R. C. Sekar, R. Ramesh & I. V. Ramakrishnan (1992): Adaptive Pattern Matching. In Werner Kuich, editor:
Automata, Languages and Programming, 19th International Colloquium (ICALP’92), LNCS 623, Springer,
pp. 247–260, doi:10.1007/3-540-55719-9 78.

[38] Mark E. Stickel (1989): The Path-Indexing Method For Indexing Terms. Technical Note 473, SRI Interna-
tional, Menlo Park, California, USA. Available at https://www.sri.com/wp-content/uploads/pdf/
498.pdf.

[39] Hisao Tamaki & Taisuke Sato (1986): OLD Resolution with Tabulation. In Ehud Shapiro, editor: Third
International Conference on Logic Programming (LP’86), LNCS 225, Springer, Imperial College of Science
and Technology, London, UK, pp. 84–98, doi:10.1007/3-540-16492-8 66.

[40] Andrei Voronkov (1995): The Anatomy of Vampire. Journal of Automated Reasoning 15(2), pp. 237–265,
doi:10.1007/BF00881918.

http://dx.doi.org/10.1016/S0743-1066(98)10013-4
http://dx.doi.org/10.1145/321250.321253
http://dx.doi.org/10.1007/978-3-030-51054-1_9
http://dx.doi.org/10.1007/978-3-030-51054-1_9
http://dx.doi.org/10.1016/B978-044450813-3/50028-X
http://www.cs.man.ac.uk/~voronkov/papers/handbookar_termindexing.ps
http://dx.doi.org/10.1007/3-540-55719-9_78
https://www.sri.com/wp-content/uploads/pdf/498.pdf
https://www.sri.com/wp-content/uploads/pdf/498.pdf
http://dx.doi.org/10.1007/3-540-16492-8_66
http://dx.doi.org/10.1007/BF00881918

	1 Introduction and problem description
	2 Logical foundations
	3 Low-level representations
	3.1 Representation of expressions
	3.2 Representation of substitutions and substitution application

	4 Storage and retrieval
	4.1 Review of related work
	4.2 Order on expressions
	4.3 Matching and unification modes
	4.4 Instance tries

	5 Low-level unification
	5.1 Review of related work
	5.2 A matching-unification algorithm
	5.3 Illustration of the matching-unification algorithm

	6 Open issues and goals

