1 Introduction

Since Robinson introduced unification [6], many variations of Robinson’s unification algorithm [6] have been proposed [5, 4, 1, 2, 3]. Indeed, “[t]he unification algorithm as originally proposed can be extremely inefficient” [4, page 259]. Improving over Robinson’s original unification algorithm has been attempted in three manners:

• by changing when the occurs check is performed (as done for example in [4]),
• by sharing instead of copying subexpressions to which variables are bound (as first suggested by [5, 1]),
• by simplifying the already computed substitution or the expressions still to unify (as done with the rules “variable elimination,” “reduction” and “compactification” of [4]).

An issue which has received little attention is whether a potential improvement of a unification algorithm is realizable in run-time systems. Suggestions of the afore-mentioned third kind seem hardly realizable at reasonable costs in a runtime system. The article [3] stresses that many suggestions for improving Robinson’s unification algorithm are not successful in practice. That article reports on an empirical evaluation of the performance of the unification algorithms by Robinson [6], Martelli-Montanari [4], Escalada-Ghallab [2], and a formerly unpublished improvement of Robinson’s algorithm showing that, unexpectedly, Robinson’s unification algorithm is the most efficient!

This article reports on a refinement of Robinson’s original unification algorithm based on

• an in-memory representation of expressions, an issue not considered by Robinson,
• single left-to-right runs through, or traversals, of the expressions tested for unifiability,
• keeping track of the matching or unification mode of the sub-expressions so far run through, an approach so far not considered,
• and exploiting the afore-mentioned in-memory representation for detecting when occurs checks are unnecessary.

2 Preliminaries

Finitely many non-variable symbols and infinitely many variables are considered. In the following, the lower case letters a, b, c, \ldots, z with the exception of v denote the non-variable symbols, v_0, v_1, v_2, \ldots (with subscripts) denote the variables. v^i (with a superscript) denotes an arbitrary variable.

An expression is either a first-order term or a first-order atomic formula. Expressions are defined from constructors as follows. A constructor is a pair s/a with s a non-variable
symbol and a one of finitely many arities associated with the symbol s. There are finitely many constructors. An expression is either a variable or a non-variable expression. A non-variable expression is either a constructor s of arity 0, s/0, or it has the form s(e₁, ..., eₙ) where s/n is a constructor of arity n ≥ 1 and e₁, ..., eₙ are expressions. e₁, ..., and eₙ are the direct subexpressions of s(e₁, ..., eₙ). Two expressions are variable-disjoint if none of the variables occurring in the one expression occurs in the other.

An expression s(e₁, ..., eₙ) is in standard notation. It can also be written without parentheses in prefix notation (or Polish or Łukasiewicz notation) as s/n e₁/a₁ ... eₙ/aₙ, where aᵢ is the arity of expression eᵢ (1 ≤ i ≤ n). While the standard notation is easier to read the (parenthesis-free) prefix form is necessary for linear (or parenthesis-free) processor languages.

3 In-memory representations and dereferencing

The representation of an expression in the memory of a run-time system is based on the expression’s prefix notation. Assuming that a constructor and a variable are stored in 4 bytes and storage begins at address 0, the representation of f(a, v₁, b, v₁) is:

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
f/4 a/0 nil b/0 8
```

The leftmost, or first, occurrence of the variable v₁ is represented by the value nil which indicates that the variable is unbound. The second occurrence of the variable v₁ is represented by an offset: The address of this second occurrence’s representation, 16, minus the offset, 8, is the address of the representation of the variable’s first occurrence, 8. Occurrences of (the representation of) a variable like the second occurrence of v₁ in f(a, v₁, b, v₁) and the cell representing such variables like the cell at address 16 in the above representation of f(a, v₁, b, v₁) are called a locally bound variables or offset variables.

Two properties of an expression representation are worth stressing:

1. Variables’ names are irrelevant to expression representations, that is, variant expressions have the same representation except for the memory addresses.
2. Two distinct expression representations do not share variables.

Representation of substitutions An elementary substitution {vⁱ ↦→ e} can be seen as a pair (address of vᵢ, address of the representation of e). If the representation of p(a, v₁, v₁) is stored at address 0 and the representation of q(b, v₃) at address 23, the substitution application p(a, v₁, v₁){v₁ ↦→ q(b, v₃)} is represented before substitution application as:

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
p/3 a/0 nil 4 q/2 b/0 nil
```

and after the application of p(a, v₁, v₁){v₁ ↦→ q(b, v₃)} as:

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
p/3 a/0 23 4 q/2 b/0 nil
```

Observe that the cell representing the second occurrence of the variable v₁ (cell at 12) keeps its offset (4) unchanged. Thus, binding a variable v which occurs in an expression e to an expression e’ consists in storing at the leftmost occurrence of v in the representation of e the address of the representation of e’, leaving unchanged further occurrences of v in the representation of e. This approach to binding variables makes the representation of a substitution application unique.
Dereferencing

Consider the following two representations of \(f(a, v_1, v_2, v_1, g(v_1)) \):

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
f/5 & a/0 & \text{nil} & \text{nil} & 8 & g/1 & 16 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
f/5 & a/0 & \text{nil} & \text{nil} & 8 & g/1 & 36 \\
\hline
\end{array}
\]

The first representations of \(f(a, v_1, v_2, v_1, g(v_1)) \) is dereferenced because, except for the representations of the second and third occurrences of the variable \(v_1 \), the variables' value are nil.

The second and third occurrences of \(v_1 \) cannot be dereferenced like a pointer because this would result in the following representation of \(f(a, v_1, v_2, v_3, g(v_4)) \), not of \(f(a, v_1, v_2, v_1, g(v_1)) \):

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
f/5 & a/0 & \text{nil} & \text{nil} & \text{nil} & g/1 & 36 \\
\hline
\end{array}
\]

A dereferenced representation of an expression \(e \) is generated from any representation \(R_e \) of \(e \) as follows: While traversing \(R_e \) from left to right, if the cell reached contains a constructor or nil, or the offset of a locally bound variable, then copy the cell’s content to a new cell. Otherwise (the token reached is a non-locally bound variable \(v \) storing the address \(E \) of an expression representation), recursively dereference the expression representation at address \(E \).

In dereferencing, care must be given not to trespass expression representations’ ends in recursive calls. This is cared for by using as follows the constructors’ arities during a left-to-right traversal of an expression representation \(E \): Let \(R \) denote the number of remaining (sub-)expression representations; set \(R := 1 \) before traversing \(E \), at each constructor \(s/n \) perform the update \(R := R - 1 + n \) (\(-1\) for the (sub-)expression beginning at that constructor, and \(+n\) for the \(n \) subexpression representations now to be traversed), and at each variable perform the update \(R := R - 1 \). The expression representation’s end is reached when \(R = 0 \).

4 A matching-unification algorithm

A call to \texttt{unif(e1, e2)} performs a left-to-right run through, or traversal, of the representations of expressions \(e_1 \) and \(e_2 \) stored at the addresses \(e1 \) and \(e2 \) respectively. The algorithm makes uses of the variables

- \(A \): One of \(\text{VR} \) (variant), \(\text{SI} \) (strict instance), \(\text{SG} \) (strict generalisation), \(\text{OU} \) (only unifiable, i.e. unifiable but none of \(\text{VR}, \text{SI}, \text{SG} \)), or \(\text{NU} \) (not unifiable). Initialisation: \(A := \text{VR} \)

- \(R1 \) and \(R2 \): The end of the expression representation at address \(e1 \) (\(e2 \), respectively) is reached when \(R1 = 0 \) (\(R2 = 0 \), respectively). Initialisation: \(R1 := \text{arity}(e1); R2 := \text{arity}(e2) \)

- \(S1 \) and \(S2 \): Substitutions for variables in the expression representations at addresses \(e1 \) and \(e2 \) respectively. Initialisation: \(S1 := []; S2 := [] \)

\(S+R \) denotes the list obtained by appending \(R \) to the list \(S \). \(a += b \) is shorthand for \(a := a+b \).

The algorithm makes uses of the functions:

- \(\text{type(e)} \): Type of the value stored in the cell with address \(e \): \texttt{cons} if that value is a constructor \(s/n \), \texttt{novar} if it is a non-offset variable, or \texttt{ofvar} if it is an offset variable (i.e. referring to a local non-offset variable).

- \(\text{value(e)} \): Value stored in the cell with address \(e \) (possibly nil).
• **arity(e)**: Arity of the constructor or variable stored at address \(e \), the arity of a variable being 0.

• **deref(e, S)**: The application of a substitution \(S \) to the expression representation at address \(e \).

• **occurs-in(e1, e2)**: Checks whether a variable at address \(e1 \) occurs-in the expression representation at address \(e2 \).

The algorithm consists of 16 cases given in 4 tables. Each case is characterised by \(\text{type}(e1) \), \(\text{type}(e2) \) and the (dereferenced) expression representations at addresses \(e1 \) and \(e2 \).

<table>
<thead>
<tr>
<th>(\text{type}(e1))</th>
<th>(\text{type}(e2))</th>
<th>(\text{value}(e1))</th>
<th>(\text{value}(e2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(= \text{cons})</td>
<td>(= \text{cons})</td>
<td>(= s1/s1)</td>
<td>(= s2/a2)</td>
</tr>
<tr>
<td>(\text{if}) (\text{value}(e1) = \text{value}(e2))</td>
<td>(\text{then}) (R1) (= \text{arity}(e1))</td>
<td>(R2) (= \text{arity}(e2))</td>
<td>(S2) (= (e2, \text{deref}(e1, S1)))</td>
</tr>
<tr>
<td>(\text{else}) (A) (= \text{NU})</td>
<td>(\text{if}) (A = \text{VR}) (\text{then}) (A) (= SI)</td>
<td>(\text{if}) (A = \text{SG}) (\text{then}) (A) (= OU)</td>
<td></td>
</tr>
<tr>
<td>(= \text{novar})</td>
<td>(= \text{novar})</td>
<td>(= nil)</td>
<td>(= nil)</td>
</tr>
<tr>
<td>(\text{S1}) (= (e1, \text{deref}(e2, S2)))</td>
<td>(\text{R1}) (= \text{arity}(e1))</td>
<td>(\text{if}) (A = \text{VR}) (\text{then}) (A) (= SI)</td>
<td>(\text{if}) (A = \text{SG}) (\text{then}) (A) (= OU)</td>
</tr>
</tbody>
</table>

If both expressions are unbound variables then the variable at address \(e2 \) is bound to that at address \(e1 \) what avoids generating cyclic substitutions.

<table>
<thead>
<tr>
<th>(\text{type}(e1))</th>
<th>(\text{type}(e2))</th>
<th>(\text{deref}(e1, S1))</th>
<th>(\text{deref}(e2, S2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(= \text{ofvar})</td>
<td>(= \text{ofvar})</td>
<td>(\neq \text{nil})</td>
<td>(\neq \text{nil})</td>
</tr>
<tr>
<td>(\text{unif}(\text{deref}(e1, S1), \text{deref}(e2, S2)))</td>
<td>(\text{de1}) (= \text{deref}(e1, S1))</td>
<td>(\text{de2}) (= \text{deref}(e2, S2))</td>
<td>(\text{if}) (\text{occurs-in}(\text{de2}, \text{de1})) (\text{then}) (A) (= \text{NU})</td>
</tr>
<tr>
<td>(\text{else}) (\text{R1}) (= \text{arity}(e1))</td>
<td>(\text{s1}) (= (\text{de2}, \text{de1}))</td>
<td>(\text{s2}) (= (\text{de2}, \text{de1}))</td>
<td>(\text{if}) (A = \text{VR}) (\text{then}) (A) (= SI)</td>
</tr>
<tr>
<td>(= \text{novar})</td>
<td>(= \text{novar})</td>
<td>(= nil)</td>
<td>(= nil)</td>
</tr>
<tr>
<td>(\text{S1}) (= (e1, \text{deref}(e2, S2)))</td>
<td>(\text{if}) (A = \text{VR}) (\text{then}) (A) (= SI)</td>
<td>(\text{if}) (A = \text{SG}) (\text{then}) (A) (= OU)</td>
<td></td>
</tr>
</tbody>
</table>

If the representation at address \(e1 \) starts with a constructor and the address \(e2 \) is a bound variable, then the algorithm is recursively called. Otherwise, a binding is only generated if the occurs check fails. Unbound variables can be bound to any variable whether bound or unbound.

<table>
<thead>
<tr>
<th>(\text{type}(e1))</th>
<th>(\text{type}(e2))</th>
<th>(\text{deref}(e1, S1))</th>
<th>(\text{deref}(e2, S2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(= \text{ofvar})</td>
<td>(= \text{ofvar})</td>
<td>(\neq \text{nil})</td>
<td>(\neq \text{nil})</td>
</tr>
<tr>
<td>(\text{unif}(\text{deref}(e1, S1), \text{deref}(e2, S2)))</td>
<td>(\text{de1}) (= \text{deref}(e1, S1))</td>
<td>(\text{de2}) (= \text{deref}(e2, S2))</td>
<td>(\text{if}) (\text{occurs-in}(\text{de1}, \text{de2})) (\text{then}) (A) (= \text{NU})</td>
</tr>
<tr>
<td>(\text{else}) (\text{R2}) (= \text{arity}(e2))</td>
<td>(\text{s1}) (= (\text{de1}, \text{de2}))</td>
<td>(\text{s2}) (= (\text{de1}, \text{de2}))</td>
<td>(\text{if}) (A = \text{VR}) (\text{then}) (A) (= SI)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\text{type}(e1))</th>
<th>(\text{type}(e2))</th>
<th>(\text{value}(e1))</th>
<th>(\text{value}(e2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(= \text{ofvar})</td>
<td>(= \text{ofvar})</td>
<td>(\neq \text{nil})</td>
<td>(\neq \text{nil})</td>
</tr>
<tr>
<td>(\text{unif}(\text{deref}(e1, S1), \text{deref}(e2, S2)))</td>
<td>(\text{de1}) (= \text{deref}(e1, S1))</td>
<td>(\text{de2}) (= \text{deref}(e2, S2))</td>
<td>(\text{if}) (\text{occurs-in}(\text{de1}, \text{de2})) (\text{then}) (A) (= \text{NU})</td>
</tr>
<tr>
<td>(\text{else}) (\text{R2}) (= \text{arity}(e2))</td>
<td>(\text{s1}) (= (\text{de1}, \text{de2}))</td>
<td>(\text{s2}) (= (\text{de1}, \text{de2}))</td>
<td>(\text{if}) (A = \text{VR}) (\text{then}) (A) (= SI)</td>
</tr>
</tbody>
</table>
The four cases above are symmetrical to the preceding four cases.

<table>
<thead>
<tr>
<th>Case</th>
<th>Type(e1) = ofvar</th>
<th>Deref(e1, S1) != nil</th>
<th>Type(e2) = ofvar</th>
<th>Deref(e2, S2) != nil</th>
<th>Type(e2) = ofvar</th>
<th>Deref(e2, S2) = nil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>type(e2) = ofvar</td>
<td>deref(e2, S2) != nil</td>
<td>type(e2) = ofvar</td>
<td>deref(e2, S2) = nil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>type(e1) = ofvar</td>
<td>deref(e1, S1) != nil</td>
<td>unif(deref(e1, S1), deref(e2, S2))</td>
<td>de1 := deref(e1, S1) de2 := deref(e2, S2) if occurs-in(de2, de1) then A := NU else A := OU S1 += (de2, de1) S2 += (de2, de1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>type(e1) = ofvar</td>
<td>deref(e1, S1) = nil</td>
<td>de1 := deref(e1, S1) de2 := deref(e2, S2) if occurs-in(de1, de2) then A := NU else A := OU S1 += (de1, de2) S2 += (de1, de2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>type(e1) = ofvar</td>
<td>deref(e1, S1) = nil</td>
<td>de1 := deref(e1, S1) de2 := deref(e2, S2) S1 += (de1, de2) S2 += (de1, de2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Two offset variables pointing to bound variables result in a recursive call after applying substitutions S_1 and S_2. Two offset variables only one of which points to an unbound variable require an occurs check. However, two offset variables both pointing to unbound variables make an occurs check unnecessary.

The time complexity of the algorithm is dominated by both the occurs check and the compatibility check both of which depend on the lengths of the expressions and the number of offset variables (ofvar-nb) bound to non-offset variables. Thus, the time complexity of the algorithm given above is in $O(\max(\text{length}(e_1), \text{length}(e_2)) \times \max(1, \text{ofvar-nb}(e_1) + \text{ofvar-nb}(e_2)))$.

To sum up, keeping track of the matching mode, as long as the expression prefixes traversed match, and distinguishing between locally bound, or offset, variables, and non-locally bound variables makes it possible to avoid unnecessary occurs check.

Further work will be devoted to an experimental comparison of the algorithm given above with formerly proposed unification algorithms.

References