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Abstract

Processing programs as data is one of the successes of functional and logic programming. Higher-order
functions, as program-processing programs are called in functional programming, and meta-programs, as
they are called in logic programming, are widespread declarative programming techniques. In logic pro-
gramming, there is a gap between the meta-programming practice and its theory: The formalisations of
meta-programming do not explicitly address its impredicativity and are not fully adequate. This article
aims at overcoming this unsatisfactory situation by discussing the relevance of impredicativity to meta-
programming, by revisiting former formalisations of meta-programming and by defining Reflective Pred-
icate Logic, a conservative extension of first-order logic, which provides a simple formalisation of meta-
programming.
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1 Introduction

Processing programs as data is one of the successes of functional and logic programming. Indeed,
in most functional and logic languages, programs are standard data structures which release
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programmers writing program-processing programs from explicitly coding or importing parsers.
The following program, in which upper case characters are variables, specifies beliefs of Ann
and Bill using the programming style called meta-programming:

believes(ann , itRains)

believes(ann , itIsWet ← itRains)

believes(bill , X) ← believes(ann , X)

This program’s intended meaning is that Ann believes that it rains, Ann believes that it is wet
when it rains, and Bill believes everything Ann believes. This program is a meta-program because
its second fact

believes(ann , itIsWet ← itRains)

includes a clause:

itIsWet ← itRains

This fact violates the syntax of classical predicate logic that requires that a fact is formed from
a predicate, like believes, and a list of terms like ann but unlike the clause itIsWet ←
itRains. Indeed, in classical predicate logic a clause is a formula, not a term.

Examples referring to beliefs and trust are given in this article because they are intuitive.
However, this article does not address how to specify belief and trust systems but instead how to
formalise meta-programming, a technique using which such systems can be specified.

While most logics, especially classical predicate logic, prescribe a strict distinction between
terms and formulas, meta-programming is based upon disregarding this distinction. Both Prolog
and most formalisations of meta-programming pay a tribute to this dictate of classical logic: They
require to code a clause like

itIsWet ← itRains

as a compound term like

cl(itIsWet , itRains)

or as an atomic term commonly denoted (using a so-called “quotation” p . q) as follows

pitIsWet ← itRainsq

when it occurs within a fact, expressing the second clause above in one of the following forms:

believes(ann , cl(itIsWet , itRains ))

believes(ann , pitIsWet ← itRainsq))

Such encodings or quotations are not necessary. Atomic and compound formulas can be treated
as terms, as HiLog (Chen et al. 1993) and Ambivalent Logic (Jiang 1994; Kalsbeek and Jiang
1995) have shown. An expression such as

likes(ann , bill)

(with the intended meaning that Ann likes Bill) is built up from the three symbols likes, ann
and bill that all three can be used for forming nested HiLog, Ambivalent Logic and Reflective
Predicate Logic expressions such as

likes(ann , likes(bill , ann))
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(with the intended meaning that Ann likes that Bill likes her). As a consequence, the Wise Man
Puzzle suggested in the article (McCarthy et al. 1978) as a benchmark for testing the expressive
power and naturalness of knowledge representation formalisms can be expressed in HiLog, Am-
bivalent Logic and Reflective Predicate Logic exactly as it is expressed in the article (Kowalski
and Kim 1991).

Like Ambivalent Logic (Jiang 1994; Kalsbeek and Jiang 1995), but unlike HiLog (Chen et al.
1993), Reflective Predicate Logic also allows expressions such as

(loves ∧ trusts )(ann , bill)

that can be defined by

(loves ∧ trusts )(X, Y) ← loves(X, Y) ∧ trusts(X, Y)

or more generally by

(P1 ∧ P2)(X, Y) ← P1(X, Y) ∧ P2(X, Y)

and expressions such as

likes(ann , (bill ∧ charlie ))

that can be defined by:

P(X, (Y ∧ Z)) ← P(X, Y) ∧ P(X, Z)

Even more general expressions like the following are possible in Ambivalent Logic and Reflec-
tive Predicate Logic:

(∀ T trust(T) ⇒ T)(ann , bill)

or, in a program syntax with implicit universal quantification

(T ← trust(T))(ann , bill)

with the intended meaning that Ann trusts Bill, expressed as T(ann, bill), in all forms of
trust specified by the meta-predicate trust. If there are finitely many forms of trust, that is, if
trust(T) holds for finitely many values of T, then this intended meaning can be expressed by
the following rule that relies on negation as failure:

(T ← trust(T))(X, Y) ← not (trust(T) ∧ not T(X, Y))

The expression (T ← trust(T))(ann, bill) can also be proven in the manner of Gerhard
Gentzen’s Natural Deduction (Gentzen 1934; Gentzen 1969; Gentzen 1964) by first assuming
that trust(t) holds for some surrogate t form of trust that does not occur anywhere in the
program, then proving t(ann, bill) and finally discarding (or, as it is called “discharging”)
the assumption trust(t). This second approach to proving

(T ← trust(T))(ann , bill)

is, in contrast to the first approach mentioned above, applicable if there are infinitely many forms
of trust.

Even though Prolog’s syntax does not allow compound predicate expressions such as

(loves ∧ trusts)

(T ← trust(T))
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such expressions make sense.
Reflective Predicate Logic has, in contrast to HiLog and Ambivalent Logic, an unconven-

tional representation of variables. Its syntax adopts the paradigm “quantification makes vari-
ables”. Thanks to this paradigm, one can construct from the expression p(a, b) in which a and
b do not serve as variables, the expression ∀ a p(a, b) in which a serves as a variable and b

does not serve as variable. The paradigm “quantification makes variables” makes it easy to gen-
erate from an expression t(ann, bill) a quantified expression ∀ t t(ann, bill) which, as
observed above, is needed in proving implications in the manner of Natural Deduction (Gentzen
1934; Gentzen 1969; Gentzen 1964). The paradigm “quantification makes variables” eases meta-
programming as the following example shows. The formula

(believes(charlie ,itRains) ∧ believes(charlie ,¬itRains ))

(with the intended meaning that Charlie believes both, that it rains and that it does not rain) can
easily be used in generating the (arguably reasonable) assertion

(∃ itRains

(believes(charlie ,itRains)∧believes(charlie ,¬itRains )))
⇒ ∀ X believes(charlie , X)

(with the intended meaning that if Charlie believes something and its negation, then Charlie
believes everything) and also

∀ charlie (∃ itRains

(( believes(charlie ,itRains)∧believes(charlie ,¬itRains )))
⇒ ∀ X believes(charlie , X)

(with the intended meaning that everyone believing something and its negation believes every-
thing).

A price to pay for the paradigm “quantification makes variables” is that, in contrast to the
widespread logic programming practice, universal quantifications can no longer be kept implicit.
This is arguably a low price to pay since explicit universal quantifications are beneficial to pro-
gram readability and amount to variable declarations that, since ALGOL 58 (Perlis and Samelson
1958; Backus 1959) are considered a highly desirable feature of programming languages. Fur-
thermore, explicit quantifications make system predicates like Prolog’s var/1 that do not have a
declarative semantics replaceable by declarative syntax checks because the presence of explicit
universal quantifications distinguishes non-instantiated from instantiated variables. Another con-
sequence of the paradigm “quantification makes variables” is that Reflective Predicate Logic has
no open formulas. This is, however, not a restriction, since open formulas have no expressivity
in their own and serve only as components of closed formulas. It is even an advantage: Without
open formulas, models are simpler to define.

Reflective Predicate Logic can be seen as a late realisation, or rehabilitation, of Frege’s logic
(Frege 1879; Frege 1893; Frege 1903). Except for the representation of variables, the syntax
of Reflective Predicate Logic is a systematisation of the syntax of Frege’s logic (see Section
3). Therefore, the model theory given below can be seen as a model theory for Frege’s logic.
The name “Frege’s logic” would have been given to the logic of this article if not for Frege’s
anti-democratic and anti-Semitic views.

This article is structured as follows: Section 1 is this introduction. Section 2 considers a few
meta-programs that motivate requirements to formalisations of meta-programming. Section 3
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reports on related work. Section 4 recalls why predicativity has been sought for and why im-
predicative atoms are acceptable. Section 5 defines the syntax of Reflective Predicate Logic that
allows impredicative atoms under the paradigm “quantification makes variables”. Section 6 dis-
cusses expressing the Barber and Russell’s Paradoxes in Reflective Predicate Logic. Section 7
gives a variant test for Reflective Predicate Logic expressions that is needed for the model theory
of Reflective Predicate Logic. Section 8 defines a model theory for Reflective Predicate Logic.
Section 9 paves the way to the following section by recalling that symbols can be overloaded
(as it is called in programming) in classical predicate logic languages. Section 10 shows that
Reflective Predicate Logic is a conservative extension of first-order logic. Section 11 concludes
the article by discussing its contributions and giving perspectives for further work. A brief intro-
duction into Frege’s logic is given in an appendix.

The main contributions of this article are as follows:

1. A discussion of how Prolog-style meta-programming relates to Frege’s logic, type theory,
impredicativity, and Russell’s Paradox of self-reflection.

2. A formalisation of meta-programming which is simple and a conservative extension of
first-order logic.

3. A model theory realising Frege’s initial intuition that impredicative, or reflective, predi-
cates can be accommodated in a predicate logic.

2 Requirements to Formalisations of Meta-Programming

This section introduces two Prolog meta-programs so as to stress some aspects of meta-programm-
ing. The first meta-program is the well-known program maplist (Sterling and Shapiro 1994;
O’Keefe 1990):

maplist(_, [], []).

maplist(P, [X|Xs], [Y|Ys]) :-

call(P, X, Y),

maplist(P, Xs , Ys).

The third argument of maplist is the list obtained by applying the first argument of maplist, a
binary predicate P, to each element of the second argument of maplist which is expected to be
a list. If twice/2 is defined as:

twice(X, Y) :- Y is 2 * X.

then maplist(twice, [0,1,2], [0,2,4]) holds. maplist is a meta-program because of
the Prolog expression call(P, X, Y) which builds from bindings of the variables P and X like
P = twice and X = 1 a fact like twice(1, Y) and evaluates it. If the program maplist would
be seen as a set of classical predicate logic clauses, then call(P, X, Y) would be expressed as
P(X, Y), the variable P would be a second-order variable because it ranges over predicate sym-
bols (like twice) and the other variables would be first-order variables because they range over
first-order terms (like integers or lists of integers). The semantics of the meta-program maplist

can be conveyed by an infinite set of ground atoms such as:

maplist(twice , [0,1,2], [0,2,4])

maplist(length , [[a], [b,c]], [1,2])

maplist(reverse , [[a,b], [c,d,e]], [[b,a], [e,d,c]])
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The semantics of many, but not all, meta-programs can be similarly conveyed by ground atoms.
The second example is a meta-program the semantics of which is not appropriately conveyed

by ground atoms:

studyProgram(mathematics ).

studyProgram(computing ).

syllabus(mathematics , logic ).

syllabus(computing , logic ).

syllabus(computing , compilers ).

enrolled(student(anna), mathematics ).

enrolled(student(ben), computing ).

attends(anna , logic).

attends(ben , compilers ).

student(X) :- enrolled(student(X), _)

course(C) :- syllabus(_, C).

forall(R, F) :- not (R, not F).

The facts specify two study programs, their syllabi, the enrolments of students in study programs
and the courses’ attendance. The clauses with heads student(S) and course(C) extract the
students’ names and courses’ titles respectively from the enrolments and syllabi. The clause with
head forall(R, F) serves to check properties like whether all mathematics students attend the
course on logic:

forall(enrolled(student(S), mathematics),

attends(S, logic)

)

or whether all students attend all the courses listed in their study programs’ syllabi:

forall(enrolled(student(S), P),

forall(syllabus(P, C), attends(S, C)

)

)

forall is a meta-program because during its evaluation its arguments R and F are themselves
evaluated. In the clause defining forall, the left occurrences of R and F correspond to classical
logic terms, while the right occurrences of the same variables correspond to classical logic for-
mulas. forall is a well-known Prolog meta-program which implements the failure-driven loop
already mentioned in the introduction. It is representative of reflection in meta-programming,
that is, the expression and the processing of formulas in meta-programs. The evaluation of for
example

forall(p(X), q(X))



In Praise of Impredicativity: A Contribution to the Formalisation of Meta-Programming 7

consists in a search for an instance of p(X) without corresponding instance of q(X). If the search
fails, then the evaluation succeeds. Thus, the evaluation of

forall(p(X), q(X))

can be conveyed in classical logic by the formula:

¬∃X (p(X) ∧ ¬q(X))

which, in classical logic, is logically equivalent to:

∀X (p(X) ⇒ q(X))

As a consequence, the instance of the clause defining the predicate forall:

forall(p(X), q(X)) :- not (p(X), not q(X)).

corresponds to the classical logic formula

(∀X (p(X) ⇒ q(X)) ⇒ ∀Y forall(p(Y), q(Y)))

(in which, forall is, like in the Prolog program, a predicate and X and Y are distinct variables)
but does not correspond to the universal closure of the aforementioned clause instance:

∀X (p(X) ⇒ q(X)) ⇒ forall(p(X), q(X)))

(in which only one variable occurs). As a consequence, ground instances of the meta-program

forall(R, F) :- not (R, not F).

like

forall(p(a), q(a))

do not convey that meta-progam’s semantics. Non-ground instances like

forall(p(X), q(X))

are necessary to properly convey the semantics of forall.
In this, forall is not a rare exception. Another example is the meta-program hasSingVar(C)

that checks whether a clause C contains at least one singleton variable. Its semantics cannot be
described by ground instances like:

hasSingVar(p(a) :- q(a, b))

Indeed, such a ground instance does not make sense. In contrast, a non-ground expression

hasSingVar(p(X) :- q(X, Y))

does convey the semantics of the meta-program hasSingVar(C). More generally, the semantics
of many reflective meta-programs, of many meta-programs performing program analyses and
of meta-programs generating improved program versions cannot be properly expressed by the
ground expressions of standard Herbrand interpretations.

A non-ground expression like the aforementioned one used for conveying a meta-program’s
semantics does not stand for the set of its ground instances. Thus, an explicit quantification like
in

hasSingVar(∀ X ∀ Y p(X) :- q(X, Y))
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better conveys the semantics of meta-programs. Conveying meta-programs’ semantics with such
non-ground expressions generalises Herbrand interpretations.

Summing up, three aspects of meta-programming have been stressed in this section:

1. Self-reflective predicates: Some meta-predicates are self-reflective in the sense that they
can occur within their own arguments like forall in:

forall(enrolled(student(S), P),

forall(syllabus(P, C), attends(S, C)

)

)

2. Confounding of object and meta-variables: Some meta-programs contain occurrences of
a same variable where classical logic expec ts a term and where classical logic expects a
formula or a predicate like in:

forall(R, F) :- not (R, not F)

3. Need for generalised Herbrand interpretations: The semantics of some meta-programs
like forall and hasSingVar(C) is not properly conveyed by the ground atoms of stan-
dard Herbrand interpretations. It is appropriately conveyed by generalised Herbrand inter-
pretations specified by non-ground and quantified expressions.

In the following section, the adquacy of formalisations of meta-programming is assessed by
referring to the aforementioned three aspects of meta-programming.

3 Related Work

This article relates to the many formalisations of meta-programming that have been proposed.
These formalisations are of three kinds:

• Formalisations interpreting meta-programs as higher-order theories
• Formalisations interpreting meta-programs as first-order theories
• Formalisations interpreting meta-programs as theories in non-classical logics

The formalisations of meta-programming all relate to type theory. Therefore type theory is dis-
cussed below before the formalisations of meta-programming. As usual, the phrase “type theory”
is used to refer either to the research field devoted to type theories or to a given type theory. This
article also relates to reflection in computing, knowledge representation and logic and, because
of examples it mentions, logics of knowledge and belief.

Meta-programming has been considered since the early days of logic programming. It is dis-
cussed in the article (Kowalski 1979; Bowen and Kowalski 1982). Meta-programming in Pro-
log is addressed among others in the works (Clocksin and Mellish 1981; Sterling and Shapiro
1994; O’Keefe 1990). However, the standard formalisation of logic programming (Lloyd 1987)
does not cover meta-programming. The articles (Barklund 1995; Costantini 2002) survey meta-
programming.

Prolog’s extremely permissive approach to meta-programming goes back to a fruitful disre-
gard by Alain Colmerauer and Philippe Roussel, Prolog’s designers, of the relationship between
meta-programming, higher-order logic, impredicativity, and type theory and to a time at which
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the undecidability of unification in second-order logic (Levy and Veanes 2000) and third-order
logic (Huet 1976) as well as Damas-Hindley-Milner type systems (Hindley 1969; Milner 1978;
Damas and Milner 1982; Damas 1985) were unknown or not widely known. Prolog’s permissive
approach to meta-programming is very useful in practice, as the following examples demonstrate:

• A unary predicate ranging over all unary predicates (including itself) can be used for (static
or dynamic) type checking.

• A predicate occurring in an argument of itself can be used for applying an optimisation to
the very predicate specifying this optimisation.

• Formulas occurring in places where classical predicate logic expect terms are useful as it
is shown in the articles (Kowalski 1979; Kowalski and Kim 1991), in the introduction, and
in the previous section.

Type theory. The first type theory, or theory of types, was developed by Bertrand Russell as
a correction of Gottlob Frege’s Logic (Frege 1879; Frege 1893; Frege 1903), the archetype of
classical predicate logic. Frege’s logic is discussed below in Sections 4 and 6 and its salient
aspects are recalled in an appendix. Frege’s logic is reflective in the sense that a predicate can
apply to a formula or to a predicate, including itself. In Frege’s logic, a unary predicate r holding
of all unary predicates that apply to themselves can be defined as follows:

∀x (r(x) ⇔ x(x))

As a consequence, Russell’s Paradox (Link 2004), which is discussed in more details below in
Section 6, can be expressed in Frege’s logic. In Frege’s logic, some predicates cannot be inter-
preted as sets as the following set of atomic formulas illustrates in which a and b are individual
constants and p and q are predicates:

{p(a), p(b), q(a), q(q)}

If the constants a and b are interpreted as 1 and 2 respectively, then the predicate p can be
interpreted as the set {1,2} but the predicate q cannot be interpreted as a set because a set cannot
be one of its own elements. Russell developed a type theory so as to avoid “impredicative atoms”
like q(q) and to preclude paradoxes of self-reflexivity like the paradox bearing his name.

Russell successively developed various type theories before publishing with Alfred North
Whitehead in Principia Mathematica (Whitehead and Russell 1913) the “Ramified Theory of
Types”. Leon Chwistek and Frank P. Ramsey later simplified the Ramified Theory of Types yield-
ing the theory now known as the “Simple Type Theory” or “Theory of Simple Types” (Chwistek
1921; Ramsey 1926). Aiming at avoiding paradoxes of the untyped lambda calculus (Church
1932), Alonzo Church re-expressed the Simple Type Theory as a theory which is now com-
monly called “Church’s Simply Typed Lambda Calculus”, or λ→, (Church 1940; Barendregt
1992), a typed variation (with a single type constructor, →, for function types) of the untyped
lambda calculus.

Every type theory requires that every symbol, among others every variable, and every com-
pound expression have a single type like first-order term, first-order predicate, first-order formula,
second-order predicate, second-order formula, etc. In other words, a type theory imposes a strong
typing. This strong typing is Russell’s treatment of impredicative atoms like q(q) and of para-
doxes of self-reflexivity among others Russell’s Paradox: It precludes them. Endowed with, and
modified by, the strong typing of a type theory, Frege’s logic became classical predicate logic.
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Referring to the typing policy of classical predicate logic as a “strong typing” is an anachro-
nism. Indeed that denomination has been introduced only in 1974 in the article (Liskov and Zilles
1974) where it is defined as follows: “Whenever an object is passed from a calling function to
a called function, its type must be compatible with the type declared in the called function.”
This definition perfectly describes the requirement of a type theory if “object” is understood as
“argument” and “function” as “predicate or function”, which justifies the anachronism.

A strong typing in the manner of, but different from, the type theory of classical predicate
logic has been shown later to be useful for preventing programming errors (Cardelli and Wegner
1985). This has resulted in “type systems” that assign properties to program constructs (Pierce
2002; Cardelli 2004). These properties and type systems depart from the “orders” or “types” of
the aforementioned type theories.

Remarkable achievements in type theory (among others the Curry-Howard isomorphism, in-
ductive types and dependent types) have given type theories an aura of indispensability. This
article shows that type theories can be dispensed with: It gives a model theory to a systematisa-
tion of Frege’s logic, Reflective Predicate Logic, a logic without type theory, yielding a simple
and intuitive formalisation of Prolog-style meta-programming.

Formalisations interpreting meta-programs as higher-order theories. Some logic programming
languages, most prominently λProlog (Miller and Nadathur 1988; Miller and Nadathur 2012),
Elf (Pfenning 1991) and Twelf (Pfenning and Schürmann 1999), are formalised in classical
higher-order predicate logics, syntactical restrictions ensuring necessary properties like the de-
cidability of unification.

λProlog is based on the Simply Typed Lambda Calculus (Church 1940; Barendregt 1992). Elf
(Pfenning 1991) and Twelf (Pfenning and Schürmann 1999) have been designed conforming to
the Edinburgh Logical Framework LF (Harper et al. 1993), a predicative language for a uniform
representation of the syntax, the inference rules, and the proofs of predicative logics. LF is based
on intuitionistic logic (Moschovakis 2015) and on the Simply Typed Lambda Calculus (Church
1940; Barendregt 1992). Surprisingly, LF represents object variables by meta-variables (Harper
et al. 1993, p. 145):

“[. . .] substitution in the logical system is encoded as substitution in LF (which relies on the identification
of object-logic variables with the variables of LF).”

This identification, or confounding, of object and meta-variables is, in fact, precluded by the
Simply Typed Lambda Calculus on which LF is based (as it is precluded by any other type
theory). This article can be seen as a justification for LF’s confounding of object and meta-
variables.

William W. Wadge has proposed in the article (Wadge 1991) a fragment of higher-order Horn
logic called “definitional programs” as a meta-programming language “based on Church’s Sim-
ple Theory of Types” (Wadge 1991), that is, the Simply Typed Lambda Calculus or λ→ (Church
1940; Barendregt 1992). The particularity of Wadge’s language is that its semantics fulfils a
condition called “extensionality” that makes predicates with a same extension interchangeable.
Extensionality is justified in the article (Wadge 1991) with the following example:

p(a).

q(a).

phi(p).
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The predicates p and q are interpreted in the article (Wadge 1991; Charalambidis et al. 2013) as
first-order predicates. phi is a meta-program interpreted in the article (Wadge 1991; Charalam-
bidis et al. 2013) as a second-order predicate which applies to the predicate p. The argument given
in the article (Wadge 1991) for justifying extensionality is that phi(q) should hold like phi(p)
because p and q have the same extension. Marc Bezem has given in the article (Bezem 1999)
under the name of “good programs” a first decidable sufficient condition for extensionality as an
improvement over Wadge’s “definitional programs”, and under the name of “hoapata programs”
(Bezem 2001) a second decidable sufficient condition for extensionality as an improvement of
the “good programs”.

Extensionality is a questionable requirement because it abstracts out the algorithmic aspects
of programs as the following example shows. Replace in the aforementioned example p by the
tail-recursive program reverse and q be the non-tail-recursive program naivereverse (Ster-
ling and Shapiro 1994; O’Keefe 1990). Recall that reverse and naivereverse have the same
extension. Assume that the meta-predicate phi is a versioning predicate final distinguishing
final implementations from less efficient preliminary versions. Since final(reverse) holds,
final(naivereverse) must, by virtue of extensionality, also hold. Clearly, this is not desir-
able.

All formalisations of meta-programs as higher-order theories adhere to the strong typing of
classical predicate logic: They strictly distinguish between terms and formulas and therefore
cannot express meta-programs like

forall(R, F) :- not (R, not F).

r(X) :- X(X).

in which some variables stand for both a term and a formula or a predicate. All formalisations
interpreting meta-programs as higher-order theories preclude self-reflective predicates and the
confounding of object and meta-variables of Prolog-style meta-programming. The formalisa-
tions interpreting meta-programs as higher-order theories do not provide generalised Herbrand
interpretations specified by non-ground and quantified expressions. Thus, the formalisations of
meta-programs as higher-order theories do not fulfil the requirements stressed at the end of Sec-
tion 2.

Formalisations interpreting meta-programs as first-order theories are based on reifying first-
order formulas by encoding them as first-order terms. The advantage of the approach over formal-
isations of meta-programming in higher-order logic is that it makes possible reflective, including
self-reflective, formulas. Its drawbacks are the encodings that make programs complicated and
less intuitive than their Prolog-style counterparts. The encodings upon which formalisations of
meta-programming are based are called ”naming relations” or ”naming schemes”. A formalisa-
tion of meta-programming in first-order logic is largely, if not fully, characterised by its naming
relation.

A naming relation refers to two first-order languages, an object language LO and a meta-
language LM , for encoding terms, especially variables, and formulas of LO as terms of LM .
Some naming relations encode all terms and all formulas of LO, others encode only some of
the terms and formulas of LO. Naming relations typically encode variables of LO as variable-
free, or ground, terms of LM so as to avoid the confounding of object and meta-variables of
Prolog-style meta-programming which, as it is recalled above, is precluded by the strong typing
of classical predicate logic. Three kinds of naming relations have been considered:
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• A structure-hiding naming relation encodes the structure of an object formula as a meta-
term the structure of which does not reflect that of the formula.

• A quotation encodes an object formula F without conveying its structure, typically as a
meta-language constant usually denoted pFq.

• A structure-preserving naming relation encodes a formula as a meta-term the structure of
which reflects that of the formula.

Kurt Gödel and Alfred Tarski first used naming relations for encoding self-reflective formulas
in first-order logic that, because of classical predicate logic’s strong typing, cannot be directly
expressed in that logic. Gödel used the following naming relation (Gödel 1931): If F is the object
language formula represented as s1s2 . . .sn where the si are non-negative integers representing the
object language symbols, then F is encoded as the non-negative integer G(F) = ps1

1 × ps2
2 . . .×

psn
n , the Gödel number of F , where p1 = 2, p2 = 3, p3 = 5, . . . is the ordered sequence of the prime

numbers. Because of the Unique-Prime-Factorization theorem, a formula F can be reconstructed
from its Gödel number G(F), that is, the naming relation is structure-hiding. Shortly later, Tarski
used quotations for expressing his “Schema T ” (Tarski 1935), that is, the requirement that every
theory of truth have a truth predicate T fulfilling (T (pFq)⇔ F) for all formulas F .

The first reference to a naming relation in logic programming is probably the article (Bowen
and Kowalski 1982). In that article, provability of an object language L is expressed in a meta-
language M with a predicate Demo implementing SLD resolution (Kowalski 1973). Demo is
inspired from Gödel’s predicate Bew (Gödel 1931), short for Beweis, that is, proof in German.

Under the naming relation of (Bowen and Kowalski 1982), the formulas of the object language
L are encoded as terms of the meta-language M. The atom p(X, bill) is for example encoded
as the term atom(pred(1), [var(1), constant(212)]) in which pred(1), var(1), and
constant(212) are variable-free, or ground, terms of M. Thus, the naming relation considered
in the article (Bowen and Kowalski 1982) is structure-preserving. Following a widespread logic
programming practice, in both L and M commas denote conjunctions, universal quantifications
are implicit and existential quantifications are not used. As a consequence, the article (Bowen
and Kowalski 1982) can avoid to address that a naming relation in fact requires to encode in the
meta-language the logical connectives and quantifiers of the object language.

In the article (Bowen and Kowalski 1982), the amalgamation of an object language L and a
meta-language M is defined as “L and M”, meaning L∪M, equipped with:

• a naming relation which associates with every expression of L a variable-free term of M,
• a representation of `L in M by means of a predicate Demo specified in M as a theory Pr,
• the “linking rules”

Pr `M Demo(A′,B′)
A `L B

A `L B
Pr `M Demo(A′,B′)

in which F ′ denotes the encoding of F under the naming relation.

The linking, or reflection or attachment, rules have been proposed in the article (Weyhrauch
1980), a formalisation of meta-level reasoning. They correspond to the correctness and com-
pleteness of Gödel’s predicate Bew (Gödel 1931) with respect to provability. The article (Bowen
and Kowalski 1982) states that “the amalgamation of L and M is a conservative extension in the
sense that no sentence is provable in the amalgamation that is not in either L or M.” This state-
ment disregards sentences of the amalgamation that may contain symbols of L but not of M as
well as symbols of M but not of L and therefore that are sentences of neither L nor M.
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The article (Bowen and Kowalski 1982) further states that “the amalgamation allows to have
L = M, where the two languages are identical” meaning that a language may contain an encoding
of its own formulas as terms.

The article (Barklund et al. 1995) formalises naming relations as rewrite systems and investi-
gates the expressivity of various naming relations. The article (van Harmelen 1992) argues that
naming relations can encode, together with an object formula, pragmatic and semantic infor-
mation resulting in a more efficient (meta-language) version of the original formula. Naming
relations have indeed been defined for achieving such “compilations” what explains their large
number and, as a consequence, the large number of formalisations of meta-programming in first-
order logic: metaProlog (Bowen 1985; Bowen and Weinberg 1985), MOL (Eshghi 1986), the
language proposed by Barklund in the article (Barklund 1989), Reflective Prolog (Costantini
and Lanzarone 1989; Costantini and Lanzarone 1994), R-Prolog∗ (Sugano 1989; Sugano 1990),
’LOG (spoken “quotelog”) (Cervesato and Rossi 1992), Gödel (Hill and Lloyd 1994), the lan-
guage proposed by Higgins in the article (Higgins 1996) and the generalisation of Reflective
Prolog proposed in the article (Barklund et al. 2000).

Most formalisations of meta-programming in first-order logic make use of naming relations
that are structure-preserving because they are “compositional”, that is, recursively defined on the
expressions’ structures, yielding names (or encodings) satisfying

f (g(a),b)≈ f (g(a),b)

where e denote the encoding of an expression e. The approximation ≈ cannot always be re-
placed by an equality because of cases like the aforementioned one (Bowen and Kowalski 1982):
p(t1, t2) = atom(p, [t1, t2]) 6= p(t1, t2). Some formalisations of meta-programming in first-order
logic make use not only of structure-preserving naming relations but also of quotations giv-
ing compound expressions short “names” that, in general, are individual constants of the meta-
language. Some other formalisations of meta-programming in first-order logic make use only
of quotations. Note that the denomination “quotation” is often used in the meta-programming
literature in the sense of “structure-preserving naming relation” instead of the aforementioned
sense of encodings of formulas that hide the formulas’ structures. Most formalisations of meta-
programming in first-order logic are amalgamations of object and meta-languages in the sense
of (Bowen and Kowalski 1982) recalled above.

metaProlog (Bowen 1985; Bowen and Weinberg 1985) has two naming relations such that
“constants act as names of themselves. For non-constant items, metaProlog provides structural or
non-structural names (and sometimes both), where the former are compound terms whose struc-
ture reflects the syntactic structure of the syntactic item they name.” metaProlog has “metalevel
names” that are terms used for representing object programs. Object variables are represented in
metaProlog as constants of the meta-language. metaProlog treats theories, or programs, as named
entities that, thanks to the aforementioned naming relation can be referred to in a program. This
makes possible that, in metaProlog, goals are proven in reference to a named theory and up-
dates are formalised in logic. metaProlog has an explicit quantification that avoids problems in
updating theories similar to those stressed above in Section 2 while discussing the semantics of
the meta-program forall. metaProlog provides “methods for moving between a name and the
thing it names [. . .] analogous to univ (=..) of ordinary Prolog.” Thus, in metaProlog, an object
language expression can be obtained from its encoding as a meta-term.

MOL (Eshghi 1986) has a structure-preserving naming relation and an involved treatment
of reflection through “inheritance and scoping axioms”: An inheritance axiom can be used to
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express that an object-level program P contains the object-level program Q; a scoping axiom is
used to express that if a ground assertion can be proved from the meta-theory M, then this ground
assertion is part of a “description” of an object-level program P, that is, that M is a meta-theory
for P. In MOL, an object language expression can be obtained from its encoding as a meta-
term. MOL supports self-reflection called “self-reference” in the thesis (Eshghi 1986). This thesis
shows how reflection and self-reflection can be used in meta-programming and for expressing
“non-floundering negation as failure” and a “declarative control [of program execution] without
jeopardising the soundness of the interpreter.”

The language proposed by Barklund in the article (Barklund 1989) has a naming relation for
“a naming of Prolog formulas and terms as Prolog terms” built from reserved function symbols
and constants “to create a practical and logically appealing language for reasoning about terms,
programs.” In this language, an object language expression can be obtained from its encoding as
a meta-term.

Reflective Prolog (Costantini and Lanzarone 1989; Costantini and Lanzarone 1994) has a nam-
ing relation, called “quotation” in the article, that for example encodes, or “names”, the term
f(a) as function(functor({f}), arity(1), args(["a"])). The article mentions that “it
is possible to build names of names of names, and so on” but does not explain the use of this
feature. Reflection is well supported by Reflective Prolog through an “unquotation mechanism”
realised by “a distinguished truth predicate which relates names to what is named.” Reflective
Prolog is based on an amalgamation of object and meta-languages that are disjoint in the sense
that they have no symbols in common. As a consequence, “language and metalanguage are
amalgamated in a non-conservative extension”: “Statements are provable in the amalgamated
language, that are provable neither in the language nor in the metalanguage alone.” Reflective
Prolog has an “extended resolution procedure which automatically switches the context between
levels” which “relieves the programmer from having to explicitly deal with control aspects of the
inference process.” Reflective Prolog’s “extended resolution is proved sound and complete with
respect to the least reflective Herbrand model.”

R-Prolog∗ (Sugano 1989; Sugano 1990) has a naming relation called “quotation” and denoted
à la Lisp (McCarthy and Levin 1965; Siklóssy 1976) with a single quote: If t = f(a, b),
then ’t = ’f(’a, ’b). R-Prolog∗ furthermore has predicates ↑ (spoken “up”) and ↓ (spoken
“down”) such that ↑t = ’t and ↓’t = t. Thus, in R-Prolog∗, an object language expression
can be obtained from its encoding as a meta-term. R-Prolog∗ reifies not only object terms and
formulas but also substitutions so as to express much of the language’s runtime system in its own
meta-language. The semantics of R-Prolog∗ is based on an “extended notion of interpretations
and models” that departs from the usual semantics of logic programs based on a fixpoint of the
immediate consequence operator or Herbrand interpretations: “Because computational reflection
is a procedural notion, we cannot adopt the usual declarative semantics.”

’LOG (Cervesato and Rossi 1992) has two naming relations associating “two different but
related meta-representations with every syntactic object of the language, from characters to pro-
grams”, “a constant name and a structured ground term, called the structural representation.” This
double naming relation generalises those of (Martelli and Rossi 1988; Rossi 1989; Rossi 1992)
that apply only to programs. ’LOG has an operator <=> that relates the name and the structural
representation of each syntactic object. ’LOG has no “mechanism which would allow a meta-
representation to be obtained from the object it denotes or vice versa.” The article stresses that
“this differentiates (both in aims and in nature) our proposal from others, such as Reflective Pro-
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log and R-Prolog∗, that, on the contrary, assume a reflection mechanism to be available, though
not visible at the user level.”

Gödel (Hill and Lloyd 1988; Hill and Lloyd 1994) is equipped with a strong typing system
distinguishing object language from meta-language expressions and a naming relation encoding
object language expressions as constants of the meta-language called “ground representations.”
Gödel’s naming relation is thus a quotation. Gödel makes the encoding of object language ex-
pressions by the naming relation, “explicitly available to the programmer.” Gödel expresses much
of the language’s deduction system in its meta-language: It reifies among other the object lan-
guage’s provability. Gödel has no mechanism for obtaining an object expression from its “ground
representation”, that is, its encoding in the meta-language. Gödel is a rare case of a formalisa-
tion of meta-programming in first-order logic which is not an amalgamation of the object and
meta-language in the sense of the article (Bowen and Kowalski 1982) recalled above.

Higgins has proposed in the article (Higgins 1996) a language relying on two naming relations
similar to those of ’LOG associating with every syntactic object a first-order “primitive name”
and a first-order “structured name”: “We have names of symbols, terms, clauses, and sets of
clauses.” The procedural semantics of Higging’s language is “a resolution rule and a meta-level
to object-level reflection rule.” In other words, the language’s procedural semantics obtains an
object language expression from its encoding as a meta-term.

The articles (Barklund et al. 1995; Barklund et al. 1995; Barklund et al. 2000) generalise Re-
flective Prolog (Costantini and Lanzarone 1989; Costantini and Lanzarone 1994) into a metalan-
guage similar in spirit to LF (Harper et al. 1993), Elf (Pfenning 1991), and Twelf (Pfenning and
Schürmann 1999) which offers a sublanguage for expressing various kinds of naming relations
(or encodings), primitives for handling naming relations, and a metalanguage of Horn clauses
for expressing object-level inference rules. The article (Barklund et al. 1995) considers eight
previously proposed naming relations (or encodings) that are compositional in the sense that the
name of a compound expression is built from its components’ names. The article submits that
naming relations should be compositional and shows that compositional naming relations can be
expressed as rewrite systems provided the systems preserve truth (and falsity), are confluent and
are terminating. The article (Barklund et al. 1995) extends the generalisation of Reflective Pro-
log to SLD Resolution. The article (Barklund et al. 2000) further specifies a fixpoint semantics
for definite programs in the proposed metalanguage, establishes the soundness and completeness
of SLD resolution with respect to that fixpoint semantics and gives three examples of meta-
programs one of which is a re-implementation of Reflective Prolog (Costantini and Lanzarone
1989; Costantini and Lanzarone 1994).

All formalisations interpreting meta-programs as first-order theories adhere to the strong typ-
ing of classical predicate logic: They strictly distinguish between terms and formulas. As a con-
sequence, they cannot directly express meta-programs in which some variables stand for both a
term and a formula or a predicate and self-reflective predicates or formulas like:

forall(R, F) :- not (R, not F).

r(X) :- X(X).

However, through naming relations, that encode object expressions as meta-terms, and object
variables as non-variable meta-terms, they can express such examples.

Whether such (encoded) examples can be efficiently processed depends among other things on
whether the encoding is invertible, that is, whether a decoding primitive is available that returns
from a code the object language expression its encodes and whether such a decoding primitive
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can be efficiently implemented. If the encoding is efficiently invertible, then adjustments to the
deduction methods suffice to implement a language that handles meta-programs by relying on
naming relations. metaProlog (Bowen 1985; Bowen and Weinberg 1985), MOL (Eshghi 1986),
the language proposed by Barklund in the article (Barklund 1989), Reflective Prolog (Costantini
and Lanzarone 1989; Costantini and Lanzarone 1994), R-Prolog∗ (Sugano 1989; Sugano 1990),
and the language proposed by Higgins in the article (Higgins 1996) have efficiently invertible
naming relations. ’LOG (Cervesato and Rossi 1992) and Gödel (Hill and Lloyd 1994) do not
have invertible naming relations.

However, as many authors have observed, with a strong typing preventing the confound-
ing of object and meta-variables, much of the object language reasoning, among others uni-
fication, must be re-implemented in the meta-language (Schreye and Martens 1992; Kalsbeek
1993; Levi and Ramundo 1993; Barklund et al. 1994; Apt and Ben-Eliyahu 1996). Even if
such re-implementations are provided with a language, they are a burden to the programmers.
Furthermore, such re-implementations result in significant losses in efficiency. Finally, such re-
implementations are redundant since the object language’s reasoning is a special case of the
meta-language’s reasoning. These observations have triggered a debate dubbed “ground versus
non-ground representations” that revolves around the following question: If the theory requires
that object and meta-languages expressions, especially variables, be distinguished, then why are
well-working deduction systems possible that confound object and meta-variables? So far, the
debate was not settled. This article shows that the logic in which meta-programming is formalised
can be adapted to Prolog-style meta-programming giving a formal justification to the practice of
confounding object and meta-variables in deduction systems.

Summing up, the formalisations of meta-programs as first-order theories do fulfil the first
of the three requirements mentioned in Section 2: Through encodings, they can express self-
reflective predicates. However, they do not fulfil the second requirement of Section 2: They can-
not confound object and meta-variables. Some of these formalisations do not, other partly fulfil
the third requirement of Section 2: Those formalisations relying on non-ground encodings do not
have generalised Herbrand interpretations specified by non-ground atoms while those formalisa-
tions relying on ground encodings can express (ground encodings of) such atoms. Generalised
Herbrand interpretations with atoms including quantified formulas have not been considered by
the authors of formalisations of meta-programs as first-order theories.

Formalisations interpreting meta-programs as theories in non-classical logics adapt first-order
logic to fit Prolog-style meta-programming by giving up type theory, which makes reflective,
including self-reflective, formulas and the confounding of object and meta-variables possible.
A predicate logic without type theory has already been defined at the end of the 19th century:
Frege’s logic (Frege 1879; Frege 1893; Frege 1903), the precursor of classical predicate logic. A
brief presentation of Frege’s logic is given in an appendix. The following formula (see Section 2
above) that confounds object and meta-variables can be expressed in Frege’s logic:

∀ x (r(x) ⇔ x(x))

Modified by the addition of a type theory, Frege’s logic became classical predicate logic. Unsur-
prisingly, the formalisations of meta-programming in non-classical logics are closely related to
Frege’s logic.

The syntax of Frege’s logic has been defined before inductive definitions (and grammars as
formalisms easing the expression of inductive definitions) were established (see Section 4). As a
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consequence, Frege did not fully formalise expressions resulting from replacing in an expression
a subexpression by its definition according to his logic’s Basic Law V (see the appendix which
introduces into Frege’s logic). Consider for example the following definition of p:

(p ⇔ (q ∧ r))

Replacing p by its definition in p(a) results in the following expression with compound predi-
cate:

(q ∧ r)(a)

If q is defined by:

(q ⇔ r(b, c))

then replacing q by its definition in q(a) results in the following “multiple application:”

(r(b, c))(a)

“Multiple applications” are known from currying. Currying, common in Functional Program-
ming but rare in predicate logic, is used in automated deduction among other for implementing
efficient term indexes (Graf 1996). The aforementioned substitutions are not possible in first-
order logic because of its strong typing that precludes the predicate definitions they result from.
Indeed, since p, q and r are unary predicates, instead of for example (p ⇔ (q ∧ r)) first-
order logic would require:

∀ x (p(x) ⇔ (q(x) ∧ r(x)))

Frege’s logic has a proof calculus but no model theory. It was only in 1930 that Gödel would
introduce in his doctoral thesis (Gödel 1930) the concepts of interpretation and model in estab-
lishing the completeness of Frege’s proof calculus for a fragment of Frege’s logic, first-order
logic. Below, Section 5 gives Frege’s logic the systematised syntax discussed above (under the
paradigm “quantifications make variables”) and Section 8 a Herbrand-style model theory. This
results in a simple and intuitive formalisation of Prolog-style meta-programming.

HiLog (Chen et al. 1993) was the first formalisation of meta-programming in a non-classical
logic. At first, HiLog seems to be a formalisation in first-order logic because the article (Chen
et al. 1993) refers to a type theory and a naming relation. However, HiLog treats every symbol
(except connectives and quantifiers) as a predicate and maps it to both

• an “infinite tuple of functions” over the universe, one function of arity n for each n ∈ N
• an “infinite tuple of relations” over the universe, one relation of arity n for each n ∈ N

As a consequence, every HiLog expression built without connectives and quantifiers is, in the
sense of first-order logic, both a term and an atomic formula. Since every expression being of all
types amounts to no expressions being of any type and since a (standard) type theory assigns a
single type to an expression, HiLog can be seen as a logic without (standard) type theory. In the
article (Chen et al. 1993), a naming relation is used for encoding HiLog in first-order logic but
not for encoding formulas as terms in HiLog: Reflection in HiLog is achieved without naming
relation. As a consequence, HiLog can express meta-programs like the following (see Section 2)
without resorting to a naming relation:

forall(R, F) :- not (R, not F).

r(X) :- X(X).
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HiLog’s syntax is the Horn fragment with implicit universal quantifications of the aforemen-
tioned systematised syntax of Frege’s logic. Thus, though reflection is possible in HiLog, it is
limited to that fragment. The following statement (with the intended meaning that Ann believes
that it rains and the sun shines) cannot be expressed in HiLog because HiLog does not allow
connectives to occur within an atom:

believes(ann , (itRains ∧ theSunShines ))

However, the article (Chen et al. 1993) rightly claims that allowing connectives within atoms is
a minimal extension. The first of the following statements cannot be expressed in HiLog because
HiLog does not allow quantifiers within atoms while the second and the third of the following
statements can be expressed in HiLog through skolemisation:

believes(ann , ∃ x (logician(x) ∧ loves(x, ann)))

∃ x (logician(x) ∧ believes(ann , loves(x, ann)))

∃ x believes(ann , (logician(x) ∧ loves(x, ann)))

Note the difference between the three aforementioned statements: The first expresses that Ann
believes to be loved by a logician, the second expresses the existence of a logician Ann believes
to be loved by, the third expresses the existence of an entity Ann believes to be a logician who
loves her. In a world without logicians, the first statement can be fulfilled, the second not. In a
world without enough entities, the number of which might be limited by the axioms considered,
the first statement could be fulfilled and the third not. Such differences are significant in meta-
programming, especially in meta-programs performing program analyses. The requirement in a
module A for another module B should for example not be misinterpreted as stating the existence
of a module B. The article (Chen et al. 1993) states that “encoding formulas with quantified
variables would require introduction of lambda-abstraction which can be done but is out of the
scope of this paper.” It is correct that this can be done, though not through lambda-abstraction. It
has been done in the articles (Jiang 1994; Kalsbeek and Jiang 1995) in a manner, however, which
is not satisfying. An appropriate treatment of quantifiers within atoms is given below in Section
8.

HiLog has a Herbrand model theory that specifies the semantics of the meta-program maplist

(see Section 2) as a set of ground facts like

maplist(twice , [0,1,2], [0,2,4])

However, HiLog’s model theory is not satisfying for non-ground atoms like the following (see
Section 2):

forall(enrolled(student(S), P),

forall(syllabus(P, C), attends(S, C)

)

)

Indeed, HiLog’s model theory interprets such a non-ground atom as a set of ground atoms. Recall
the need for generalised Herbrand models specified by non-ground and quantified expressions
stressed at the end of Section 2. The article (Chen et al. 1993) claims that “under ’reasonable’
assumptions” a HiLog language can be given a “classical semantics.” Clearly, this is only pos-
sible by equipping the language with a type theory that would keep apart terms from formulas.
This would considerably restrict the language’s meta-programming capability and, in fact, ruin
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HiLog’s objectives. HiLog has a specific treatment of equality based on paramodulation (Robin-
son and Wos 1968; Robinson and Wos 1969; Robinson and Voronkov 2001). Finally, the article
(Chen et al. 1993) neither mentions that Russell’s Paradox (see below Section 6) is expressible
in HiLog nor refers to Frege’s logic.

Ambivalent Logic (Jiang 1994; Kalsbeek and Jiang 1995) is a second formalisation of meta-
programming in a non-classical logic. It is explicitly defined as a non-classical predicate logic
that does not distinguish between terms and formulas. Thus, even though the articles (Jiang
1994; Kalsbeek and Jiang 1995) do not mention type theory, they nonetheless specify a logic
without type theory. The syntax of Ambivalent Logic is the aforementioned systematised syntax
of Frege’s logic (a few additional parentheses, necessary for disambiguation, are missing in its
definition). Ambivalent Logic has a Herbrand-style model theory in which the meta-program
maplist (see Section 2) is expressed as a set ground facts like:

maplist(twice , [0,1,2], [0,2,4])

Ambivalent Logic can express meta-programs like the following (see Section 2) without resorting
to a naming relation:

forall(R, F) :- not (R, not F).

r(X) :- X(X).

The treatment in Ambivalent Logic’s model theory of existentially quantified formulas, in con-
trast to that of HiLog, is not based on skolemisation. As a consequence, as stated in the article
(Kalsbeek and Jiang 1995):

“[. . .] unlike in Hilog, both ∃p∀x(p(x)↔¬q(x)) and ∃p∀x(p(x)↔∃u(q(u)(x)) are valid in AL [Ambi-
valent Logic].” (Kalsbeek and Jiang 1995, p. 55)

In contrast to HiLog, Ambivalent Logic can express as follows that Ann believes to be loved by
a logician:

believes(ann , ∃ x (logician(x) ∧ loves(x, ann)))

The treatment in Ambivalent Logic’s model theory of non-ground atoms like:

forall(p(X), q(X))

forall(p(Y), q(Y))

or

believes(bill , ∀ X believes(ann , X))

believes(bill , ∀ Y believes(ann , Y))

is not satisfying. As pointed out in the articles (Jiang 1994; Kalsbeek and Jiang 1995), in a same
Ambivalent Logic interpretation, the one variant expression of each example can be true and the
other false:

“[. . .] It should be noted that ‘similar’ expressions like, for example, ∀x. f (x) and ∀y. f (y) constitute
different, and unrelated, objects in the domains of models. That is, the truth values of the closed expressions
t(∀x. f (x)) and t(∀y. f (y)) need not be the same.” (Kalsbeek and Jiang 1995, p. 38)

In contrast to HiLog, Ambivalent Logic has no specific treatment of equality. Thus, an Ambiva-
lent Logic theory can, like a classical predicate logic theory, have normal interpretations that
interpret the equality predicate = as the equality relation as well as other interpretations that in-
terpret it as an equivalence relation which might be useful in logic programming or for knowledge
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representation. The article (Kalsbeek and Jiang 1995) discusses a property called “opaqueness”
and states:

“[. . .] the schema ∀x∀y.(x = y→ φ(x)↔ φ(y)), and also ∀x∀y∀z.(x = y→ x(z)↔ y(z)) [hold in HiLog].
In contrast, in the context of AL [Ambivalent Logic] we have a choice between validating the above schema
or not, by either taking all of ET [the equality axioms] as the equality theory, or restricting the equality to
ET(I,II) [the equality axioms I and II]. Thus, unlike AL [Ambivalent Logic], HiLog is not appropriate for
intensional logics, where opaqueness is usually desirable.” (Kalsbeek and Jiang 1995, p. 55)

Finally, the articles (Jiang 1994; Kalsbeek and Jiang 1995) do not mention that Russell’s Paradox
(see below Section 6) is expressible in Ambivalent Logic and do not refer to Frege’s logic.

Like Ambivalent Logic, Reflective Predicate Logic has a more expressible syntax than HiLog
that allows quantifiers and connectives to appear within atoms. The syntaxes of Ambivalent Logic
and Reflective Predicate Logic are systematisations of the syntax of Frege’s logic that differ only
in their representations of variables. The Herbrand-style model theory of Reflective Predicate
Logic is similar to those of HiLog and Ambivalent Logic. It is more general than that of HiLog
and corrects a serious deficiency of that of Ambivalent Logic by ensuring that in an interpretation,
variant expressions are identically interpreted. Like the model theories of classical predicate logic
and Ambivalent Logic, and unlike the model theory of HiLog, the model theory of Reflective
Predicate Logic is not constrained to a specific treatment of equality.

HiLog, Ambivalent Logic and Reflective Predicate Logic fulfil the first two requirements to
formalisations of meta-programming mentioned in Section 2: They can express self-reflective
predicates and they confound object and meta-variables. HiLog does not fulfil the third require-
ment of Section 2: It has no generalised Herbrand interpretations specified by non-ground and
quantified expressions. Ambivalent Logic does fulfil this third requirement although in an unsat-
isfying manner. Reflective Predicate Logic corrects this deficiency of Ambivalent Logic.

Reflection in computing, knowledge representation, and logic. A language is reflective if state-
ments can be expressed in this language that refer to themselves or other statements of the same
language. Reflection is ubiquitous in computing: The program-as-data paradigm is a form of
reflection, the von Neumann architecture is reflective, some programming languages are reflec-
tive, reflection is used for proving undecidability results, reflection is often needed in knowledge
representation because introspective capabilities are often required from intelligent software and
robots, etc.

Formalisations of meta-programming in first-order logic are closely related to reflection in
knowledge representation (Weyhrauch 1980; Perlis 1985; Aiello et al. 1986; Perlis 1988a; Perlis
1988b; van Harmelen 1989; Benjamin 1990).

Logics of knowledge and belief. The examples referring to the beliefs of agents given in this
article could be expressed in a logic of knowledge and belief (Hintikka 1964; Halpern and Moses
1985; Lismont and Mongin 1994; van Ditmarsch et al. 2015).

4 Predicativity and Impredicativity

Predicativity (Feferman 2005) is an essential trait of classical logic atoms. Meta-programming
makes use of impredicative atoms. This section recalls one of the reasons why impredicative
atoms have been banned from classical predicate logic.

Consider a property P on the nodes of an undirected graph G defined as follows: A node n of G
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has property P if all its immediate neighbours have property P. This definition is not acceptable
because it is ambiguous: It applies among others to the property holding of no nodes and to the
property holding of all nodes.

At the beginning of the 20th century Henri Poincarré and Bertrand Russell have proposed the
Vicious Circle Principle (Russell 1907; Russell 1986) that forbids circular definitions, that is,
definitions referring to the very concept they define like the above definition of property P. Rus-
sell called “predicative” definitions that adhere to the Vicious Circle Principle, “impredicative”
definitions that violate it. Thus, the Vicious Circle Principle is the adhesion to predicativity and
the rejection of impredicativity.

The Vicious Circle Principle, however, has a drawback: It forbids hereditary and, more gen-
erally, inductive definitions (Aczel 1977) like the definition of the formulas of a logic, or of the
programs of a programming language, or of the fixpoint of the immediate consequence operator
of a definite logic program (van Emden and Kowalski 1976; Apt and van Emden 1982). (Recall
that the definition of a property P is hereditary if it states that whenever a natural number n has
property P, so does n+1. Recall that a definite logic program is a program the clauses of which
contain no negative literals.) The Vicious Circle Principle also rejects the definition sketched at
the beginning of this section even though this definition makes sense as an inductive definition:

• Base cases: A (possibly empty) set of nodes of G is specified that have the property P.
• Induction case: If a node has the property P, then all its immediate neighbours have the

property P.

An inductively defined property (or set) is the smallest property (or set) that fulfils the base and
induction cases of its definition (Aczel 1977). Thus, understood as an inductive definition, the
definition sketched at the beginning of this section is that of the empty relation, that is, of the
relation that holds of no nodes.

Since the semantics of recursive functions and predicates is defined in terms of inductive def-
initions, the Vicious Circle Principle also implies the rejection of recursive functions and predi-
cates. Clearly, such a rejection is not compatible with programming. The Vicious Circle Principle
further rejects definitions like the following that are widely accepted even though they are not
inductive and they do not provide constructions of the entities they define:

• y is the smallest element of an ordered set S if and only if for all elements x of S, y is less
than or equal to x, and y is in S.

• The definition of the stable models of logic programs (Gelfond and Lifschitz 1988).

Such definitions have in common that they quantify over domains the definitions of which refer
to the entities being defined. Examples like the aforementioned led some mathematicians, most
notably Gödel, to object that impredicative definitions are acceptable provided the entities they
refer to are clearly apprehensible (Gödel 1944). Nowadays, most logicians and mathematicians
follow Gödel and accept impredicative definitions of the following kinds (Aczel 1977; Feferman
2005):

• Inductive definitions.
• Impredicative definitions that characterise elements (like the smallest number in a set) of

clearly apprehensible sets (including inductively defined sets).

The Vicious Circle Principle was the reason for Russell and Frege, whom Russell persuaded,
to reject impredicative atoms built up from predicates that “apply to themselves”, like a predicate
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expressing a set of all sets. Such predicates are expressible in Frege’s logic (Frege 1879; Frege
1893; Frege 1903), the precursor of first-order logic. A predicate that “applies to itself” is the core
of Russell’s Paradox (Link 2004) (discussed below in Section 6). The Vicious Circle Principle
and paradoxes, among other the paradox bearing his name, motivated Russell to develop the
Ramified Theory of Types (Russell 1908) that precludes predicates “applying to themselves”.

Because classical logic adheres to a type theory, classical logic rejects reflective expressions
like the following that are at the core of meta-programming:

believes(ann , itRains)

believes(ann , believes(bill , itRains ))

where itRains might be true or false, that is, amounts to a formula, not a term.
In order to simplify the following argument, let us consider a unary predicate “belief” derived

from the above definitions by disregarding who is holding a belief:

belief(itRains)

belief(belief(itRains ))

On the one hand, the unary predicate belief cannot be interpreted by a set B because B would
have as elements the subset of all beliefs like itRains that are believed to be believed. On the
other hand, a set of closed atoms like the above two expressions perfectly gives a semantics to
the unary predicate belief.

Relying in such a manner on a standard set of closed atoms for defining non-standard “sets”,
say “collections”, like the collection of beliefs in the above example, is the essence of the model
theory proposed below. The resulting impredicative definitions (in the example given above, the
definition of beliefs) fulfils Gödel’s condition to be interpreted in reference to clearly apprehen-
sible entities (in the example given above, a standard set of closed atoms).

5 Syntax of Reflective Predicate Logic

This section introduces “expressions” that amount to both the terms and the formulas of classical
predicate logic languages. Except for the use of the paradigm “quantification makes variables”
and a more careful parenthesising ensuring that expressions are non-ambiguous, the syntax given
below is that of Ambivalent Logic (Jiang 1994; Kalsbeek and Jiang 1995).

Definition 5.1 (Symbols and Expressions)
A Reflective Predicate Logic language L is defined by

• the logical symbols consisting of

— the connectives ∧, ∨,⇒, and ¬,
— the quantifiers ∀ and ∃,
— the parentheses ) and ( and the comma , .

• at least one and at most finitely many non-logical symbols each of which is distinct from
every logical symbol.

The expressions of a Reflective Predicate Logic language L and their outermost constructors
are inductively defined as follows:

• A non-logical symbol s is an expression the outermost constructor of which is s itself.
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• If E and E1, . . . ,En (n≥ 1) are expressions, then E(E1, . . . ,En) is an expression the outer-
most constructor of which is E.

• If E is an expression, then (¬E) is an expression the outermost constructor of which is ¬.
• If E1 and E2 are expressions, then (E1 ∧E2), (E1 ∨E2), (E1 ⇒ E2) are expressions the

outermost constructors of which are ∧, ∨, and⇒ respectively.
• If E1 and E2 are expressions, then (∀E1 E2) and (∃E1 E2) are expressions the outermost

constructors of which are ∀ and ∃ respectively.

A logical or non-atomic expression is an expression the outermost constructor of which is a
connective or a quantifier. A non-logical or atomic expression, or atom, is an expression the
outermost constructor of which is neither a connective nor a quantifier.

The set of expressions of a Reflective Predicate Logic language is not empty since, by defini-
tion, the language has at least one non-logical symbol.

More parentheses are required by Definition 5.1 than in classical predicate logic and than
stated in the article (Kalsbeek and Jiang 1995). This is necessary for distinguishing (well-formed)
expressions such as (¬a)(b) and (¬a(b)) or (∀x p(x))(a) and (∀x p(x)(a)). Provided a few addi-
tional parentheses are added, first-order logic formulas are expressions in the sense of Definition
5.1, that is, the syntax given above is a conservative extension of the syntax of first-order logic.
This issue is addressed in more detail below in Section 10.

The expressions of a Reflective Logic language can be proven non-ambiguous similarly as
classical logic formulas are proven non-ambiguous. The subexpressions and proper subexpres-
sions of an expression of a Reflective Predicate Logic language can be similarly defined as the
sub-formulas and proper sub-formulas of a classical logic formula. Thus, an expression is a
subexpression but not a proper subexpression of itself.

The definition of the scope of a quantified variable in an expression generalises that of classical
predicate logic: The scope of E1 in (∀E1 F) and in (∃E1 F) is F except those subexpressions
of F of the form (∀E2 G) or (∃E2 G) such that E2 is a subexpression of E1. Thus, in each of
the following expressions, the inner quantified expression is not within the scope of the outer
quantified expression:

( ∀ x ( ∀ x p(f(x), x) ) )

( ∀ x ( ∀ x p(x(f), x) ) )

( ∀ f(a) ( ∀ f p(f(a), f) ) )

In each of the following expressions that can be obtained from each other by a variable renaming,
the inner quantified expression is within the scope of the outer quantified expression.

( ∀ f ( ∀ x p(x, f) ) )

( ∀ f ( ∀ f(a) p(f(a), f) ) )

Recall that a logical, or non-atomic, expression is an expression the outermost constructor of
which is a negation, a connective, or a quantifier. Thus,

(believes(ann , itRains) ∧ believes(ann , itIsWet ))

(∃ X believes(ann , X))

(¬(∃ Y (believes(bill , Y))))

are logical expressions. Logical expressions correspond to first-order logic compound (that is,
non-atomic) or quantified formulas.
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Recall that an atomic expression, or atom, is an expression the outermost constructor of which
is neither a connective nor a quantifier. Thus,

believes(ann , (itRains ∧ itIsWet ))

believes(ann , (∀ X believes(bill , X)))

(believes ∧ trusts )(ann , bill)

(∀ T (trust(T) ⇒ T))(ann , bill)

are atoms while

(believes(ann , itRains) ∧ believes(ann , itIsWet ))

(∀ X believes(bill , X))

are non-atomic, or logical, expressions. Note that if A1 and A2 are atoms, then the (well-formed)
expressions (∀A1A2) and (∃A1A2) are not atoms. Note also that an expression is either atomic (or
non-logical) or non-atomic (or logical).

Skolemisation can be specified as usual by adding additional non-logical symbols to the lan-
guage.

For the sake of simplicity, the definition above assumes that every non-logical symbol has all
arities. This reflects a widespread logic programming practice: Using p/2, that is, p with arity 2,
in a Prolog program, for example, does not preclude using p/3, that is, p with arity 3, in the same
program. Assuming that non-logical symbols of a Reflective Predicate Logic language have all
arities is a convenience, not a necessity. The definition above can be refined to a less permissive
definition as of non-logical symbols’ arities.

In contrast to the syntax of Ambivalent Logic given in the articles (Jiang 1994; Kalsbeek and
Jiang 1995), the above definition does not distinguish between variables and constants. Accord-
ing to the above definition, quantifications make variables:

• likes(ann, bill) contains no variables. In this expression, ann and bill serve as con-
stants.

• (∃ ann likes(ann, bill)) means that there is someone who likes Bill. In this expres-
sion ann serves as a variable and bill as a constant.

• (∀ bill (∃ ann likes(ann, bill))) means that everyone is liked by someone. In
this expression ann and bill serve as a variables.

A first advantage of the paradigm “quantifications make variables” is that every expression is
closed. Indeed, a symbol which is not quantified such as x in likes(x, bill) is not a vari-
able. This is not a restriction, since in logics with open formulas, open formulas serve only as
components of closed formulas. The paradigm “quantifications make variables” corresponds to
the declarations of programming languages. The paradigm “quantification makes variables” is
akin to lambda-abstraction. We give it an expressive denomination for avoiding referring to the
lambda calculus our proposal does not build upon.

Explicit quantifications as introduced in Definition 5.1 are not usual in logic programming.
Combined with the paradigm “quantifications makes variables”, they are useful for meta-progra-
mming because they make it easy to transform expressions. The expression likes(ann, bill)

for example can be abstracted into

(∃ likes likes(ann , bill))

(meaning that Ann and Bill are in some relationship) and generalised as
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(∀ likes likes(ann , bill))

(meaning that Ann and Bill are in all possible relationships). Similarly, the expression

(((∃ x p(x)) ∧ (¬ (∃ x p(x)))) ⇒ (∀ G G))

(meaning that every expression follows from (∃ x p(x)) and its negation) can easily be gener-
alised into

(∀ (∃x p(x)) (((∃x p(x)) ∧ (¬(∃x p(x)))) ⇒ (∀G G)))

that is, after renaming F the expression (∃ x p(x)) serving as variable,

(∀ F ((F ∧ (¬ F)) ⇒ (∀ G G)))

(meaning that every expression follows from an expression and its negation).

6 The Barber and Russell’s Paradoxes in Reflective Predicate Logic

One of the reasons for the Vicious Circle Principle, that is, the rejection of impredicative defi-
nitions, was Russell’s Paradox, a second-order variation of the first-order Barber Paradox. Both
the Barber and Russell’s paradoxes can be expressed in Reflective Predicate Logic. This section
explains why this is not a problem.

Since Reflective Predicate Logic’s syntax is a conservative extension of the syntax of first-
order logic, a formulation of the Barber Paradox in first-order logic like the following is also a
formulation of that paradox in Reflective Predicate Logic:

man(barber)

(∀y (man(y) ⇒ (shaves(barber ,y) ⇔ (¬shaves(y,y)))))

where, extending Definition 5.1, (E1 ⇔ E2) is defined as a shorthand notation for ((E1 ∧E2)∨
((¬E1)∧ (¬E2))). (This extension is a common manner to define the semantics of⇔ in classical
logic.) The above expressions convey that the barber is a man shaving all men who do not shave
themselves. The Barber Paradox is a mere inconsistency: The barber cannot exist because he
would have both to shave himself and not to shave himself. The self-contradictory formula

(shaves(barber ,barber) ⇔ (¬shaves(barber ,barber )))

follows in first-order logic from the above specification of the Barber Paradox. A formula ex-
pressing the Barber Paradox is inconsistent with respect to the model theory defined in the section
after next as it is in first-order logic.

The syntax of Section 5 that does not distinguish between formulas and terms gives rise to
(well-formed) expressions that are not expressible in first-order logic, and that, like the Barber
Paradox, are inconsistent. One such expression is the following that expresses Russell’s Paradox
in both Frege’s logic (Frege 1879; Frege 1893; Frege 1903) and in Reflective Predicate Logic (a
brief introduction into Frege’s logic is given in an appendix):

(?) (∀x (e(x) ⇔ (¬x(x))))

Instantiating x with e in (?) yields the self-contradictory expression

(e(e) ⇔ (¬ e(e)))
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Expression (?) is inconsistent for the model theory given in the next section as it must be in
every well-specified model theory because it is self-contradictory. Thus, expression (?) is, like
the above specification of the Barber Paradox a mere inconsistency.

While it is paradoxical to think of concepts that cannot exist, inconsistent expressions are
no reasons to reject the language in which they are expressed. After all, nobody considers the
language of propositional logic as paradoxical, notwithstanding the fact that it can express the
formula (p ∧ (¬ p)) which is inconsistent for requiring a proposition p to be both true and
false.

The rejection of logics in which Russell’s paradox can be expressed stems from the concep-
tion that every expression must define a set. While it is understandable that Russell, Frege and
their contemporaries shared this conception, this conception can be given up. Giving up this
conception provides for a simple logic perfectly formalising Prolog-style meta-programming.
Giving up this conception allows for impredicative atoms that are interpreted as collection like
the collection of beliefs mentioned above in Section 4.

7 Variant Expressions and Expression Rectification

In the next section, a model theory is given for Reflective Predicate Logic such that two syntac-
tically distinct atomic expressions that are variants of each other like

believes(ann , (∀ X believes(bill , X)))

believes(ann , (∀ Y believes(bill , Y)))

(with the intended meaning that Ann believes that Bill believes everything) are identically inter-
preted. As already mentioned, this is not the case with the model theory of Ambivalent Logic
(Jiang 1994; Kalsbeek and Jiang 1995).

Two first-order logic atoms or terms E1 and E2 are variants of each other if there is a one-
to-one mapping σ of the variables occurring in E1 into the variables occurring in E2 such that
applying σ to E1 yields E2, noted E1σ = E2. Thus, the first-order formulas

p(X, Y)

p(Y, Z)

(in which X, Y and Z are first-order variables) are variants of each other but the first-order formulas

p(X, Y)

p(Z, Z)

(in which X, Y and Z are first-order variables) are not.
Variance is more complex to formalise for first-order logic formulas and Reflective Predicate

Logic expressions because of the overriding (or variable shadowing, or shadowing, for short) that
might take place with quantification. While the first-order formulas

(p(X) ∧ q(Y))

(p(X) ∧ q(X))

(in which X and Y are first-order variables) are not variants of each other, the first-order formulas

(∀ X (p(X) ∧ ∃ Y q(Y)))

(∀ X (p(X) ∧ ∃ X q(X)))
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are variants of each other because, in the second formula, the second quantification of the variable
X overrides the first.

Variant expressions can easily be defined by relying on a rectification. Rectifying an expression
consists in renaming its variables from a predefined pool of “fresh” variables, that is, variables
not occurring in the expressions considered, in such a manner that the variables of two distinct
quantifications are distinct. Thus, if the “fresh” variables considered are v1,v2, . . ., then rectifying
the expression

(∀ X (p(X) ∧ ∃ X q(X)))

might result in

(∀ v1 (p(v1) ∧ ∃ v2 q(v2)))

and rectifying the expression

((∀ X p(X)) ∧ (∃ X q(X)))

might result in

((∀ v3 p(v3)) ∧ (∃ v1 q(v1)))

It is assumed in the following that there is a denumerable supply v1,v2, . . . ,vi, . . . of variables
such that each vi is distinct from every logical and every non-logical symbol of the Reflective
Predicate Logic language considered. (An infinite supply of variables is necessary to ensure
that proofs are not bounded in length. This infinity does not threaten computability because the
variables needed in a proof can be created on demand while computing proofs.)

A rectification is performed by a variable renaming which is conveniently specified as a predi-
cate rect recursively defined on an expression’s structure. It implements a left-to-right outside-in
traversal of expressions of all kinds except quantified expressions that are traversed inside-out
so as to reflect the quantified variables’ scopes: Note, in the last case of the algorithm, the re-
cursive call rect(E2, i,R2, j) instead of rect(E1, i,R1, j). Logic programming pseudo-code is used
in the following definition because it expresses the sideway passing of variable indices between
recursive calls in a more readable manner than functional pseudo-code.

Definition 7.1 (Rectification)
A rectified R of an expression E is specified by the predicate rect(E, i,R, j) where:

• i ≥ 1, the “initial variable index”, denotes the first variable vi that might be used in recti-
fying E

• j = i if E and its rectified contain no variables
• j > i, the “final variable index”, is k+1 if k is the highest index of a variable occurring in

the rectified of E

The predicate rect is recursively defined on an expression’s structure:

• if E is a symbol:
rect(E, i,E, i)

• if E = E1(E2, . . . ,En) with n≥ 2:
rect(E, i,R1(R2, . . . ,Rn), in) where the Rk and in are defined by
rect(E1, i,R1, i1), rect(E2, i1,R2, i2), . . ., and rect(En, in−1,Rn, in)

• if E = (¬E1):
rect(E, i,(¬R1), j) is defined by rect(E1, i,R1, j)
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• if E = (E1θE2) with θ ∈ {∧,∨,⇒}:
rect(E, i,(R1θR2), i2) where R1, R2 and i2 are defined by
rect(E1, i,R1, i1) and rect(E2, i1,R2, i2)

• if E = (θ E1 E2) with θ ∈ {∀,∃}:
rect(E, i,(θ v j R),k) where R, j and k are defined by
rect(E2, i,R2, j), k = j + 1, and R is obtained from R2 by simultaneously replacing all
occurrences of E1 in R2 by v j.

A rectified of a finite set {E1, . . . ,En} of expressions is the set {R1, . . . ,Rn} where (R1∧ (. . .∧
Rn) . . .) is the rectified of the expression(E1∧ (. . .∧En) . . .).

An expression (set of expressions, respectively) is said to be rectified if it is a rectified of some
expression (set of expressions, respectively).

Because of the inside-out traversal of quantified expressions, the predicate rect is not tail recur-
sive. An efficient, tail recursive, implementation of rect would require an accumulator for storing
embedding quantified expressions the variable renaming of which is delayed.

The algorithm specified in Definition 7.1 terminates because every recursive call refers to a
strict sub-expression. rect(E, i,R, j) is functional in the sense that there is exactly one pair (R, j)
for each pair (E, i) because the cases of the above definition are mutually exclusive. The call
pattern of rect is rect(+E,+i,?R,?n) meaning that in a call to rect E and i must be specified
and that each of R and n can, but do not have to, be specified. Therefore, it is also possible to
define rectification functionally with a binary mapping rect : expr×N→ expr×N where expr is
the set of all expressions of a Reflective Predicate Logic language. No variables are overridden
in the rectified of an expression because of the sideway passing of variable indices between
recursive calls: Each recursive call to rect uses as initial variable index the final variable index
of the previous recursive call to rect. Let Ri denote the rectified of an expression E specified by
rect(E, i,Ri,n). For all k≥ 1 Ri+k can be obtained from Ri by replacing in Ri every variable v j by
v j+k.

In general, a finite set of expressions has more than one rectified, each resulting from an
ordering of the set’s expressions. Note that the expressions in a rectified set of expressions are
standardised apart, that is, two distinct expressions have no variables in common.

In contrast to first-order formulas’ rectification, the algorithm of Definition 7.1 considers the
variables that might occur in the constructors of Reflective Predicate Logic atoms. The Reflective
Predicate Logic expression

((∀ X p(X)) ∧ (∃ X q(X)))

is for example rectified by the algorithm of Definition 7.1 into:

((∀ v2 p(v2)) ∧ (∃ v1 q(v1)))

while the Reflective Predicate Logic atom

(∀ T (trust(T) ⇒ T))(ann , bill)

is rectified by the same algorithm into:

(∀ v1 (trust(v1) ⇒ v1))(ann , bill)
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Definition 7.2 (Variant Expressions)
Two expressions E1 and E2 are variants of each other, noted E1∼E2, if their rectified after Defi-
nition 7.1 and computed with the same initial variable index are identical.

The relation ∼ on the expressions of a Reflective Predicate Logic language is an equivalence
relation.

8 A Herbrand-Style Model Theory for Reflective Predicate Logic

Atoms in Reflective Predicate Logic (that is, expressions the outermost constructors of which are
neither connectives nor quantifiers) like

likes(ann , likes(bill , ann))

likes(ann , (∀ x likes(bill , x)))

(likes ∧ trusts )(ann , bill)

(∀ T trust(T) ⇒ T)(ann , bill)

(meaning that Ann likes that Bill likes her, that Ann likes that Bill likes everyone and everything,
that Ann likes and trusts Bill, and that Ann trusts Bill in all specified forms of trust) differ from
atoms in a first-order logic language in three respects:

1. First-order atoms may be open or closed, whereas all Reflective Predicate Logic expres-
sions, including all atoms, are closed expressions thanks to the paradigm “quantification
makes variables”.

2. First-order logic atoms cannot have anything but terms as arguments, whereas atoms in
Reflective Predicate Logic may have as arguments non-atomic (or logical) expressions
such as (∀ x likes(bill, x)) that amount to first-order formulas, not terms.

3. In first-order logic the outermost constructor of an atom is a symbol such as likes,
whereas in Reflective Predicate Logic it can be any expression such as likes and
(∀ T trust(T) ⇒ T).

How the model theory should treat atoms that contain non-atomic, or logical, expressions can
be seen on the following example the meaning of which is that calling someone “A and B”
implies calling him “A” and calling him “B”, that claiming not to call someone “A” is in fact
calling him “A” and that calling someone “fat” is offending.

(∀ x (∀ y (∀ z

(says(x, (y ∧ z)) ⇒ (says(x, y) ∧ says(x, z))))))

(∀ x (∀ y (says(x, (¬ says(x, y))) ⇒ says(x, y))))

(∀ x (∀ y (says(x, is(y, fat)) ⇒ offends(x, y))))

An interpretation satisfying the three above expressions as well as the additional atom

says(donald , (¬says(donald , is(kim , (short∧fat ))))

should also satisfy

offends(donald , kim)

regardless of whether none, only one, or both of

is(kim , (short ∧ fat))

is(kim , fat)
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are satisfied in that interpretation (Trump 2017). This requirement is essential among others for
static program analyses (like static type checking) to be expressible as meta-programs. Indeed,
a static program analysis is independent of the analysed programs’ run time behaviours, that is,
a static analysis of a logic program is independent of which program parts evaluate to true. The
model theory specified below is tuned to ensure this requirement.

In contrast to first-order logic ground atoms, Reflective Predicate Logic atoms can have vari-
ants, like

believes(ann , (∀ y (believes(ann , y )

⇒ believes(bill , y ))))

believes(ann , (∀ t(a) (believes(ann , t(a))

⇒ believes(bill , t(a)))))

that should be given the same meaning even though they syntactically differ from each other.
Thus, the Herbrand base of a Reflective Predicate Logic language must be defined as the set of
equivalence classes of the language’s atoms with respect to the variant relation ∼.

Since atoms like

believes(ann , (∀x (believes(ann ,x)⇒believes(bill ,x))))

(with the intended meaning that Ann believes that Bill believes all that she herself believes) of
a Reflective Predicate Logic language correspond to both ground atoms and ground terms of
first-order logic languages, the set of all expressions of a Reflective Predicate Logic language
corresponds to both the Herbrand universe (van Emden and Kowalski 1976; Chang and Lee
1997) and the Herbrand base (van Emden and Kowalski 1976; Chang and Lee 1997) of a first-
order logic language.

Definition 8.1 (Herbrand Universe)
Let A be the set of atoms of a Reflective Predicate Logic language L and ∼ the variant relation
of L . The Herbrand universe of L is A /∼, that is, the set of equivalence classes of ∼.

As the following example illustrates, standardisation-apart is needed in proving so as to prop-
erly reflect variable scopes. In this example, upper case characters denote variables. From the
clauses

[¬p(X),¬q(Y ),r(X ,Y )]
[p(Z)]
[q(Z)]

the clause

[r(Z1,Z2)]

can be derived by resolution. If, however, no standardisation-apart of the set of clauses was
performed during resolution, then the more specific clause “[r(Z,Z)]” (or a variant of that clause)
would be wrongly derived instead of “[r(Z1,Z2)]” (or a variant of that clause).

Under the paradigm “quantification makes variables” something similar might happen while
instantiating variables. Consider once again the Reflective Predicate Logic expression

(†) (∀ bill (∃ ann likes(ann , bill )))

(meaning that everyone is liked by someone) in which the symbols ann and bill serve as vari-
ables. Prematurely instantiating bill with ann yields
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(∃ ann likes(ann , ann))

(meaning that someone likes herself) which is not a logical consequence of (†). Such incorrect
instantiations are avoided by rectifying the expressions under consideration using the infinite
supply of variables v1,v2, . . . that has been assumed in the previous section 7. Indeed, rectified
expressions do not contain non-variable symbols serving as variables. Since each variable vi is
distinct from every non-logical symbol as well as from every logical symbol of the Reflective
Predicate Logic language considered, incorrect instantiations like in the former example are im-
possible.

Definition 8.2 (Notations)
If A is an atom of a Reflective Predicate Logic language L , then class(A) denotes the variant
class of A, that is, the equivalence class of A in the Herbrand universe A /∼ of L .

If R is a rectified expression, if vi is a variable and if A is an atom, then R[A/vi] denotes the
expression obtained from standardised-apart rectified variants Rv and Av of R and A respectively
by simultaneously replacing in Rv all occurrences of vi by Av.

In defining the notation R[A/vi], there is no need for caring about overridden variables because
that notation will only apply to rectified expressions R and because, as observed in the previous
section 7, in rectified expressions no variables are overridden. Since Rv and Av are rectified and
have no variables in common (they are standardised apart), R[A/vi] is rectified.

Definition 8.3 (Interpretations and Models)
A Herbrand interpretation I(S) of a Reflective Predicate Logic language L is specified as a
subset S of the universe A /∼ of L .

An expression E is satisfied in a Herbrand interpretation I(S) of L , denoted I(S) |= E, if a
rectified R of E is satisfied in I(S), denoted I(S) |= R, in the following sense, where:

• R,R1, and R2 denote rectified expressions.
• A denotes a rectified atom.

I(S) |= A iff class(A) ∈ S
I(S) |= (¬R) iff I(S) 6|= R
I(S) |= (R1∧R2) iff I(S) |= R1 and I(S) |= R2

I(S) |= (R1∨R2) iff I(S) |= R1 or I(S) |= R2

I(S) |= (R1⇒ R2) iff if I(S) |= R1, then I(S) |= R2

I(S) |= (∃vi R) iff I(S) |= R[A/vi] for some A
I(S) |= (∀vi R) iff I(S) |= R[A/vi] for all A

A set T of expressions is satisfied in I(S), denoted I(S) |= T , if every expression in T is satisfied
in I(S).

An interpretation is called a model of an expression E (a set of expressions P, respectively) if
it satisfies E (every expression in P, respectively).

Satisfaction of logical expressions (that is, expressions the outermost symbols of which are
logical symbols (¬, ∧, ∨,⇒, ∀, ∃)) is defined like in first-order logic. Satisfaction of atoms (that
is, expressions the outermost expressions of which are non-logical symbols) is not defined like in
first-order logic: It is based on variance instead of syntactical identity. However, if an atom does
not contain variables, then it is the single element of its variant class and, as a consequence, its
satisfaction is defined like in first-order logic.
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Applied to first-order logic expressions, Definitions 8.1 and 8.3 amount to the definitions of
Herbrand universes, interpretations and models of first-order logic. Indeed, a ground atom A of
a first-order logic language is the only element of its equivalence class for the variant relation.
Thus, Definition 8.3 is a conservative extension of first-order logic’s notions of Herbrand inter-
pretations and models. This observation is formally developed in the next section 10.

An interpretation as defined above can be seen as a set S of atoms. An atom is satisfied in the
interpretation specified by S if and only if it is a variant of an element of S.

Consider the following set P1 of expressions, a simple meta-program (with explicit quantifica-
tions) on the beliefs of Ann and Bill:

believes(ann , itRains)

believes(ann , (itRains ⇒ itIsWet ))

believes(ann ,(∀x (believes(ann ,x) ⇒ believes(bill ,x))))

(∀ x (believes(ann , x) ⇒ believes(bill , x)))

The following set S1 of atoms specifies a model of P1 (consisting of the atoms’ equivalence
classes for ∼):

believes(ann , itRains)

believes(ann , (itRains ⇒ itIsWet ))

believes(ann ,(∀y (believes(ann ,y) ⇒ believes(bill ,y))))

believes(bill ,itRains)

believes(bill ,( itRains ⇒ itIsWet ))

believes(bill ,(∀z (believes(ann ,z) ⇒ believes(bill ,z))))

Consider the following set P2 of expressions in which (∀ T (trust(T) ⇒ T)) is an atom
constructor:

trust(t1)

trust(t2)

t1(ann , bill)

t2(ann , bill)

(∀ X (∀ Y

( (∀ T (trust(T) ⇒ T(X, Y))) ⇒
(∀ T (trust(T) ⇒ T))(X, Y)

)

)

)

The following set S2 of atoms, in which (∀ X (trust(X) ⇒ X)) is an atom constructor, spec-
ifies a model of P2:

trust(t1)

trust(t2)

t1(ann , bill)

t2(ann , bill)

(∀ X (trust(X) ⇒ X))(ann , bill)

A proof theory convenient for expressions like the last of P2 is out of the scope of this article.
The definition of an interpretation given in the articles (Jiang 1994; Kalsbeek and Jiang 1995)

is more stringent than Definition 8.3: Instead of relying on the variant relationship, it requires
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syntactical identity. As a consequence, the set S1 of atoms given above does not specify a model
in the sense of (Jiang 1994; Kalsbeek and Jiang 1995) of the set P1 of expressions given above.
This is undesirable because meta-programming requires to interpret identically expressions like
the following that are variants of each other:

believes(ann ,(∀x (believes(ann ,x) ⇒ believes(bill ,x))))

believes(ann ,(∀y (believes(ann ,y) ⇒ believes(bill ,y))))

Even though a Reflective Predicate Logic language gives rise to inconsistent expressions (like
the definition (?) of Russell’s paradoxical set given in Section 6), the model theory given above
is adequate for the reasons mentioned at the end of Section 4. Indeed, it refers to an inductively
defined universe, the (standard) set of all expressions, and impredicative atoms like

believes(ann ,(∀x (believes(ann ,x)⇒believes(bill ,x))))

belief(belief(itRains ))

perfectly characterise elements of that universe even though they cannot be interpreted as stan-
dard sets.

9 Symbol Overloading in Classical Predicate Logic Languages

The clause

student(X) :- enrolled(student(X), _)

can be seen as a first-order logic clause even though under this view the symbol student oc-
curs in that clause both as a predicate symbol (left) and as a function symbol (right). Indeed,
even though first-order logic languages are conventionally defined such that a same (predicate or
function) symbol cannot be used with different arities and a same symbol cannot be used both
as a function and as a predicate symbol, these conventions are not necessary for two reasons:
First, arities can be seen as part of a symbol which allows to disambiguate occurrences of a same
symbol with different arities; second the syntactic context in a formula allows to disambiguate
occurrences of a same symbol denoting a function symbol and a predicate symbol.

The following example illustrates this observation. Consider

• a function symbol e of artity 1 meant to express a function “twice”, that is, e(1) stands
for 2×1.

• a function symbol e of artity 2 meant to express the addition of integers, that is, e(1,1)
stands for 1+1.

• a predicate symbol e of arity 1 meant to express “even”, that is, e(1) stands for isEven(1).
• a predicate symbol e of arity 2 meant to express equality, that is, e(1,1) stands for 1 = 1.

If e(1) is a first-order term, then it can only stand for 2×1. If e(1,1) is a first-order term, then
it can only stand for 1+1. If e(e(1,1),e(1)) is a first-order formula, then the outer occurrence
of e must be a predicate symbol, the inner occurrences of e must be function symbols and the
formula can only stand for 1+ 1 = 2× 1. Similarly, if e(e(e(1,1))) is a first-order formula,
then it can only stand for isEven(2 × (1 + 1)).

The above observation is common knowledge in logic and in programming. In logic, Church’s
re-formulation of the Simple Type Theory (Chwistek 1921; Ramsey 1926), the Simply Typed
Lambda Calculus (Church 1940; Barendregt 1992), exploits it. The above observation has been



34 François Bry

made for classical predicate logic in the article (Chen et al. 1993). In that article, a predicate logic
language overloading symbols in the aforementioned sense is called “contextual.” In program-
ming, the use a same symbol with different meanings in different contexts is called overloading.
In functional and Prolog programs, a same symbol is commonly used with different arities. In
functional programs type selectors are commonly named like the corresponding type constructors
and in Haskell compound types are named using their own type constructor ([Int] for example
denotes the type of the lists of integers).

Thus, interpreting in first-order logic a clause like

student(X) :- enrolled(student(X), _)

in which some symbols are interpreted both as function and predicate symbols requires no further
formalisation and the aforementioned symbol overloading in first-order languages accounts for
the aforementioned Prolog facts:

call(twice , 1, 2)

forall(enrolled(student(S), mathematics),

attends(S, logic)

)

forall(enrolled(student(S), P),

forall(syllabus(P, C), attends(S, C)

)

)

However, the aforementioned symbol overloading in first-order languages accounts neither for
the representation in classical predicate logic of call(P, X, Y), that is, P(X, Y), nor for the
following Prolog meta-program that defines the forall predicate:

forall(R, F) :- not (R, not F)

Indeed, the aforementioned symbol overloading in first-order languages does not lift the strong
typing of classical predicate logic discussed in the next section 3: In classical predicate logic,
a variable cannot range over both terms and formulas. The following example is a another case
of confounding of object and meta-variables that cannot be accounted for in classical predicate
logic by the aforementioned symbol overloading:

r(X) :- X(X)

For the same reason, Russell’s Paradox (?) is not expressible in a first-order logic language
sharing symbols.

10 Reflective Predicate Logic is a Conservative Extension of First-Order Logic

Reflective Predicate Logic’s syntax differs from that of first-order logic in having only one cat-
egory of expressions, whereas first-order logic distinguishes between terms and formulas. First-
order logic terms can be expressed in Reflective Predicate Logic as follows:
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Definition 10.1 (First-Order Terms)
Let L be a Reflective Predicate Logic language the set of non-logical symbols of which is S. A
first-order term fragment Ft of L is specified by:

• A set V ⊆ S of variables and a set T ⊆ S of term symbols such that V ∩T = /0
• The assignment to each element of T of at least one arity (that is, non-negative integer)

The terms of Ft are inductively defined as follows:

• A variable is a term.
• A term symbol with arity 0 is a term.
• If f is a term symbol with arity n≥ 1 and t1, . . . , tn are terms, then f (t1, . . . , tn) is a term.

Term symbols with arity 0 are commonly called “constants”, term symbols with arity n ≥ 1
“function symbols”. It is commonly required in mathematical logic that each term symbol has
exactly one arity. This requirement is not necessary as it is recalled above in Section 9.

Neglecting that Reflective Predicate Logic requires parentheses around quantified and negated
expressions that are superfluous in first-order logic, first-order logic formulas can be expressed
in Reflective Predicate Logic as follows:

Definition 10.2 (First-Order Formulas)
Let L be a Reflective Predicate Logic language the set of non-logical symbols of which is S. A
first-order fragment F of L is specified by a first-order term fragment of L with set of variables
V and set of term symbols T and by

• A set P⊆ S of predicate symbols such that V ∩P = /0
• The assignment to each element of P of at least one arity (that is, non-negative integer)

The first-order formulas of F are inductively defined as follows:

• A predicate symbol with arity 0 is a formula.
• If p is a predicate symbol with arity n ≥ 1 and t1, . . . , tn are terms, then p(t1, . . . , tn) is a

formula.
• If F is a formula, then (¬F) is a formula.
• If F1 and F2 are formulas, then (F1∧F2), (F1∨F2), (F1⇒ F2) are formulas.
• If x a variable and F is a formula, then (∀x F) and (∃x F) are formulas.

A formula F is open if a variable x occurring in a subexpression of F is not in the scope of a
quantification of the form (∀xE) or (∃xE). A formula is closed, or a sentence, if it is not open.

It is commonly required in mathematical logic that each predicate symbol has exactly one arity
and that P∩T = /0. As it is recalled above in Section 9, these requirements are not necessary.

A closed formula which is an atomic expression, or atom, is commonly called a “ground
atom”.

Definitions 10.1 and 10.2 use and constrain rules of Definition 5.1. As a consequence, terms
and formulas of a first-order logic fragment of a Reflective Predicate Logic language are expres-
sions of that language.
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Definition 10.3 (First-Order Herbrand Interpretations)
Let F be a first-order fragment of a Reflective Predicate Logic language L . A first-order Her-
brand interpretation of F is specified as a set of ground atoms of F . Satisfiability in a first-order
Herbrand interpretation of F is defined as in Definition 8.3. If I is a Herbrand interpretation of
L , the restriction of I to the first-order fragment F of L , noted I

F
, is the subset of I consisting

of the variant classes of atoms of F .

Observe that if I is a Herbrand interpretation of a Reflective Predicate Logic language L and
if F is a first-order fragment of L , then the restriction of I to F , I

F
, is a Herbrand interpretation

in the sense of Definition 8.3. Herbrand interpretations of first-order logic languages are usually
specified as sets of ground atoms, not sets of ground atoms’ variant classes. However, since
a ground atom is the single element of its variant class, Herbrand interpretations of first-order
logic languages can be seen as sets of variant classes.

Proposition 10.1 (Conservative Extension)
Consider

• F a first-order language with set of variables V , set of term symbols T and set of predicate
symbols P

• FRPL the Reflective Predicate Logic language with set of non-logical symbols V ∪T ∪P
• I a Herbrand interpretation of F

• F a formula of F

Reflective Predicate Logic is a conservative extension of first-order logic, that is:

• F is an expression of FRPL.
• I |=FOL F if and only if for all Herbrand interpretations J of FRPL such that JF = I,

J |=RPL F .

where |=FOL and |=RPL denote satisfiability in first-order and Reflective Predicate Logic inter-
pretations respectively.

Proof. The first point has been already observed above. The second point follows from the fact
that satisfiability of a formula (or expression) in an interpretation is defined recursively on the
formula’s (or expression’s) structure. The satisfiability of F in J therefore depends only on ex-
pressions built from F ’s vocabulary, that is, depends only on the subset JF = I of J.

11 Conclusion

This article has given Prolog-style meta-programming, which is characterised by a confound-
ing of terms and formulas and of object and meta-variables, a simple formalisation, arguably
the simplest, the most complete and the closest to the programming practice so far proposed.
This formalisation consists in a systematisation of the syntax of Frege’s logic, the precursor of
classical predicate logic, and in a generalisation of Herbrand model theory. The resulting logic,
Reflective Predicate Logic, has been shown to be a conservative extension of first-order logic.

The aforementioned syntax systematisation is simple: It consists in drawing the consequences
of replacing expressions by their definitions and in an unconventional representation of variables
easing meta-programming. This syntax systematisation had been initiated in the article (Chen
et al. 1993) and completed in the articles (Jiang 1994; Kalsbeek and Jiang 1995).
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The aforementioned generalisation of Herbrand model theory is simple, too. It consists in
considering reflective atoms, that is, atoms that might contain connectives, quantifiers, and vari-
ables, instead of ground atoms. This, too, had been initiated in the article (Chen et al. 1993)
and furthered, though in an unsatisfying manner, in the articles (Jiang 1994; Kalsbeek and Jiang
1995). A simple change, the identical interpretation of variant expressions, was enough to yield
a satisfying Herbrand-style model theory.

The resulting logic, Reflective Predicate Logic, is simple. It differs from first-order logic in
only three rather simple aspects. The syntax of Reflective Predicate Logic renounces type theory,
which makes it simpler than the syntax of first-order logic. The syntax of Reflective Predicate
Logic has an unconventional representation of variables. The model theory of Reflective Pred-
icate Logic is based on a generalisation of Herbrand model theory which gives rise to specify
collections in Reflective Predicate Logic, generalisations of sets which perfectly interpret reflec-
tive expressions.

In spite of its simplicity, Reflective Predicate Logic is significant to logic programming, know-
ledge representation and mathematical logic. Reflective Predicate Logic is significant to logic
programming because it accommodates Prolog-style meta-programming without the restrictions
required by the formalisations of meta-programming in higher-order logic, without the restric-
tions and without the encodings (or naming relations) required by the formalisations of meta-
programming in first-order logic, and without the inadequacies of HiLog and Ambivalent Logic
(discussed in Section 3). Reflective Predicate Logic is also significant to logic programming be-
cause it provides a justification to the confounding of object and meta-variables, the so-called
“non-ground representations” (mentioned in Section 3) of efficient deduction systems. Reflec-
tive Predicate Logic is significant to knowledge representation because it is natively reflective
thus considerably simpler than the standard approaches to reflection that are based on reifica-
tion. Reflective Predicate Logic is significant to mathematical logic because it is an alternative
to type theory and a rehabilitation of Frege’s logic. The simplicity of Reflective Predicate Logic
contributes to its significance. Indeed, in science, simplicity is not a drawback but instead an
advantage.

A further contribution of this article is its handling of Russell’s Paradox of self-reflectivity
by proposing a logic in which the paradox is expressible. The widespread common wisdom is
instead that a well-defined logic should preclude paradoxes. A paradox is a counter-intuitive
inconsistency. A thesis of this article is that there is nothing problematic with a logic in which
inconsistencies, be they intuitive or counter-intuitive, can be expressed.

This article is a first step. Further work should be devoted to:

• generalising the model theory of this article to universes of all kinds, possibly including
universes that are collections in the sense of Section 4 instead of sets,

• giving Reflective Predicate Logic a unification and a resolution calculus,
• specifying a logic programming syntax, preferably with a type system, based on Reflective

Predicate Logic,
• investigating how structuring constructs such as modules and embedded implications (Chen

1987; Miller 1989; Chen et al. 1993; Giordano and Olivetti 1994; Giordano et al. 1994;
Haemmerlé and Fages 2006) can be formalised in Reflective Predicate Logic,

• investigating how paradoxes of self-reflection, especially those used in proving Gödel’s
incompleteness theorems, can be expressed in Reflective Predicate Logic.
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Appendix: A Brief Introduction into Frege’s logic

This brief introduction into Frege’s logic aims at providing the material necessary for under-
standing the references to that logic given in the article. It is neither intended as a presentation
of Frege’s often subtle thoughts, nor as a presentation of the number theories for which Frege
developed his logic, nor as a presentation of Frege’s terminology and notations that have become
outdated. This brief introduction owes to both Franz von Kutschera (von Kutschera 1989) and
John P. Burgess (Burgess 2005) even though it slightly differs from the presentations of Frege’s
logic by these authors.

Frege’s logic is defined in three books:

• “Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens”
(Frege 1879) translated in English as “A Concept Notation: A formula language of pure
thought, modelled upon that of arithmetic” (Frege 2002)

• “Grundgesetze der Arithmetik” volumes I and II (Frege 1893; Frege 1903) partly translated
in English as “The Basic Laws of Arithmetic” (Frege 1964).

Frege’s logic is the archetype of predicate logic as it is known today. However, it departs from
predicate logic in several aspects of various significance.

A first salient but insignificant aspect of Frege’s logic is its two-dimensional syntax that, even
though decried by logicians, makes much sense to a computer scientist because it reminds of
how, since the 70es of the 20th century, structured programs (Böhm and Jacopini 1966; Dijkstra
1968) are rendered, or “pretty printed”, for better readability.

A second salient and important aspect of Frege’s logic is that its syntax covers both what
are called today the logical and (some of) the meta-logical language. In a manner that reminds of
Prolog meta-programming, Frege’s logic language includes notations for assumptions, theorems,
logical equivalence (noted nowadays |==|), and the extension of a predicate (in the sense of
the assignment of truth values to atoms), and the truth values “true” and “false”. Frege’s logic
includes the following symbols that, nowadays, are seen as meta-logical:

• = used for expressing that its two arguments (sentences) have the same truth value (de-
pending on the context, this is expressed nowadays using |==| or⇔)

• |− used for introducing an assumption
• ||− used for introducing a theorem
• ext used as in ext α Φ(α) for denoting the “course of values” or, as the notation suggests,

the extension, that is, the graph of the function Φ

Frege’s logic also includes the symbol – as a mark for the beginning of a (two-dimensional)
sentence.
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A third salient aspect of Frege’s logic is that the denotation, or literal meaning, of each of its
sentences (or closed formulas) is a truth value “true” or “false”. Consistently with this, predi-
cates called “concepts” in Frege’s logic are functions mapping their defining sentences to truth
values. For avoiding confusions, the name “concept” is used in the following for referring to the
functional predicates of Frege’s logic.

Frege’s logic has first-order terms examples of which are the numbers 1 and 3 and the com-
pound term 1+ 3 built using the function symbol +. Frege’s logic has atomic sentences built
from concepts of arity 1 or 2. Interestingly, Frege’s logic has no concepts of arity 0 that would
correspond to propositional variables. Frege did not make use of concepts of arities greater than 2
because his number theories are conveniently expressed without such concepts. In Frege’s logic,
compound sentences are built very much like in nowadays’ predicate logic from the connectives
¬ and⇒ and the universal quantifier ∀ that can be applied to terms as well as concepts. As Frege
points out, concepts can be first-order (if they predicate only of terms) or second-order (if they
predicate of concepts):

“We call first-order functions functions the arguments of which are objects, second-order functions func-
tions the arguments of which are first-order functions.” (Frege 1893, p. 36)1

Frege points out how conjunction (∧), disjunction (∨), and equivalence (⇔) can be expressed
using negation (¬) and implication (⇒) and how existential quantification (∃) can be expressed
using negation (¬) and universal quantification (∀).

Frege’s logic has a proof calculus but no concept of interpretation, that is, no model theory.
Interpretations would be introduced later and used in 1930 by Gödel for proving the completeness
of the proof calculus of Frege’s logic (Gödel 1930).

In Frege’s logic, concept symbols but no formulas can occur as argument of second-order
concepts. Let S[a] denote a sentence in which the constant a might occur and let S[x/a] denote
the expression obtained by replacing in S each occurrence of a by a variable x. Basic Law V
of Frege’s logic is an axiom making it possible to define a concept c from a sentence S by an
expression amounting to ∀x c(x) = S[x/a]. Basic Law V (Frege 1893, § 20 p. 35) states:

|− (ext ε ( f (ε)) = ext α (g(α))) = ∀a ( f (a) = g(a))

which means that the courses of values of two concepts, ε and α , are identical if and only if the
open formulas defining these concepts, f and g respectively, have the same truth values for all
the values of their variables. (Note the use in Basic Law V of the symbol |− for “assumption”
or “axiom”, and the second and third occurrences of = expressing that two formulas denote the
same truth value, that is, are logically equivalent.)

Basic Law V makes it possible to define what Frege calls a “first-order concept” c that holds of
all natural numbers (that is, non-negative integers) that are both even and odd. Since c’s defining
expression, natural numbers being both even and odd, is inconsistent, the course of values ext(c)
of c is, in nowadays notation, {(n, f alse) | n ∈ N} and c specifies an empty set.

Basic Law V also makes it possible to define what Frege calls a “second-order concept” e as
follows:

(??) |− ∀x e(x) = ¬x(x)

1 “Wir nennen nun die Functionen, deren Argumente Gegenstände sind, Functionen erster Stufe; die Functionen dage-
gen, deren Argumente Functionen erster Stufe sind, mögen Functionen zweiter Stufe heissen.”
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that is, apart from the use of symbol |− for expressing an assumption and of = instead of⇔, is
exactly the definition of Russell’s Paradox in Reflective Predicate Logic (?) given in Section 6.

In contrast to the aforementioned concept c that holds of all natural numbers that are both
even and odd, e’s defining expression ¬x(x), a concept not holding of itself, is not inconsistent.
It is the whole sentence ∀x e(x) = ¬x(x) that is inconsistent. Indeed, instantiating the variable x
with e in that sentence yields e(e) = ¬e(e), that is, in nowadays syntax (e(e)⇔¬e(e)). Since its
tentative definition is an inconsistent sentence, e does not exist, hence its course of values does
not exist either, that is, e does not specify anything at all, not even an empty set.

Russell’s Paradox reminds of a propositional variable p defined by the sentence p = ¬p in
Frege logic’s syntax, or (p⇔¬p) in nowadays syntax. Since its tentative definition is an incon-
sistent sentence, p does not exist, hence its course of values does not exist either, that is, p does
not specify anything at all.

Thus, the inconsistency of Frege’s logic does not result from Basic Law V in itself. It results
from both, Frege logic’s impredicative atoms and Basic Law V, that together make possible
inconsistent concept definitions like Russell’s paradox (??).

Russell devised his Ramified Theory of Types (Russell 1908) so as to make impossible incon-
sistent sentences like that of the paradox bearing his name. Russell’s Ramified Theory of Types
requires that a higher-order concept applies only of concepts of the immediately preceding or-
der. In other words, Russell’s Ramified Theory of Types precludes impredicative atoms like e(e)
or belief(belief(itRains)). Thus, Russell’s fix of Frege’s logic ensures the consistency of
axioms resulting from Basic Law V by precluding not only inconsistent axioms but also some
expressions including consistent sentences.

Interestingly, the Ramified Theory of Types does not preclude that a propositional variable
p is defined by the inconsistent sentence (p⇔¬p). Russell’s position was not flawed, though.
Since the Vicious Circle Principle (Russell 1907; Russell 1986) he advocated for (see Section4)
forbids to define something by referring to that same thing, that principle also forbids to define a
propositional variable p by (p⇔¬p). Thus, Russell had no reasons to preclude such inconsistent
definitions of propositional variables with his Ramified Theory of Types.

It is nonetheless puzzling that the obvious fix of Frege’s logic consisting in requiring that
concept definitions are consistent would have been immediately apparent if Frege had included
propositional variables in his logic that, three decades earlier, George Boole had proposed and
formalised (Boole 1854).

It is tempting to think that following Frege’s inspiration, a logic with impredicative atoms
similar to Reflective Predicate Logic could have been proposed and accepted much earlier. This,
however, is doubtful. Indeed, one essential step towards Frege’s goal of specifying number the-
ories was to provide a set theory. Russell’s objection to Frege’s logic was rooted at the kind of
“collections” Frege’s logic and Reflective Predicate Logic, because of their impredicative atoms,
give rise to define. Such “collections”, like the collection of beliefs mentioned in Section 4, make
much sense in knowledge representation and in formalising meta-programming. For specifying
number theories, however, they are more complicated than necessary.
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GÖDEL, K. 1944. The Philosophy of Bertrand Russell. Tudor, New York, Chapter Russell’s Mathematical
Logic.

GRAF, P. 1996. Term Indexing. Number 1053 in LNCS. Springer-Verlag. Doctoral thesis, Saarland Uni-
versity, Germany, 1995.
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