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ABSTRACT
Data stream management systems (DSMS) so far focus on
event queries and hardly consider combined queries to both
data from event streams and from a database. However,
applications like emergency management require combined
data stream and database queries. Further requirements are
the simultaneous use of multiple timestamps after different
time lines and semantics, expressive temporal relations be-
tween multiple time-stamps and flexible negation, grouping
and aggregation which can be controlled, i. e. started and
stopped, by events and are not limited to fixed-size time
windows. Current DSMS hardly address these requirements.
This article proposes Temporal Stream Algebra (TSA) so
as to meet the afore mentioned requirements. Temporal
streams are a common abstraction of data streams and data-
base relations; the operators of TSA are generalizations of
the usual operators of Relational Algebra. A in-depth ’anal-
ysis of temporal relations guarantees that valid TSA expres-
sions are non-blocking, i. e. can be evaluated incrementally.
In this respect TSA differs significantly from previous alge-
braic approaches which use specialized operators to prevent
blocking expressions on a “syntactical” level.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory—semantics; F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages—Algebraic
approaches to semantics, Operational semantics, Program
analysis; H.2.3 [Database Management]: Languages—
Query languages

General Terms
Theory, Algorithms, Languages, Verification

Keywords
CEP, Event Processing, DSMS, Data Stream, Query Alge-
bra, Incremental Evaluation, Temporal Analysis
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1. INTRODUCTION
The continuous and timely analysis of event streams, Com-

plex Event Processing (CEP), has become a widely recog-
nized discipline. Data stream management systems (DSMS)
[17, 23, 43, 6, 19, 54, 32, 1], derive higher-order knowledge in
the form composite events from a stream of low-level basic
events. Although active databases have addressed several
issues close to CEP, combined data stream and database
queries have hardly been considered so far. Recent DSMS
typically focus on event queries. If at all, queries to per-
sistent data, e. g. from a database, are usually restricted to
event-condition-action rules where the condition is executed
after the event query succeeded and hence serves as addi-
tional filter before the action is actually executed.

Emerging applications require combined data stream and
database queries, though [25]. One of these applications
is the detection and management of emergencies in large
infrastructures like metro system, airports or power grids.
Section 2 contains a simple example adopted from the metro
use-case [51, 52, 53], illustrating the need for combined data
stream and database queries.

The contributions of this article are as follows:

1. A common data model for data streams and database
relations

2. An algebra of operators for querying data streams and
database relations

Salient properties of this algebra are:

• Timestamps after different time lines/time-semantics

• Expressive temporal relations

• Rich negation, grouping and aggregation

The paper is structured as follows: Section 2 motivates
our approach using an example from emergency manage-
ment. Section 3 introduces temporal streams and the com-
mon data model for data streams and database relations.
Section 4 defines the operators of Temporal Stream Algebra
(TSA). Section 5 explains how propagated constraints on
temporal relations can be used to decide whether an opera-
tor application or TSA expression respectively is blocking or
not. Section 6 describes the incremental evaluation of TSA.
Sections 7 informs about related work and Section 8 points
to the presented achievements and to future work.



2. MOTIVATION
Combined data stream and database queries. Use

cases from emergency management need combined queries
to data stream and database data1 [51, 52, 53]. Consider
a train in which a fire has broken out and that has to stop
inside a metro station. Unfortunately the fire is close to one
staircase which therefore is likely to quickly fill with smoke
and should not be used for evacuation. For correctly assess-
ing the situation and choosing an appropriate reaction, the
system needs to combine the alarm events from smoke and
temperature sensors with static data about the location of
sensors and staircases. This way the system can conclude
that one of the staircases being too close to the fire should
not be used for evacuation as it will be impassable due to
smoke shortly. Since persistent data are required for inter-
preting the volatile data arriving on the stream, combined
data stream and database queries are needed.2

Declarativity. We argue that a high-level user-language
for combined data stream and database queries should be
declarative. A declarative language has a number of well-
known advantages, like ease of programming and clear and
(relatively) comprehensible semantics. This is particularly
important for emergency management where rules have to
be written (or at least have to be verified) by security experts
which typically have limited programming skills. Further-
more emergency management requires predicable results,
thus a clear semantic is mandatory. The work presented
in this paper is part of the implementation of the event,
state and action language Dura [10, 11, 12, 29].

Relational Algebra. For queries to database relations
declarative query languages, particularly SQL, are widely
used. Their system-level counterpart is Relational Algebra
[2, 26]. Temporal Stream Algebra (TSA) generalizes the
data model and operators of Relational Algebra to apply to
both data streams and database relations. Such a gener-
alization is by no means trivial and, so far, has not been
proposed. Preserving the data model and the operators of
Relational Algebra has at least two advantages: First the
properties of the operators are well understood. For exam-
ple the laws on operator permutations are very important for
the optimization of Relational Algebra expressions. Second,
there exist reliable techniques for the evaluation and opti-
mization of Relational Algebra expressions, like specialized
join algorithms, heuristics for operator reordering or cost-
models, that base on these laws and on other properties of
the operators of Relational Algebra. As TSA preserves the
operators and their characteristics these techniques and al-
gorithms can be reused or easily adopted for TSA. Third,
preserving the operators of Relational Algebra for combined
data stream and database queries means that the represen-
tation of database queries does not change at all and allows
to query data streams in the same way that is already fa-
miliar from database relations.

1Within this article the terms “database data” or “database
relation “ refer to static data as opposed to stream data.
2 Persistent data is likely to change less frequently than the
streaming data itself, but does not have to be completely
static. E.g. sensor locations may change, as for instance sen-
sors in a moving train. Using TSA it is possible to handle
dynamically changing persistent data in a semantically pre-
cise manner (i. e. without race conditions). This also holds
for the incremental evaluation of TSA (Section 6). However
details on this point it are out of the scope of this article.

Blocking Operators. Some operators of Relational Al-
gebra, the so called “blocking operators”, like set difference
or grouping and aggregation, in general need to process the
complete input before the may produce the correct results.
For a data stream the complete input is only known at the
end of the stream, which in the case of an CEP application
is only reached when the application is terminated. How-
ever CEP queries are required to deliver results as the data
arrives on the stream and not when the application is ter-
minated. Therefore the use of “blocking operators” within
CEP queries must be restricted to situations where each re-
sult only depends on a limited section of the stream and
thus can be produced before the complete stream is known.

Previous approaches [22, 37], including those not related
to Relational Algebra [19], tackle this problem on a “syn-
tactical” level. They basically restrict operators in such a
way that they may not lead to potentially blocking query
expressions. In other words, the “syntax” does not allow to
write blocking expressions. However solving this “seman-
tic” problem on a “syntactic” level puts unnecessary limits
to expressivity. By contrast TSA does not prevent blocking
query expressions on the “syntactical” level. Instead TSA
uses a “semantic” analysis of the temporal relations specified
in the query expression, to determine whether the expression
is blocking or not (See Sections 4 and 5 for details).

Common Data Model. Keeping the operators of Re-
lational Algebra calls for a common data model for data
streams and database relations as the same operators must
work on both data sources. Using common operators for
both data sources has two advantages: The number of oper-
ators is kept low and the common operators allow arbitrary
combinations of both stream and database data. Note that
a common data model for stream and database data should
incorporate constraints on temporal relations providing the
information that the temporal analysis needs to determine
the validity of an query expression with respect to“blocking”
or “non-blocking”. Thus the data model is a key elements of
TSA (see Section 3).

Multiple Time Lines. Modeling the emergency man-
agement use cases showed that a single, predefined time
model (regardless of being based on time points or inter-
vals) is insufficient. In emergency management even atomic
events may refer to at least three times. The first time is
the one at which an event, e. g. sensor message, is emitted.
This time is known as application time. The second time
is set when the event message is received by the CEP sys-
tem. This time is known as system time. The third time
is the time simulated data refer to. Simulated events are
used for predictions on the future development of an emer-
gency. For simulated events the time where the underlying
data is available (application/system time) differs from the
future time for which the event makes a prediction. Whether
these times are modeled as time point or intervals depends
on their usage and both, the common data model and the
algebra proposed in this article, leave this decision open.

Supporting multiple time lines requires more than having
multiple timestamp attributes. For example different time
lines impose different orders on the events. An in-order pro-
cessing is therefore only possible for at most one of the time
lines. For all other time lines the evaluation is inevitably
out-of-order. However previous algebraic approaches [22, 37]
assume in-order processing and current DSMS offer only lim-
ited support for out-of-order processing, and thus favor a sin-



gle time line. By contrast TSA treats all time lines equally
and imposes no limitation on their number. The presented
incremental evaluation of TSA does a bulk-wise out-of-order
processing for all time lines (Section 6).

Negation, Grouping and Aggregation. Finally emer-
gency management needs flexible negation and grouping and
aggregation that can be controlled, i. e. started and stopped,
by events. The “event-controlled” grouping and aggrega-
tion is required for queries like “Count the number of people
that have left the building from the detection of the fire to
the arrival of the fire-brigade”. Similar examples exist for
negation. Negation or grouping and aggregation fixed-sized
time-windows are too limited.

3. DATA MODEL: TEMPORAL STREAMS
The common data model for data streams and database

relations is an essential part of this work. Temporal streams
generalize the concept of (finite) relations from Relation Al-
gebra so as to include data streams as well. The basic idea
behind the definition is that streams may have potentially
infinite size, however they are expected to have only a finite
history at each point of time, i. e. up to some point of time
only a finite amount of data may arrive on the stream.

Definition 1. (Temporal Stream)
A temporal stream is a (possibly infinite) relation R with
attribute schema A(R) ⊆ ATTR and timestamp attributes
Atemp(R) = {p1, . . . , pk} that has a finite history at each
point in time. I. e. for all s1, . . . , sk ∈ Q the number of
tuples r ∈ R occurring before that point in time is finite:

|{r ∈ R | r(p1) ≤ s1 ∧ · · · ∧ r(pk) ≤ sk}| < ∞
where ATTR is a set of attribute names and Atemp(R) de-
notes the set of timestamp attributes of R. For data streams
Atemp(R) contains at least one timestamp attribute. For
ordinary (finite) database relation Atemp(R) may be empty.
As database relations are always finite they trivially fulfill
the condition formulated above.

The definition of temporal streams bases on the obser-
vation that each data item in a data stream is carrying
temporal information, i.e. timestamps, that is correlated
with the sequence order of the data items in the stream.3

The timestamps may refer to different time-models, none of
the timestamps might define a total order on the incoming
events and events may arrive out-of-order with respect to
each of the timestamps. However as long as the timestamps
refer to clocks that all increase over time, i.e. time does not
stop for any of the clocks, also the minimum value for each
timestamp of any future event increases over time.4 In
other words, as more and more data of the stream arrives
we observe temporal progress with respect to each of the
timestamps. TSA is very flexible with respect to the used
time models. TSA only requires a total order on the domain
of a time model,5 and supports the simultaneous use of mul-

3 Even the sequence numbers themselves can be seen as
a kind of timestamp, admittedly with respect to a quite
unusual time model. TSA is able to manage even this special
case.
4The data items may also contain timestamps, that are not
correlated to the sequence order, i.e. are not related to the
progress of time or the availability of data. Particularly
all timestamps of database relations fall into this category.
Such timestamps are treated as ordinary data.
5This does not impose a total order on the data items.

tiple different time models. However, for sake of simplicity
and without loss of generality this paper only uses a single
time model, namely Q.

In Relational Algebra relations are always finite. In some
way data streams, and thus the corresponding relations, are
finite, too. The reason is that no application will run forever
and so only a finite amount of data may arrive on the stream.
However this view is misleading as it wrongly suggests that
Relational Algebra could be applied to data streams just as
it is (See “Blocking Operators” in Section 2).

To stress the fact that we must not wait for the end of
a data stream,6 TSA models data streams as potentially
infinite relations adopting the idea in [22, 20]. The pay-
load of each data item including the associated timestamps
are stored in attributes of the corresponding type. How-
ever those timestamps that are correlated to the sequence
order,4 i.e. refer to the temporal progress of the stream,
play special role in the validation and the evaluation of TSA
expressions. A so-called “stream bound formula” within the
schema remembers the special role of these timestamps.

The schema of a relation in Relational Algebra is just
its set of attributes. For temporal streams the attribute
schema is accompanied by a “temporal relation formula”
and a “stream bound formula”. These formulas are for-
mally defined in Section 5. The “temporal relation formula”
(Definition 18) describes the temporal relations between the
timestamp attributes. The “stream bound formula” (Def-
inition 19) tells about the ability of timestamp attributes
to obtain a finite prefix of a temporal stream matching the
schema. Basically a timestamp attribute is able to yield a
finite prefix of a temporal stream if it is correlated to the
temporal progress of the stream as described above. The two
formulas carry the necessary information for the validation
and evaluation of a TSA expressions (See Section 5).

Definition 2. (Temporal Stream Schema)

1. A temporal stream schema is a triple S = (A,G,H)
such that A is an attribute schema, G is a temporal
relation formula and H is a stream bound formula and
all attributes occurring in G and H are in the attribute
schema (i.e. attr(G) ⊆ Atemp and attr(H) ⊆ Atemp).

2. A temporal stream schema S = (A,G,H) is valid if
the set of all timestamp attributes Atemp is a stream
bound with respect to G and H (See Definition 22).

3. A relation R matches a temporal stream schema S =
(A,G,H) if R has attribute schema A(R) = A and
both G and H hold in R (See Definitions 20,22). If S
is valid, the latter implies that R is a temporal stream.

4. TEMPORAL STREAM ALGEBRA – TSA
The common operators for queries to data streams and

database relations are the second essential element of TSA.
TSA generalizes the operators of Relational Algebra without
changing their definition of the result sets. As mentioned in
Section 2 this introduces the problem of “blocking” opera-
tors and query expressions. It is a fundamental observation,
that the answer to the question whether a certain query ex-
pression is non-blocking, depends on the temporal relations
between timestamp attributes imposed by the input streams
and the query expression itself. In Relational Algebra this

6This implies the need for an incremental evaluation



information is not propagated, though. Thus subsequent
operators may not rely on the information for determining
whether they can be applied correctly.

The solution of this problem (and one of the central ideas
of TSA) is the propagation of constraints on temporal re-
lations inside the schema of TSA expressions. The prop-
agation of the “temporal relation formulas” (Definition 18)
and of the “stream bound formulas” (SBFs, Definition 19)
contained in the schema of TSA expressions is therefore the
most important part of the TSA operator definitions.

Within a TSA program, temporal relations are established
in several ways. First by constraints that are part of the
schema of an temporal stream definitions. Temporal stream
definitions are the starting point for all TSA expressions.

Definition 3. (Temporal Stream Definition)
A temporal stream definition is a pair D = (n, S) where n ∈
STREAM is a name for an temporal stream, S = (A,G.H)
is a temporal stream schema, STREAM is a set of names
and the following restrictions hold:

1. G and H do not contain variables

2. H is a disjunction of atomic SBFs, i. e. has structure
bounded(p1, b1) ∨ . . . ∨ bounded(pk, bk)

3. The atomic SBFs bounded(pi, bi) in H define a bijec-
tion bD : Atemp → BOUND with inverse pD.

The first restriction allows to validate whether the schema
of a query expressions matches the schema of the output
stream. The third restriction is merely technical, it is impor-
tant when generating the necessary formulas and functions
for the incremental evaluation. The second restriction in
the above definition expresses that each stream bounds (see
Definition 22) of a temporal stream definitions must contain
a stream bound that consists only of a single timestamp at-
tribute.7 For example, if you would like to express that both
system- (psys) and application-time (papp) are stream bounds
of a stream D = (n, S) then the stream bound formula H of
schema S would look like this:

H = bounded(sys, n:sys) ∨ bounded(app, n:app)

All TSA expressions E have an associated schema S(E).
The schema of a temporal stream definition D = (n, S) is
S(D) = S. The schema S(E) of composite TSA expressions
is defined inductively in the definitions of the TSA operators.

Definition 4 shows that temporal relations may also be de-
rived from conditions on timestamp attributes imposed by
the selection operator. The definition of the resulting rela-
tion/temporal stream is the same as for Relational Algebra.

Definition 4. (Selection σ) Let E be a TSA expres-
sion with schema S(E) = (A,G,H) and let R be a temporal
stream which matches the schema of E and C a set of con-
ditions with domain(C) ⊆ A.

σ[C](R) := {r ∈ R | r satisfies C}
S(σ[C](E)) := (A, (G ∧ Ctemp), H ′)
where Ctemp is the TRF that results from C when replacing
every non-temporal atom by > if it occurs with positive
polarity or by ⊥ if it occurs with negative polarity.

7 Stream bounds with multiple elements that do not fulfill
this condition are allowed for the schema of TSA expressions.
They result from the application of binary operators like
cross-product, set-difference or union.

The definition of Ctemp extracts the maximum temporal
information from the condition C. Basically Ctemp results
from C by replacing all non-temporal atoms in such a way
that the condition C is fulfilled as much as possible.

Finally temporal information is introduced by the defini-
tion of new timestamp attributes relative to existing ones.
At that point the presentation of the TSA operators slightly
differs from the usual presentation of the operators of Re-
lational Algebra. The usual projection operator of Relation
Algebra allows both discarding attributes and defining new
attributes based on existing ones. In TSA we split these
two tasks into two operators: The projection operator of
TSA which only discards attributes and the imbed operator
which allows to define new attributes. These changes in the
presentation help to keep the definitions simple, as each def-
initions only cares for a single aspect of the propagation of
temporal relation formulas and stream bound formulas. The
following definition uses the notion of “temporal terms” that
are formally introduced in definition 17. Temporal terms
are a powerful mean to define relative timestamps.

Definition 5. (Imbed ι)
Let E be a TSA expression with schema S(E) = (A,G,H)

and let R be a temporal stream which matches the schema
of E. Let a′ /∈ A be a new attribute, t the term defining a′

and a1, . . . , ak ∈ A the attributes occurring in t.

ι[a′ = t](R) := {r′ | ∃r ∈ R such that
r′(a) = r(a) for a ∈ A and
r′(a′) = ft(r(a1), . . . , r(ak))}

S(ι[a′ = t](E)) := (A ∪ {a}, G′, H)

G′ :=

{
G ∧ (a′ = t) if t is a temporal term

G else

where ft : dom(a1)×. . .×dom(ak)→ dom(a′) is the function
of the values of a1, . . . , ak ∈ A defined by t.
If t is a temporal term, then t defines a relative timestamp.

The main point of the above definition is, that the defini-
tions of relative timestamp attributes are preserved within
the temporal relation formula G′ of the schema.

For projection and grouping the definition of the result-
ing temporal stream is almost the same as for Relational
Algebra. The only difference is that the projection may not
introduce new attributes. For both operators the temporal
relation formula and the stream bound formula are propa-
gated in the same way: The discarded timestamp attributes
are replaced by temporal variables. The simple definition
of grouping might be surprising, as grouping is one of the
“blocking” operator which are usually considered as “prob-
lematic”. But as TSA solves the problem of blocking query
expressions on the basis of the propagated temporal con-
straints and not on the level of the operators, the definition
of the grouping operator can actually be straight-forward.

Definition 6. (Projection π) Let E be a TSA expres-
sion with schema S(E) = (A,G,H) and let R be a temporal
stream which matches the schema of E and A1 ⊆ A the set
of retained attributes.

π[A1](R) := {r′ | ∃r ∈ R such that
r′(a) = r(a) for a ∈ A1}

S(π[A1](E)) := (A1, ξ(G), ξ(H))

where ξ is an injective mapping of the discarded timestamp
attributes in Atemp \ A1temp to variables that do not occur
in G or H.



Definition 7. (Grouping γ) Let E be a TSA expres-
sion with schema S(E) = (A,G,H) and let R be a tem-
poral stream which matches the schema of E and A1 ⊆ A
the set of grouping attributes. Let a1, . . . ak ∈ A \ A1 and
a′1, . . . , a

′
k /∈ A1 and F1, . . . , Fk aggregation functions like

min, max, sum or avg.

γ[A1][a′1 = F1(a1), . . . , a′k = F1(ak)](R) := {r′ | ∃r ∈ R
such that r′(a) = r(a) for a ∈ A1

and r′(a′i) = Fi((rγ(ai))rγ∈Rr ) }
S(γ[A1][a′1 = F1(a1), . . . , a′k = F1(ak)](E)) := (A1, ξ(G), ξ(H))

where Rr = {rγ ∈ R | rγ(a) = r(a) for a ∈ A1} and ξ is
an injective mapping of the discarded timestamp attributes
Atemp \A1temp to variables that do not occur in G or H.

The next definition is the second deviation from the usual
presentation of operators in Relation Algebra. The basic
TSA operators do not include a join but a cross-product op-
erator.Thus using the basic operators of TSA, a join must be
expressed as a combination of cross-product and selection.
Again this change helps to keep the definitions simple.

However omitting the join as basic operator does not re-
strict the expressivity or efficiency of TSA in any way. Fur-
ther operators, like the usual projection, renaming, join,
semi-join and anti-join, can easily be added to TSA. Such
easy extensions are not described in this article for pace
reasons. All these operators can be expressed as combi-
nations of the basic operators presented in this paper. Sec-
tions 5.1 and 6 show that the incremental evaluation of TSA
solely depends on the correct propagation of the temporal
constraints, but is independent from the concrete operators
contained in an TSA expression. Thus, defining a composite
operator with respect to semantics, constraint propagation
and incremental evaluation is just done by providing its de-
composed representation by means of basic operators.

Definition 8. (Cross Product ⊗) Let E1 and E2 be
TSA expressions with schema S(E1) = (A1, G1, H1) and
S(E2) = (A2, G2, H2) that have disjunct attributes (A1 ∩
A2 = ∅) and let R1 and R2 be temporal streams which
match the schema of E1 and E2 respectively.

R1 ⊗R2 := {r′ | ∃r1 ∈ R1, r2 ∈ R2 with
r′(a) = r1(a) for a ∈ A1

r′(a) = r2(a) for a ∈ A2}
S(E1 ⊗ E2) := (A1 ∪A2, ξ1(G1) ∧ ξ2(G2), ξ1(H1) ∧ ξ2(H2))

where ξ1 and ξ2 are injective substitutions, such that the
ξ1(G1), ξ1(H1) and ξ2(G2), ξ2(H2) use disjunct sets of tem-
poral variables.

The definition of the cross-product operator is straight-
forward. The renaming of the temporal variable avoids unin-
tended interferences between the temporal relation formulas
and stream bound formulas of the two subexpressions.

Definition 9. (Union ∪) Let E1 and E2 be TSA ex-
pressions with schema S(E1) = (A,G1, H1) and S(E2) =
(A,G2, H2) that have the same attributes and let R1 and
R2 be temporal streams which match the schema of E1 and
E2 respectively.

R1 ∪R2 := {r′ | ∃r with r ∈ R1 or r ∈ R2

and r′(a) = r(a) for a ∈ A}
S(E1 ∪ E2) := (A,G′, (ξ1(H1) ∧ ξ2(H2)))

G′ := (G′1 ∧G′′1 ∧ ξ1(G1)) ∨ (G′2 ∧G′′2 ∧ ξ2(G2))
G′1 := (ξ1(p1) = p1) ∧ . . . ∧ (ξ1(pk) = pk)
G′′1 :=

∧
v ∈ attr(H2) ∪ vars(H2)

(ξ2(v) ≤ p1 +−∞) ∧ . . . ∧ (ξ2(v) ≤ pk +−∞)

G′2 := (ξ2(p1) = p1) ∧ . . . ∧ (ξ2(pk) = pk)
G′′2 :=

∧
v ∈ attr(H1) ∪ vars(H1)

(ξ1(v) ≤ p1 +−∞) ∧ . . . ∧ (ξ1(v) ≤ pk +−∞)

where ξ1 and ξ2 are injective substitutions, that map all
timestamp attributes {p1, . . . , pk} = Atemp to temporal vari-
ables and replace temporal variables by other variables such
that ξ1(v) 6= ξ2(w) for any two timestamp attributes or tem-
poral variables v and w occurring in A, G1, G2, H1 or H2.

It is far from obvious why the definition of the union is
not as simple as the definition of the cross-product. With
regards to the temporal relation formulas (TRFs) only, it
would in fact be possible to define G′ = ξ1(G1)∨ξ2(G2) anal-
ogously to the definition in the cross-product operator.8 The
crucial point is that the attributes from the two subexpres-
sions, despite their identical names, are actually different, as
they originate from different inputs. This does not matter
for the TRFs at the first place. However it does matter for
the SBFs. Identifying the attributes from the different in-
puts could result in a wrong analysis of the stream bounds
(Definition 22) and other properties of the TSA expression.
Therefore the substitutions ξ1 and ξ2 and the formulas G′1
and G′2 are used to decouple the formulas from the two in-
puts. The intuitive meaning of G′′1 and G′′2 is that the part of
G′ corresponding to the first subexpression should not care
about the requirements ξ2(H2) on stream bounds from the
the second subexpression and vice versa.

Definition 10. (Set Difference \ ) Let E1 and E2 be
TSA expressions with schema S(E1) = (A,G1, H1) and
S(E2) = (A,G2, H2) that have the same attributes and let
R1 and R2 be temporal streams which match the schema of
E1 and E2 respectively.

R1 \R2 := {r1 ∈ R1 | ¬∃r2 ∈ R2 with r1 = r2}
S(E1 \ E2) := (A,G1 ∧ (G′1 ∨ ξ2(G2)), (H1 ∧ ξ2(H2)))
G′1 :=

∧
v ∈ attr(H2) ∪ vars(H2)

(ξ2(v) ≤ p1 +−∞) ∧ . . . ∧ (ξ2(v) ≤ pk +−∞)

where ξ2 is an injective substitution for temporal variables,
such that the substituted variants ξ2(G2), ξ2(H2) of G2,
H2 and the original formulas G1, H1 use disjunct sets of
temporal variables.

The constraint propagation for set-difference is a little bit
tricky, too. On the one hand, the TRF G2 does not im-
pose any constraints on the output tuples of the expression.
Thus we could just choose G1 as TRF for the schema of
the expression. On the other hand the information in G2

needs to be propagated to correctly determine the stream
bounds with respect to the negative expression. The solu-
tion is as follows: First G1 is assumed to hold for the nega-
tive subexpression as well, as those tuples from the negative
stream that do not fulfill G1 are irrelevant anyhow. Second
ξ2(G2) is combined disjunctively with G′1. As in the def-
inition for the union G′1 basically tells that in case of the
positive subexpression one does not need to care about the
requirements ξ2(H2) on stream bounds from the negative
subexpression. A symmetric counterpart of G′1 for the neg-
ative subexpression is not necessary, as G1 also holds for

8 The definition for the TRF in the result schema is equiv-
alent to the simple definition w.r.t. Definition 20.



the negative subexpression. However G′1 does not impose
any temporal relations between the timestamp attributes of
E. Thus the same holds for G′1 ∨ ξ2(G2). TSA makes only
weak, “syntactic” checks when defining temporal streams or
TSA expressions. Further “semantic” checks are done at a
later stage. The next definitions reference Definition 22 from
Section 5 about temporal analysis.

Definition 11. (Validity of Temporal Stream
Definitions) A temporal stream definition D with schema
S(D) = (A,G,H) is valid iff the set of all timestamp at-
tributes Atemp is a stream bound with respect to G and
G. The definition implies that any relation R matching the
schema S(D) is a temporal stream.

Definition 12. (TSA Query) A TSA query is a pair
q = (D,E) such that E is a TSA expression with schema
S(E) = (A,GE , HE) and D is a temporal stream definition
for the output stream with schema S(D) = (A,GD, HD)
which both have the same attributes.

Definition 13. (Validity of TSA Queries)
Let q = (D,E) be a TSA query as defined in Definition 12
and let D1, . . . , Dk be the temporal stream definitions oc-
curring in E. The TSA query q is valid iff

1. D1, . . . , Dk are valid.

2. The schema S(E) of the TSA expression E matches the
schema S(D) of the definition for the output stream,
i. e. GE implies9 GD and all stream bounds with re-
spect to GD and HD are stream bounds with respect
to GE and HE .

The most important property of valid TSA queries is, that
they are non-blocking, i. e. can be evaluated incrementally.

Proposition 14. (Non-Blocking Queries)
Let q = (D,E) be a TSA query and let D1, . . . , Dk be the
temporal stream definitions occurring in E.

If q is valid the q is non-blocking. This means, for any tem-
poral streamsR1, . . . , Rk matching the schema ofD1, . . . , Dk
respectively and any stream bound {p}10 with respect to
S(D), the finite prefix for limit s ∈ Q
{r ∈ E(R1, . . . , Rk) | r(p) ≤ s} =
{r ∈ E({r1 ∈ R1 | r1(p1,1) ≤ s1,1 ∨ · · · ∨ r1(p1,l1) ≤ s1,l1},...

{rk ∈ Rk | r1(pk,1) ≤ sk,1 ∨ · · · ∨ r1(pk,lk ) ≤ s1,lk}
) | r(p) ≤ s}

where {pi,1}, . . . , {pi,li} are stream bounds for S(Di) and
si,1, . . . , si,li ∈ Q for 1 ≤ i ≤ k, i. e. the prefix depends only
on finite prefixes of R1, . . . , Rk.

Proof (Sketch). Let S(D) = (A,GD, HD) and S(E) =
(A,GE , HE). Without loss of generality one may assume
that the temporal stream definitions D1, . . . , Dk use differ-
ent stream bound identifiers, as Proposition 14 and none
of its indirectly referred Definitions depend on the actual
names of stream bounds.

As q is a valid query, any stream bound {p} ⊆ Atemp with
respect to S(D) is a stream bound with respect to S(E).

Let GE be the normalized form of GE (see Section 5.1)
and the DNF of GE of GE be dnf (GE) = C1∨· · ·∨Cl, where

9Can be checked if right side does not contain variables. By
definition GD and HD do not contain variables.

10 The 2. restriction in Definition 12 and Proposition 14 imply
the analogous proposition for arbitrary stream bounds.

C1, . . . , Cl are conjunctions of normalized atomic temporal
relation formulas (Definition 18).

For each Di, 1 ≤ i ≤ k and each Cj there must exist at
least one11 atomic stream bound formula bounded(vi,j , bi,j)
in HE

12 (Definition 19) where vi,j ≤ p+distCj (vi,j , p) (Def-
inition 21) and bi,j belongs to Di.

However vi,j is actually a renamed version of the attribute
pi,j := pDi(bi,j) associated to bi,j in Di. Thus if p ≤ s in
the result relation then pi,j ≤ si,j := s − distCj (vi,j , p) in
the source relation Ri, at least for “case”Cj of GH .

Proposition 15 allows to apply the formal results from the
formulas to the actual relations.

Finally the disjunction ri(pi,1) ≤ si,1 ∨ · · · ∨ r1(pi,l) ≤
si,l provides the condition required for the proof for each
temporal stream definition Di. This disjunction could be
condensed but this is needed for the proof.

The proof of Proposition 14. bases on the following propo-
sition on the well-definedness of the TSA operators.

Proposition 15. (Well-Definedness) Let E be a valid
TSA expression where D1, . . . , Dk are temporal stream def-
initions occurring in E. If R1, . . . , Rk are temporal streams
matching the schema of D1, . . . , Dk respectively then the
E(R1, . . . , Rk) and matches the schema S(E).

Proof (Sketch). The proof is straight-forward by in-
duction over the structure of E.

Proposition 16. (Relational Completeness) TSA is
relational complete [18] for finite (non-stream) relations.13

Proof. On finite non-stream relations, TSA is equivalent
to Relational Algebra.

5. TEMPORAL RELATIONS
Temporal relations are an essential part of expressive data

stream queries as discussed in Section 4.
Temporal terms are used to specify new timestamps rel-

ative to existing timestamps. This is for example needed
when defining the timestamps p of a composite event (see
Definition 5). Assume that the composite event is composed
from two events with timestamps p1 and p2. A usual def-
inition for the timestamp p of the composite event would
be p = max{p1, p2}. Temporal terms are also used when
establishing a temporal relation, that is not just “equal”, be-
tween two existing timestamps using the selection operator
(see Definition 4). For example if a timestamp p1 should
occur at most 2 seconds after timestamp p2 then this would
translate to p1 <= p2 + 2sec where p2 + 2sec is a temporal
term defining a new timestamp relative to p2. To the best
of our knowledge temporal terms allow to realize any of the
usual temporal semantics for timestamps (also intervals) of
composite events [31, 6, 22, 8].

11 If Di describes a static relation this does not hold. But in
that case there is nothing to show. One can choose li = 0.

12 Note that HE is in CNF with exactly one clause per
D1, . . . , Dk. This follows immediately from the definition
of temporal stream definitions and of TSA operators.

13 The term “relational complete” compares the expressive
power of some formalism for querying finite relations to the
expressive power of Relational Algebra. A generalization to
temporal streams is, if at all possible, non-trivial.



Definition 17. (Temporal Terms)
The set of temporal terms is defined inductively:

1. v ∈ ATTR ∪VAR is an atomic temporal term

2. t+ c is a temporal term
iff t is a temporal term and c ∈ Q

3. min{t1, . . . , tk}, max{t1, . . . , tk} are temporal terms
iff t1, . . . , tk are temporal terms

where VAR is a set of temporal variables, VAR∩ATTR = ∅.

Temporal relation formulas (TRFs) describe temporal re-
lations between temporal terms, particularly between times-
tamp attributes and/or variables. Variables are basically re-
quired for handling relations on attributes that are discarded
by the projection or the grouping operator of TSA (See Def-
initions 6,7). Temporal relations in TSA are based on times-
tamps (in contrast to intervals). However time intervals can
be defined using two time stamps and a TRF stating that the
first timestamp is smaller then the second. Furthermore as
TRFs enable conjunctions and disjunctions14 all 213 interval
relations of Allen’s interval algebra [5] can be expressed.

Definition 18. (Temporal Relation Formulas)
The set of temporal relation formulas (TRFs) is defined in-
ductively:

1. > and ⊥ are atomic TRFs

2. t1 op t2 is an atomic TRF for op ∈ {<,≤,=,≥, >, 6=}
iff t1 and t2 are temporal terms

3. G ∧G′, G ∨G′ and ¬G are TRFs iff G, G′ are TRFs

TRFs store the information about temporal relations be-
tween timestamp attributes. When using multiple times-
tamp attributes there shows another effect which is not cov-
ered by TRFs, though. The definition of temporal streams
(Def. 1) requires that upper limits to the values of all times-
tamp attributes of a temporal relation result in a finite pre-
fix of the stream. However, if input streams carry more
than one timestamp then it often suffices to limit a subset
of the timestamp attributes of the temporal stream to ob-
tain a finite prefix. Consider for example, an input stream
with application- and system-time timestamps. An upper
limit for the values of one of the two timestamps suffice
to obtain a finite prefix of the input stream. If two input
streams of this kind are combined by the cross-product op-
erator then any subset of timestamp attributes containing
at least one timestamp attribute from each stream, can be
used to get an finite prefix of the result stream. The pur-
pose of stream bound formulas (SBFs) is to propagate the
information which combinations of timestamps are suited
for obtaining a finite prefix of a temporal stream. The SBF
for a (static) database relation may just be > as we do not
need to obtain a finite prefix in that case.

Definition 19. (Stream Bound Formulas) The set of
stream bound formulas (SBFs) is defined inductively:

1. > is an atomic SBF

2. bounded(v, b) is an atomic SBF for v ∈ ATTR ∪ VAR
where b ∈ BOUND is a stream bound identifier.

3. H1∧H2 and H1∨H2 are SBFs iff H1 and H2 are SBFs.

14By contrast Point Algebra [40] allows only conjunctions.

Definition 19 assigns so-called “stream bound identifiers”
to the atoms of a SBF. As these identifiers do not change
during the propagation process (in contrast to the names of
attributes and variables) the identifiers allow to identify the
input relation that a specific atom in a SBF originates from.
This way the temporal analysis of a TSA query expression
that is needed for validation and incremental evaluation may
base solely on the propagated formulas and does not need
to analyze the TSA query expression recursively.

5.1 Temporal Analysis
As stated throughout the whole article, TSA analyses the

temporal constraints for a number of reasons, e. g. for the
decision on the validity of a query expression and for its
incremental evaluation. This section provides the relevant
definitions and briefly describes the employed algorithms.

Normalization of Temporal Relation Formulas.
Temporal relation formulas (TRFs) can be normalized using
the following equivalences in (NORM).15 After normaliza-
tion the TRF is equal to > or ⊥ or all atomic subformulas
have the form v ≤ w + c and the normalized TRF does not
contain negation. This normalization is essential for follow-
ing definitions and the algorithmic analysis of TRFs.

Neg1 : ¬(G ∧G′)⇔ (¬G ∨ ¬G′)
Neg2 : ¬(G ∨G′)⇔ (¬G ∧ ¬G′)
Neg3 : ¬¬G⇔ G
Neg4 : ¬(t1 op t2 + c) ⇔ t1 op−1 t2 + c
Neg5 : ¬> ⇔ ⊥ and ¬⊥ ⇔ >
Top : G ∧ > ⇔ G and G ∨ > ⇔ >
Bot : G ∧ ⊥ ⇔ ⊥ and G ∨ ⊥ ⇔ G
Zero : v op w ⇔ v op w + 0
Eq : t1 = t2 + c ⇔ (t1 ≤ t2 + c) ∧ (t1 ≥ t2 + c)
Neq : t1 6= t2 + c ⇔ (t1 < t2 + c) ∨ (t1 > t2 + c)
Geq : t1 ≥ t2 + c ⇔ t2 + c ≤ t1
Gr : t1 > t2 + c ⇔ t2 + c < t1

Less16 : t1 < t2 + c ⇔ t1 ≤ t2 + (c− ε)
Arith1 : t1 + c op t2 ⇔ t1 op t2 + (−c)
Arith2 : t1 op (t2 + c) + d ⇔ t1 op t2 + (c+ d)
Min1 : t ≤ min{t1, . . . , tk}+ c ⇔

t ≤ t1 + c ∧ . . . ∧ t ≤ tk + c
Min2 : min{t1, . . . , tk} ≤ t+ c ⇔

t1 ≤ t+ c ∨ . . . ∨ tk ≤ t+ c
Max1 : t ≤ max{t1, . . . , tk}+ c ⇔

t ≤ t1 + c ∨ . . . ∨ t ≤ tk + c
Max2 : max{t1, . . . , tk} ≤ t+ c ⇔

t1 ≤ t+ c ∧ . . . ∧ tk ≤ t+ c
for temporal terms t1, . . . , tk and c, d ∈ Q and TRFs G,G′

and v, w ∈ ATTR ∪VAR and op ∈ {<,≤,=, >=, >, 6=}
and <−1 7→ > , ≤−1 7→ ≥ , =−1 7→ 6= , ≥−1 =≤ ,
>−1 7→< , 6=−1 7→ =

Definition 20. (Temporal Relations) A temporal re-
lation formula G holds in R, denoted R |= G, iff for all tuples
r ∈ R the instantiation σr(G) of G is satisfiable in Q:

|=Q ∃v1, . . . , vl : σr(G)

where Atemp = {p1, . . . , pk} and {v1, . . . , vl} = vars(G)
and σr := {p1 7→ r(p1), . . . , pk 7→ r(pk)}

15 In case of the algorithmic analysis, the equivalences are to
be read from left to right.

16 Imagine ε as infinitely small value with (c− ε) + (d− ε) =
((c+ d)− ε) and c− ε < c but d < c− ε if d < c.



The temporal distance17 of two temporal variables or times-
tamp attributes is the maximum that the value of the second
temporal variable is smaller than the value of the first [13].
This information is essential for the incremental evaluation
(see Section 6) and for automatic garbage collection18.

Definition 21. (Temporal Distance) Let G be a tem-
poral relation formula and R be a temporal stream with
A(R) = A. The temporal distance of two attributes or vari-
ables v, w ∈ ATTR ∪VAR with respect to G is

distG(w, v) := max
C∈dnf (G)

{distC(w, v)}

distC(w, v) := min{c | T D, C |=
Q
v ≤ w + c}

where u, v, w ∈ ATTR ∪ VAR and c, d,+∞,−∞ ∈ Q and
G is the normalized form of G and C is a conjunction of
atomic TRFs of the form v ≤ w + c and T D contains

Ref : v ≤ v
Trans : u ≤ v + c ∧ v ≤ w + d ⇒ u ≤ w ± (c+ d)
Inf : v ≤ w + +∞

The algorithmic analysis of the temporal distances is closely
related to the simple temporal problem (STP) [48] and the
disjunctive temporal problem DTP [35]. Basically the (naive)
analysis algorithm is as follows: The TRF is normalized and
converted into disjunctive normal form. Each conjunction is
an STP instance. The distance of all pairs of attributes and
variables for this instance can determined using any algo-
rithm for the all-pair shortest path problem, e. g. the Floyd
Warshall algorithm [24], or specialized algorithms for STP.
The distance of two attributes or variables for the whole
TRF is then the maximum distance of the two attributes or
variables in any of the conjunctions.

The following definition is about so-called“stream bounds”
that can be derived from a SBF and its corresponding TRF.
Stream bounds are those sets of timestamp attributes of a
temporal stream that are suited to limit the stream to a fi-
nite prefix. Intuitively speaking, stream bounds do not let
any part of the stream pass infinitely. The decision whether
some TSA query is blocking or not depends on the analysis
of stream bounds.

Definition 22. (Stream Bounds) Let G be a temporal
relation formula andH be a temporal relation constraint and
let R be a temporal stream with A(R) = A.

1. A set {p1, . . . , pk} ⊆ ATTR is a stream bound with
respect to G and H iff

bounded(p1, b1), . . . , bounded(pk, bk), G, T D,SB |= H

for any b1, . . . , bk ∈ BOUND19 and

SB : v ≤ w + c , c < +∞ , bounded(w, bw)⇒ bounded(v, bv)

for v, w ∈ ATTR ∪VAR, bv, bw ∈ BOUND and c ∈ Q
2. A set {p1, . . . , pk} ⊆ ATTR is a stream bound with

respect to schema S = (A,G,H) if {p1, . . . , pk} is a
stream bound with respect to G and H.

3. The set {p1, . . . , pk} ⊆ Atemp(R) of timestamp at-
tributes is a stream bound for R iff every upper limit
s1, . . . , sk ∈ Q for the values p1, . . . , pk yields a finite
prefix of R:

|{r ∈ R | r(p1) ≤ s1, . . . r(pl) ≤ sl}| <∞
17Note that the temporal distance is usually asymmetrical.
18Automatic garbage collection is not described in this paper,
see [20, 13] for the idea

19 Actually the names of atomic SBFs do not play a role here.

4. H holds in R with respect to G, denoted R |=G H, iff
all stream bounds {p1, . . . , pl} ⊆ Atemp with respect
to G and H are stream bounds of R.

The algorithmic analysis of the stream bounds is similar
to the one for temporal distances. The TRF G is normalized
and converted into disjunctive normal form. For each con-
junction C the following is done: First the distance between
all attributes and variables in the conjunction is computed.
Second for each atom in the SBF H, the atom is set to true
if the distance from one of the attributes of the potential
stream bound {p1, . . . , pk} to the attribute or variable in
the atom is finite. Otherwise the atom is set to false. If
the H holds under this interpretation, then {p1, . . . , pk} is a
stream bound with respect to C. If {p1, . . . , pk} is a stream
bound with respect to all conjunctions, then {p1, . . . , pk} is
a stream bound with respect to G and H.

Increment formulas are the basis for the increment condi-
tions that are used to transform a usual TSA expression into
an incremental expression. Basically the increment condi-
tions are derived from the increment formulas, by replacing
names b ∈ BOUND by their current value at run-time. In
other word, Increment formulas are the parametrized ver-
sions of the increment conditions.

Definition 23. (Increment Formulas) LetH be a SBF.
The increment formula MH to H is defined recursively:

MH> = >
MHbounded(v,b′) = v ≤ b
MHH1∧...∧Hk = FH1 ∧ . . . ∧ FHk
MHH1∨...∨Hk = FH1 ∨ . . . ∨ FHk
where v ∈ ATTR∪VAR and b ∈ BOUND . MH results from
H by replacing each atom bounded(v, b) in H by v ≤ b.

Stream bound functions are used to compute the progress
of an output stream of a TSA query with respect to the
progress of the input streams of the query (see Section 6).
Stream bound function formulas are an intermediate step
in the generation of these functions. Due to their special
structure, stream bound function formulas are probably a
good basis for optimizing stream bound functions using tech-
niques for the optimization of Boolean functions [34].

Definition 24. (Stream Bound Functions) Let G be
a TRF, H be a SBF, b ∈ BOUND the name for a stream
bound and p ∈ ATTR a timestamp attribute that is assigned
to b (e. g. by bounded(p, b) in a temporal stream definition).

1. The stream bound function formula for p, b, G and H
is defined recursively:

Fb,p,G,H =
∧

C∈dnf (G)

Fb,p,C,H

Fb,p,C,> = >

Fb,{p},C,v≤b′ =


> if distC(p, v) = −∞
⊥ if distC(p, v) = +∞
b ≤ b′ − distC(p, v) else

Fb,p,C,(H1∧...∧Hk) = Fb,p,C,H1 ∧ . . . ∧ Fp,b,C,Hk
Fb,p,C,(H1∨...∨Hk) = Fb,p,C,H1 ∨ . . . ∨ Fb,p,C,Hk

where v ∈ ATTR and b′ ∈ BOUND and G is the
normalized form of G and C is a conjunction of atoms
of the form v ≤ b′.
The basic idea is, to enforce v ≤ b′ using p and b and
the inequation v ≤ p+ dist(p, v) ≤ b+ dist(p, v) ≤ b′.



The
∧

in the first case results from the fact that H
must hold in each case of G (compare Definition 19).

2. Let F be a stream bound function formula for b and
any p, G, H. The stream bound function fF of F is
defined recursively:

f> = +∞ f⊥ = −∞
fb≤b′−d = b′ − d
fF1∧...∧Fk = min{fF1 , . . . , fFk}
fF1∨...∨Fk = max{fF1 , . . . , fFk}
where b′ ∈ BOUND and d ∈ Q.

3. The stream bound function for p, b, G and H is

fp,b,G,H = fFp,b,G,H

4. The stream bound function for a TSA query q = (D,E)
with S(D) = (A,GD, HD) and S(E) = (A,GE , HE)
and b occurring in HD

fb,q = fpD(b),b,GE ,HE

where pD is the function defined in Definition 3.

The stream bound function formula F can be normalized
to be > or ⊥ or not to contain > or ⊥ at all. In that case
fF is either −∞ or +∞ or does not contain −∞ or +∞ at
all. If F = ⊥, thus fF = −∞, then p is not a stream bound
with respect to G and H. If fF = +∞ then G and H belong
either to a static relation or a stream that is actually empty
because its imposed temporal relations are unsatisfiable.

6. INCREMENTAL EVALUATION
An incremental evaluation is obviously crucial for TSA.

The incremental evaluation allows to derive results contin-
uously as the data arrives on the stream. Without an in-
cremental evaluation results could only be derived at the
end of the stream which is too late for CEP application and
particularly for emergency management. Proposition 14 in
Section 4 shows an important property of valid TSA queries:
Any prefix of the result stream of a query q depends only on
finite prefixes of the input streams of q.

Without loss of generality the definitions for the incremen-
tal evaluation of TSA assume that all temporal stream defi-
nitions of a TSA program use different stream bound identi-
fiers b ∈ BOUND . This can easily be realized if BOUND =
STREAM ×ATTR and for temporal stream definition D =
(n, S) and stream bound {p} of S the stream bound identifier
b = bD(p) corresponding to p in D has the form b = n : p.

The incremental evaluation of TSA allows for an asyn-
chronous evaluation of the queries of a TSA program.20

However the queries are not fully independent from each
other, but need to exchange information on the progress of
their respective output streams. This is necessary as the
maximum achievable progress of of the output stream of a
query depends on the progress of the referred input streams.

The incremental evaluation uses values assigned to the
stream bound identifiers occurring in the temporal stream
definitions and queries, to propagate this progress informa-
tion. These values are used to instantiate the increment
formula (Definitions 23) for the current increment computa-
tion of a query. The values for stream bound identifiers serve

20 Actually every fair sequence for the increment computa-
tions will compute the correct result. The actual sequence
may significantly affect the efficiency and the response-time
of the evaluation, though.

for a similar purpose as the “punctuations” of [57]. However
they are not only used for input streams but are propagated
through the evaluation process.

Definition 25. (Stream Bound Values)
Let P be a set of TSA Queries. For a TSA Query q = (D,E)
let sq,i ∈ Q and eq,i ∈ Q denote the start and end time of
the ith (i ≥ 1) increment computation for q. The following
is defined simultaneously:

1. Value of b for query q at the ith increment computation
for q and i ≥ 0

vq,0(b) = −∞
vq,i(b) = fb,q(vsq,i(b1), . . . , vsq,i(bl))

where fb,q is the function term from Definition 24 and
b1, . . . , bl are the stream bound names occurring in fb,q.

2. Value of b for query q at time t ∈ Q

vq,t(b) =

{
vq,0(b) for t < eq,1

vq,i(b) for eq,i ≤ t < eq,i+1

3. Value of b for temporal stream definition D at time t

vD,t(b) = min
q′∈P

out(q′)=D

{vq′,t(b)}

The value vD,t(b) for input streams must be provided.
The values for each D must not decrease and should
exceed every limit after some finite amount of time. If
so, then the same holds for the derived values, assum-
ing a fair execution sequence for the queries. 21

4. Value of b at time t

vt(b) = vDb,t(b)

whereDb is the temporal stream definition correspond-
ing to b.

The definition is well defined as sq,i < eq,i for i ≥ 1.

The incremental evaluation is able to work with conserva-
tive approximations of the stream bound values, too. This
is particularly useful for a parallel or even distributed evalu-
ation of a TSA program, as the values for the stream bound
identifiers do not need to be perfectly synchronized. Further-
more one could conservative approximations for the func-
tions fb,q. The functions fb,q are optimal with respect to the
achievable progress, however approximate,i. e. simpler ver-
sions of the functions may help to reduce the computational
overhead that is potentially introduced by the computation
of the stream bound values.

As the each step of the incremental evaluation of a query
only depends on the current values for the stream bound
identifiers, it is easily possible to stop and resume the incre-
mental evaluation by storing the values persistently. This
is particularly useful for crash recovery, but also allows to
switch the scheduling strategy or even to re-optimize the
executed program.

21 In case of system time this is basically the current value
of the local clock minus 1.“Minus 1” ensures that definitely
all new data item will receive a greater timestamp than the
returned value. This assumes that the value of a clock is
never decreasing. For application time, a mechanism similar
to “punctuation” [57] had to be used.



Definition 26. (Increment Expression)
Let q = (D,E) be a valid TSA query with output schema
S(D) = (A,GD, HD). The incremental expression for the
i+ 1th (i >= 0) increment computation for q is:

MEi+1 = σ[MHD i+1 ∧ ¬MHD i ](E)

where MHD is the increment formula for HD from Defini-
tion 23, MHD i+1 results from MHD by replacing each stream
bound name b by its new value vq,i+1(b) and MHD i results
from MHD by replacing each stream bound name b by its
old value vq,i(b) from the ith execution of ME.

The increment expression for a query can be seen as para-
metrized expression. This is very useful as it avoids to com-
pile each of the increment expressions at the run-time of
the TSA program. Instead the parametrized version of the
increment expression can be compiled only once.

Furthermore, the increment expression is in fact an or-
dinary Relational Algebra expression, i.e. the incremen-
tal evaluation reduces the evaluation of TSA expressions to
the evaluation of Relational Algebra expressions. In other
words, TSA generalizes Relational Algebra to data streams
and the incremental evaluation of TSA reduces the evalua-
tion of TSA to the evaluation of Relational Algebra. Thus
an efficient implementation of Relational Algebra could eas-
ily be enhanced to an implementation of TSA that allows
for processing database relations and streams.

Proposition 27. (Correctness) The consecutive exe-
cution of the increment statements ME1,ME2,ME3, . . . for a
TSA query q = (D,E) yields the same result as if E had
been applied to the whole stream at once.

7. RELATED WORK
Most current DSMS focus on event streams and hardly ac-

count for database data. Generally speaking current DSMSs
and their corresponding query languages have a built-in se-
mantics for timestamps and do not support the use of times-
tamps from multiple time lines. Furthermore the time win-
dow and sequencing constructs offered by the query lan-
guages make it hard or even impossible to express complex
temporal relations. The insufficient treatment of temporal
relations of also results in a very limited support for negation
and grouping and aggregation. Typically DSMS either offer
no out-of-order processing or treat it as “necessary evil”. A
bulk-wise processing of events is hardly accounted for.

Temporal Algebras [55, 41, 45] are used in so-called
temporal databases which are one of the (many) ancestral
fields of CEP. Temporal algebras do neither account for the
stream aspect of CEP nor for the incremental evaluation
needed to the potentially infinite relations representing event
streams. Queries are just evaluated against the currently
available data and do not care whether data arriving in the
future might invalidate the result of the query.

Composition Operator Approaches are characterized
by the use of composition operators, particularly the se-
quence operator, for building complex events and express-
ing temporal relations. The classification comes from [21]
which classifies these approaches as “composition operator
languages”. The following systems and approaches belong to
this category: Amit [4], ruleCore [54, 44], CAYUGA [19, 31]
and [28, 27, 16, 3, 39, 59, 7, 58, 14, 49, 42, 30, 15, 9, 50, 46].
The underlying semantics (if such) typically uses the term
Event Algebra, however these algebras have little in common

with Relational Algebra and thus TSA. One main difference
to TSA is that temporal relations are expressed by compo-
sition operators like the sequencing operator and not within
a selection as in TSA.22 Combined queries to data streams
and databases are hardly supported. Furthermore only sin-
gle timestamps or time intervals are used. The operational
semantics of Event Algebras is usually defined in terms of
automatons where the automatons perform state transitions
as reaction to new events. By contrast TSA uses a set based
incremental evaluation.

Data Stream Approaches typically use an SQL-like
query language and are classified as “data stream query lan-
guages” in [21]. Due to their SQL-like query they are rel-
atively close to Relational Algebra. The following systems
fall into this category: PIPES / Logical Stream Algebra
[36, 37], TelegraphCQ [17, 47], Aurora / Borealis / Stream-
Base / StreamSQL [56, 32, 1], CQL / STREAM [6], Es-
per [23], DataCell [33, 38], Coral8 [43] and [25]. Some of
these systems[38, 25] support combined queries to events
and database relations. Only few of the systems have a
formal semantics. One of those is PIPES with the Logical
Stream Algebra that is an adoption of Relational Algebra
[37]. The differences of TSA and the Logical Stream Al-
gebra are explained in the next paragraph. Some systems
combined queries to data streams and databases. A general
difference of the preceding systems and TSA is that TSA
enables multiple timestamps and direct and expressive tem-
poral relations within the selection operator, whereas the
systems mentioned above use only a single timestamp or
time interval and temporal relations can only be expressed
in a limited and indirect way by means of time-windows.
DataCell [33, 38] is a special as it has a very procedural se-
mantics based on petri-nets. However DataCell is one of the
few systems that also support queries to database data and
it even account for bulk-processing.

Logic Stream Algebra is the semantic foundation of
the PIPES system [37] which belongs to the data stream
approaches mentioned before and shares their general differ-
ences to TSA. The Logic Stream Algebra adopts Relational
Algebra but it does so in quite a different way as TSA. We
want to list some differences here: The Logic Stream Algebra
requires a discrete time domain whereas TSA also copes with
dense time domains like Q. The Logic Stream Algebra uses
only a single timestamp in contrast to multiple timestamps
in TSA. In the Logic Stream Algebra temporal relations have
to be expressed indirectly using the time-window operator.
Thus temporal relations are very limited. In TSA expres-
sive temporal relations can directly be expressed as part of
selection conditions. The window operators of the Logic
Stream Algebra (conceptually) makes a copy of each tuple
for each time point within the window. The other operators
are somehow defined with respect to the snapshots of tuples
that are valid at a certain point of time. Thus the operation
is actually defined independently for each time point (see
snapshot-reducibility in [37]). Together with the property
of the time-window operator mentioned before this enables
a comparably simple garbage collection however at the price
of a low expressivity for temporal relations. The temporal
streams in TSA contain only a single tuple for each incom-
ing tuple. The TSA operators combine tuples from different
times. Garbage collection bases on temporal relevance con-

22 CAYUGA gives access to the duration of an event within
a selection condition.



ditions, e. g. time windows, that are implicitly derived from
the specified temporal relations using an evolved temporal
analysis of the TSA expressions.

CERA is the Complex Event Relational Algebra of Michael
Eckert [20, 22] proposed as operational semantics for the
logic event query language XChangeEQ. TSA picks up many
of the ideas of CERA but somehow makes a restart as to
achieve minimal and orthogonal operators which are better
suited for optimizations. TSA provides more expressive tem-
poral relations, e. g. all interval relations of Allen’s interval
algebra [5] are supported, a significantly more flexible group-
ing a better temporal analysis. Furthermore TSA enables
multiple timestamps in input and output streams whereas
CERA only has some support for multiple timestamps in
intermediate computations.

8. CONCLUSION
We present Temporal Stream Algebra (TSA) that gener-

alizes the data model and operators of Relational Algebra
to apply to both data streams and database relations. TSA
providesa common data model and an algebra of operators
for querying data streams and database relations.

TSA proposes a new approach for coping with “blocking”
operators based on an analyis of the temporal relations spec-
ified in query expressions so as to determine whether the
expression is blocking or not. TSA supports multiple times-
tamps after different time lines and time semantics. TSA
allows to specify expressive temporal relations including all
Allan’s interval relations. Finally, TSA provides a flexible,
event-controlled negation and grouping and aggregation that
can be controlled, i. e. started and stopped, by events.

Though TSA generalizes Relational Algebra, the incre-
mental evaluation of TSA reduces the evaluation of TSA
expressions to that of Relational Algebra expressions. Thus
an existing implementation of Relational Algebra can be en-
hanced to a system, processing data streams as well.

The incremental evaluation of TSA allows for an asyn-
chronous query processing. Even the progress information
that is exchanged between queries does not have to be strictly
synchronized. Both properties are useful for distributed pro-
cessing. The incremental evaluation of TSA performs a bulk-
wise out-of-order processing of events. We expect that this
contributes to a high throughput, though it probably does
not achieve minimum response times for single events, and
helps to cope with peaks in the event load. These expecta-
tions still have to be verified by experimental evaluations.
A prototype implementation based on TSA of a high-level
event, state and action language, Dura, has been completed.

The combination of asynchronous and bulk-wise process-
ing opens a number of interesting questions with regards
to scheduling. Though any fair execution sequence for the
increment expressions of the queries will yield the correct
results, scheduling affects the efficiency and the response-
time of the evaluation. Determining a good or even optimal
sequence is one of our current research issues.

Furthermore the asynchronous and bulk-wise processing
enables a situation dependent query prioritization. The in-
crement expressions of less important queries could just be
executed less frequently. This increases the response time of
the less important queries, but as the efficiency of the whole
system increases due to the greater bulks, the response time
for the prioritized queries decreases at the same time.

Finally garbage collection is very important for the effi-

ciency of the proposed incremental evaluation as it may sig-
nificantly reduce the size of intermediate results. Garbage
collection can be seen as symmetric counterpart of incre-
mental evaluation. The increment-condition removes tuples
from the intermediate result that are not yet relevant. The
condition for garbage collection removes tuples that are not
relevant anymore. In other words, the increment-selection
poses an upper bound to relevant events, where as the condi-
tion for garbage collection poses a upper bound to irrelevant,
i. e. a lower bound to relevant events. This suggests that ap-
plying the temporal analysis for the incremental evaluation
to lower bounds instead of upper bound could yield good
garbage collection conditions [13].
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