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Abstract

We present pest, a novel approach to approximate querying of graph-structured data
such as RDF that exploits the data’s structure to propagate term weights between re-
lated data items. We focus on data where meaningful answers are given through the
application semantics, e.g., pages in wikis, persons in social networks, or papers in a
research network such as Mendeley. The pest matrix generalizes the Google Matrix
used in PageRank with a term-weight dependent leap and allows different levels of (se-
mantic) closeness for different relations in the data, e.g., friend vs. co-worker in a social
network. Its eigenvectors represent the distribution of a term after propagation. The
eigenvectors for all terms together form a (vector space) index that takes the structure
of the data into account and can be used with standard document retrieval techniques.
In extensive experiments including a user study on a real life wiki, we show how pest
improves the quality of the ranking over a range of existing ranking approaches.

Keywords: keyword search, indexing methods, approximate matching, eigenvector,
semantic data, wikis

1. Introduction

Mary wants to get an overview of software projects in her company that are written
in Java and that make use of the Lucene library for full-text search. According to the
conventions of her company’s wiki, a brief introduction to each software project is
provided by a wiki page tagged with “introduction”.

Thus, Mary enters the query for wiki pages containing “java” and “lucene” that
are also tagged with “introduction”. In the (semantic) wiki KiWi, this can be achieved
by the KWQL [1] query ci(java lucene tag(introduction)), where ci indicates
wiki pages, see Section 3.2.

However, the results fall short of Mary’s expectations for two reasons that are also
illustrated in the sample wiki of Figure 1:
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Figure 1: Link and containment graph for a sample wiki

(1) Some projects may not follow the wiki’s conventions (or the convention might
have changed over time) to use the tag “introduction” for identifying project briefs.
This may be the case for Document 5 in Figure 1. Mary could loosen her query to
retrieve all pages containing “introduction” (but that are not tagged with it). However,
in this case pages that follow the convention are not necessarily ranked higher than
other matching pages.

(2) Some projects use the rich annotation and structuring mechanisms of a wiki to
split a wiki page into sub-sections, as in the case of the description of KiWi in Docu-
ments 1 and 2 from Figure 1, and to link to related projects or technologies (rather than
discuss them inline), as in the case of Document 4 and 5 in Figure 1. Such projects
are not included in the results of the original query at all. Again, Mary could try to
change her query to allow keywords to occur in sub-sections or in linked documents,
but such queries quickly become rather complex (even in a flexible query language
such as KWQL) or impossible with the limited search facilities most wikis provide.
Furthermore, this solution suffers from the same problem as addressed above: Docu-
ments following the wiki’s conventions are not necessarily ranked higher than those
only matched due to the relaxation of the query.

Though we choose a wiki to introduce these challenges, they appear in a wide
range of applications involving (keyword) search on structured data, e.g., in social
networks, in ontologies, or in a richly structured publication repository. The common
characteristic of these applications is that relevant answers (e.g., a wiki page or a person
in a social network) are not fully self-contained documents as in the case of standard
web search, but obtain a big part of their relevance by virtue of their structural relations
to other pages, persons, etc. At the same time, they are sufficiently self-contained to
serve as reasonable answers to a search query, in contrast to, e.g., elements of an XML
document.

Since data items such as wiki pages tend to be less self-contained than common
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web documents, PageRank and similar approaches that use the structure of the data
merely for ranking of a set of answers do not suffice: As Figure 1 illustrates, also pages
that do not contain the relevant keyword can be highly relevant answers due to their
relations with, e.g., tags that prominently feature the keyword.

To address this challenge, not only the ranking, but also the selection of answers
needs to be influenced by the structure of the data. PageRank propagates the anchor
text of links to a page as if they are content of that page which is a first step in this
direction.

In this article, we generalize the idea of term propagation over structured data:
pest, short for short for term-propagation using eigenvector computation over structural
data, is a novel approach to approximate matching over structured data. pest is
based on a unique technique for propagating term weights (as obtained from a stan-
dard vector-space representation of the documents) over the structure of the data using
eigenvector computation. It generalizes the principles of Google’s PageRank [2] to
data where the content of a data item is not sufficient to establish the relevant terms for
that item, but where rich structural relations are present that allow us to use the content
of related data items to improve the set of keywords describing a data item.

In contrast to many other fuzzy matching approaches (see Section 2), pest relies
solely on modifying term weights in the document index and requires no runtime query
expansion, but can use existing document retrieval technologies such as Lucene. Fur-
thermore, the modified term weights represent how well a data item is connected to
others in the structured data and therefore one can omit a separate adjustment of the
answer ranking as in PageRank.
pest’s computation can be performed entirely at index time. Yet, pest is able to

address all the above described problems in the context of structured data with mean-
ingful answers such as a wiki, a social network, etc. To illustrate how pest propagates
term weights, consider again Figure 1. As in PageRank, the “magic” of pest lies in its
matrix, called the pest propagation matrix, or pest matrix for short. The pest matrix is
computed in two steps:

(1) Weighted propagation graph: First, we extend and weight the graph of data
items (here, wiki pages and tags): These insertions are used to enable direct propa-
gation between tags. Therefore, we can configure how terms propagate between tags
of related pages independently from term propagation between the pages. In general,
if we have multiple types of relations and data items, this extension allows us to have
strong connections between related properties of related items, e.g., between the classes
of two highly related instances in an ontology.

The resulting graph for the sample wiki is shown in Figure 2. We have added the
tags 5.1 and 6.1 and containment edges from tag 1.1 and 1.2 to tag 2.1, as well as link
edges, e.g., from the tag 6.1 to tag 1.1, 2.1, 3.1 and 3.2. In the following, we assign
edge weights based solely on the type of the edge (link, containment, tagging), though
pest also allows edge specific weights.

(2) “Informed Leap”: The weighted propagation graph does not encode any in-
formation about the differences in term distribution in the original nodes, but only in-
formation about the structure of the wiki graph. To encode that information in the pest
matrix, we use an “informed leap”: First, we transpose the weighted adjacency matrix
of the weighted propagation graph and normalize it. To preserve differences in over-
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Figure 2: Edge weights and virtual nodes and edges for Figure 1

all edge weight between data items, we choose a normalization that is independent of
the actual edge weights and the result is a sub-stochastic rather than stochastic matrix.
Second, these remaining probabilities together with a fixed leap parameter α (e.g., 0.3)
is used for an “informed leap” to an arbitrary node. The probability to leap to a node
A in such an “informed leap” is not equal for all nodes (as in the case of PageRank),
but depends on the original term weight distribution: A page with high term weight for
term τ is more likely to be the target of a leap than one with low term weight for τ.

The resulting matrix is called the pest matrix Pτ for term τ. Note that it must be
computed for each term individually, but does not depend on the query. Finally, the
eigenvectors of the pest matrix for each term τ are combined to form the vector space
representation (i.e., the document-term matrix) for the data items (here, wiki pages
and their tags). Keyword queries can be evaluated on this representation with any of
the existing IR engines using a vector space model (e.g., Lucene). Queries mixing
keywords and structure require an engine capable of combining keyword matches with
structural constraints such as the KWQL engine [3].

It is worth emphasizing that only the second step is term-dependent and, as shown
in the experimental evaluation in Section 6, the time needed for the calculation of the
term-dependent part of the evaluation is in the low seconds on a single core for each
term, even without sophisticated optimizations, and can be computed independently for
each term. Thus, pest’s index computation scales well even for document collections
containing hundreds of thousands of relevant terms (a significant portion of the English
vocabulary).

Contributions
To summarize, pest improves on approximate keyword search approaches for struc-

tured data (summarized in Section 2) in the following aspects:
(1) It is based on a simple, but flexible model for structured content that captures a

wide range of knowledge management systems and (tree- or graph-shaped) structured
data applications. We introduce the model in Section 4 and discuss how it can represent
the core concepts of the KiWi wiki, briefly recalled in Section 3.1. We also introduce
KWQL (Section 3.2) to illustrate the benefit of a combination of structure and keyword
queries.
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(2) The main contribution of pest is the pest matrix for propagating term weights
over structured data. The computation of that matrix for a given graph of structured
content is formalized in Section 5.
The pest matrix allows the propagation of term weights at index time and yields a
modified vector space representation that can be used by any IR engine based on the
vector space model (e.g., Lucene).

(3) We prove in Section 5.3 that any pest matrix has 1 as dominant eigenvalue and
that the power method converges with the corresponding eigenvector if applied to a
pest matrix.

(4) Though the pest matrix is inspired by the Google Matrix used in PageRank,
pest deviates from and generalizes PageRank significantly:

• pest uses the structure of the data not only for ranking but for answer selection as
well: pest also finds relevant answers that do not directly contain the considered key-
word at all. Thus, it generalizes the limited form of term propagation in PageRank
(from anchors to linked pages) and allows flexible propagation of terms between
data items, based, e.g., on their type, the type of their relation etc.

• To achieve this term propagation, pest uses an informed leap based on term weight
distribution rather than a random leap. The employed technique is similar to that of
personalized PageRank, where the leap probability is based, e.g., on a users pref-
erences, however, with different goal and outcome. Where personalized PageRank
only computes a ranking, pest computes a new vector-space representation of the
data items that integrates propagated term weights with relevance based on the re-
lations of a data item. This vector-space representation can be used in any existing
vector space search engine.

• Since the term weight distribution and thus pest’s informed leap is in general dif-
ferent for each term, pest needs to consider term propagation for each term sepa-
rately. Though this increases index time compared to PageRank, the term-dependent
computation is only a small part of the overall indexing time and can be computed
independently for each term (and is thus easily parallelized).

(5) In an extensive experimental evaluation of pest on an entire real-life wiki
(Section 6), we compare pest with three existing keyword search approaches: a simple
tf-based ranking, the ranking used by Wikipedia, and the ranking returned by Google.
The experimental evaluation demonstrates

• that pest significantly improves the ranking for each of the compared approaches
over a range of keyword queries.

• that users generally prefer the ranking returned by pest,

• that pest achieves that improvement at the cost of an increase in index time that is
notable, but also easily offset, as it is linear in the number of relevant terms with
constants in the low seconds and can be well parallelized.

Though Section 6 clearly shows that pest as discussed here can significantly im-
prove existing keyword search in wikis, there are a number of open issues and further
challenges to pest summarized in Section 7.
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2. Related Work: Approximate Matching on Structured Data

pest differs from the majority of approximate matching approaches including those
reviewed in the following in several important aspects:

(1) pest does not realize fuzzy matching by defining a structural distance func-
tion and ranking results according to how close they are to a strict match. Instead, it
uses the structure of the data to determine which terms are relevant to a document, re-
gardless of whether or not they explicitly occur in it. As a consequence, not only are
new matches introduced, but strict matches may also be re-ranked depending on their
structural connections.

(2) pest is designed for graph-shaped data rather than purely hierarchical data like
the XML-based approaches discussed in the following.

(3) pest can be used with any information retrieval engine based on the vector
space model. The only modification to the evaluation process is the computation of the
actual term weights. Otherwise existing technology (such as Lucene or similar search
engines) can be utilized. In particular, the pest matrix is query independent and can be
computed at index time. No additional computations such as query transformations are
needed during query evaluation.

Before we consider specific approaches, it is worth recalling that approximate
matching and ranking are closely related. Though they do not have to be used in con-
junction, this is often the case, in particular to allow an approximate matching engine
to differentiate looser results from results that adhere more strictly to the query. The
full power of ranking and approximate matching is unleashed only in combination—
approximate matching extends the set of results, ranking brings the results into an order
for easier consumption by the user.

While approximate matching is widely used in web search and other IR applica-
tions, conventional query languages for (semi-)structured data such as XQuery, SQL
or SPARQL do not usually employ approximate matching or rank results. These lan-
guages have been applied to probabilistic data, but this area is distinct from approxi-
mate querying: In probabilistic data management, the data itself introduces uncertainty,
in approximate matching uncertainty is introduced under the assumption that the user
is also interested in matches that do not quite match her query.

As the amount of structured web data increases and the semantic web continues to
emerge, the need for solutions that allow for layman querying of structured data arises.
Research has been dedicated to combining web querying and web search and intro-
ducing IR methods to querying, for example in the form of extensions to conventional
query languages, visual tools for exploratory search, extension of web keyword search
to include (some) structure and keyword search over structured data. With the arrival
of these techniques, the need for approximate querying that does not apply solely to
individual terms or phrases but that takes the data structure into account arises.

Approximate matching on data structure has been researched mainly in the context
of XML [4]. The majority of work in this area can be divided into two main classes of
approaches:

Tree edit distance: Tree edit distance [5, 6, 7] is a popular and well-researched
approach for assessing the similarity of tree-shaped data. It is based on the concept of
the edit distance for strings [8]. Given a pair of XML trees, a set of edit operations
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(typically at least node deletion and insertion) and a cost function, the tree edit distance
is the cost of the cheapest sequence of operations that transforms one tree into the
other. For a given XML tree, its best-matching XML trees are those that have the
lowest tree edit distance. Tree edit distance thus quantifies the similarity between the
documents through the number of steps and types of operations needed to eliminate the
differences between them. XML search can be straightforwardly formulated as finding
XML documents that have a sufficiently low tree edit distance to a query represented
as a labeled tree [9].

As finding the best-matching trees through the exhaustive computation of tree dis-
tances, itself costly, is computationally expensive, research has been focused on devel-
oping efficient distance algorithms [10, 11].

Amer-Yahia et al. [12, 13] present a conceptually related approach where queries in
the form of tree patterns are gradually generalized by applying different types of pattern
relaxation operations such as turning a parent-child node into an ancestor-descendant
node. To limit the amount of necessary calculations, a procedure for the efficient gen-
eration of queries whose answers lie above a certain threshold is introduced.

Shasha et al. [14] present an approach where the distance between a query, repre-
sented as an unordered labeled tree, and an XML document is quantified by counting
the number of root-to-leaf paths in the query that do not occur in the document.

In contrast to pest, the described approaches are hard to generalize to graph data.
Both pattern relaxation and tree edit distance require expensive calculations at query
time, either a loop to relax the query and the evaluation of a (often quite considerable)
number of relaxed queries, or, a considerable number of distance calculations. pest’s
computation on the other hand can be performed entirely at index time. Further, it is
not obvious how different edge types, as easily treated by pest, affect tree edit distance
and pattern relaxation.

Adapting the vector space model: Another class of approaches aims, like pest,
to adapt the vector space model, a well-established IR technique, to the application
on XML data. In the vector space model, documents and queries are represented as
vectors consisting of a weight for each term. Their similarity is then computed using
for example the cosine angle between the two vectors. Different schemes can be used
for calculating the term weights, the most popular one being tf-idf.

Pokorny et al. [15] represent individual XML documents in a matrix instead of a
vector, indicating the term weight for each combination of term and path. A query, also
expressed as an XML tree, is transformed into a matrix of the same form. The score of
a query with respect to a possible result is then calculated as the correlation between
the two matrices. In an extension, the matrix is adapted to reflect also the relationship
between paths.

In Carmel et al.’s work [16], document vectors are modified such that their elements
are not weights for terms but rather weights for term and context pairs—the contexts
of a term are the paths within which it occurs. The vector then consists of a weight
for each combination of term and context. Queries, represented as XML fragments,
are transformed into query vectors of the same form. Further, the similarity measure is
modified by computing context similarities between term occurrences in the query and
data. These are then integrated in the vector similarity measure.
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Schlieder et al. [17] calculate adapted term frequency and inverse document fre-
quency scores replacing textual terms by so-called structured terms, that is, all possible
XML subtrees in a data set. Each structured term can then be described by a vector of
tf-idf scores. In contrast, query vector weights are defined by the user. The vector space
model is applied to compare compare subtree and query vectors.

Activation propagation is used in Anh et al. [18] for approximate matching over
XML structure. Here, a modified version of the vector space model is used to calculate
similarity scores between query terms and textual nodes in the data. The calculation
of term weights takes into account the structural context of a term as well as its fre-
quency. In a second step, these scores are propagated up in the tree. Finally, the
highest activated nodes are selected, filtering out some results which are considered to
be unsuitable such as the descendants of results that have already been selected. This
approach resembles ours in that activation propagation and the vector space are used
to realize approximate matching over structure. However, here, propagation happens
upon query evaluation and is unidirectional. Like the other approaches in this class, it
is also limited to tree-shaped data.

pest and PageRank: Where the above approaches for approximate (keyword)
search and querying on XML data are similar in aim, PageRank is closely related to
pest in technique, but differs considerably in aim and scope. The original PageRank
article [2] suggests to exploit anchor-tags for web search. The anchor text of a link to
a web page is treated as if it is part of the text of that web page. This suggestion can
be seen as a special case of the approach suggested in this paper where the only kind
of propagation is that from anchor tags to linked pages and where links weights are
ignored. The application of this approach is limited to anchor tags and does not apply
to general graphs or generalize to different link types. However, there are a number of
extensions [19] of the original PageRank that share more of the characteristics of pest.

PageRank is based on the intuition that a link from one webpage to another can be
seen as an endorsement of the linked page. A page then is important if many important
pages link to it, even more so if the number of pages linked to by these important pages
is low. This idea is implemented by transforming the link graph into a transition matrix
which is augmented by a random leap component that ensures that the probability to
transition from any state, that is, page, to any other state is nonzero. The contribution
of the random leap relative to the transition values is determined by the factor α. As a
consequence of introducing the random leap and setting α to a non-zero value, the nor-
malized matrix is stochastic and strictly positive and the principal eigenvector (called
PageRank vector) for eigenvalue 1 exists and is unique. In standard PageRank, the ran-
dom leap operates using a uniform distribution, that is, the likelihood to transition to a
state is identical for all states. For a set of N pages, the corresponding leap or teleporta-
tion vector can be seen to consist of N entries with value 1

N . Brin and Page [2] point out
the possibility to realize a personalized version of PageRank by using a non-uniform
leap vector.

Several schemes for improving the scalability of personalized PageRank have been
presented in recent years [20, 21, 22, 23]. They are discussed in this section as well as
in section 6.4.
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Topic-sensitive PageRank [22] builds on the idea of a personalized teleportation
vector by introducing a number of topic-specific leap vectors, each assigning a uniform
value to all pages relevant to the respective topic and 0 otherwise. The topic-dependent
importance scores for each page are calculated offline. At query time, a weighted
classification of the query into topics is computed. A query-specific PageRank can
then be calculated as a mixture of topic-specific scores. The motivation behind topic-
sensitive PageRank is to avoid generally important pages getting highly ranked despite
not containing information relevant to the query.

Query-dependent PageRank [23] is another extension of PageRank which is based
on the idea that webpages matching a query that are connected to other matching web-
pages should be ranked higher. The PageRank algorithm is adapted in such a way
that the probability of a transition from one webpage to another is determined by how
relevant the target webpage is to the query. Towards this end, both the distribution
underlying the leap vector as well as the mode of calculating transition probabilities
are adjusted. In both cases, the probability to transition to a webpage is given as the
proportion between that webpage’s relevance score and the sum of all matching pages’
relevance scores. When a webpage has no non-zero outlinks, the leap vector is used
to jump to another webpage. The transition matrix is not strictly positive and nodes
which do not contain the relevant term are ignored. The PageRank vector is calculated
for each term at index time, the scores for each term in the query are combined upon
query evaluation.
pest differs from the approaches described in various ways. In contrast to PageRank

(but similar to topic-sensitive and query-dependent PageRank), several matrices and
eigenvectors are calculated, namely one per term, each using a term-dependent leap
vector. In contrast to topic-sensitive PageRank as well as PageRank, the leap vectors
do not use a uniform distribution.

Most importantly, pest differs from all three approaches described in the following
ways:

• None of the approaches implement approximate matching over structured data or
generally add additional relevant results; they are purely approaches to ranking
sets of webpages.

• The assignment of edge weights is more flexible in that edge weights can be
set explicitly and individually or different weights can be chosen depending on
the type of edge. In contrast, in PageRank and topic-sensitive PageRank edge
weights are uniform and in query-dependent PageRank, edge weights are derived
from keyword matches.

• While pest can be used on webpages with linking as the only relation between
pages, its versatile and extensible data model allows for the application to many
other types of graph-shaped data such as a fine-grained modeling of structured
web data.

• In pest, the probability of a leap is variable depending on the number and weight
of outgoing edges of a node, thus encoding the intuition that a user jumps to a
new page when he cannot find what he is looking for by following links. The
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leap distribution is the combination of a uniform distribution (as in PageRank
and topic-sensitive PageRank) but takes term distributions into account (as in
query-dependent PageRank).

pest can be seen as a generalization of at least PageRank and topic-sensitive Page-
Rank: The results of classic PageRank can be reproduced by choosing edge weights in
such a way that they are all identical after normalization and by using only the random
leap component of the leap vector.

The behavior of topic-sensitive PageRank can be achieved by clustering all words
belonging to a topic together, setting the edge weights as described above, and using
only the informed leap component of the leap vector.

Query-dependent PageRank cannot directly be emulated by pest as pest relies on a
strictly positive matrix and does not ignore nodes that do not (yet) contain the respective
term. Further, different edge types corresponding to the different possible edge weights
would have to be introduced.

ObjectRank [24] is a system for authority-based ranking for keyword search in
databases that, like pest, uses PageRank to exploit the connections between data items
for propagating authority with respect to a keyword across a data graph. Given a
database modeled as a labeled graph and a schema graph that assigns bidirectional au-
thority transfer rates to the different types of edges, an Authority Transfer Data Graph
is derived. The weight of a node with respect to a given keyword is then established by
a modified version of PageRank where a random surfer walks across the graph either
traversing edges or jumping to any of the nodes that literally contain the keyword. The
probability for following any outgoing edge or jumping to one of the keyword nodes is
steered by the damping factor d: The probability to follow an edge is given as the prod-
uct of d and the authority transfer rate of the edge, while the probability to randomly
jump to one of the nodes containing the keyword is (1 − d).

While ObjectRank clearly shares characteristics with pest, it differs in various sig-
nificant ways and has various drawbacks:

• ObjectRank uses a binary measure to represent literal keyword containment and
randomly decides which of the nodes containing the keyword to jump to. Dif-
ferences in the frequency of the keyword between documents are ignored and do
not factor into the ranking. However, term frequencies are an important factor
for ranking, particularly in text-heavy areas of application where it is of high
relevance whether a term only occurs once or is frequently used.

• There are no jumps to nodes that do not contain the keyword and those nodes
can only be reached through an edge traversal. Therefore, ObjectRank cannot
be applied to graphs that are not strongly connected. While this may be of less
concern in the area of databases, this constraint severely limits the possibility of
applying ObjectRank to other types of graph-shaped data such as web or wiki
pages which are frequently not strongly connected.

• Unlike pest, ObjectRank is not a simple modification of term frequency distri-
butions. As such, it cannot be directly used with standard information retrieval
engines and easily used in conjunction with the vector space model.
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• Queries are limited to simple keywords combined using disjunction and conjunc-
tion and it remains unclear whether ObjectRank could be combined with more
powerful query languages.

• The probability to make a leap is steered only by the damping factor d and thus
remains constant regardless of whether there is a promising edge that could be
followed or not. Moreover, due to the way that authority transfer weights are
assigned and normalized, the probability of all possible events may not add up
to 1, which is unintuitive in terms of the random surfer model and the idea of
spreading authority.

There is a significant body of research [25, 26, 27] on ranking entities in, e.g.,
entity-relationship graphs. These approaches share with pest the aim to rank connected
items by considering not only local, but also global properties, viz. what other items
they are related to. However, they differ from pest in two main aspects: (1) They
require a new query engine with sophisticated, multi-part ranking functions, where
pest computes a modified vector space model that can be used with any existing vector-
space IR system. (2) They are tailored to ranking of entities such as dates, prices etc.
where pest is tailored to domains such as semantic wikis or concept search in ontologies
where the items of interest are self-contained and clearly identified.
pest can be applied to any type of structured data, including RDF ontologies. Rank-

ing of RDF query results is discussed, e.g., in [28] and [29]. However, these works
differ from pest by focusing on general RDF data and by using statistical language
models with limited propagation.

3. Preliminaries

3.1. KiWi

KiWi1 is a semantic wiki with extended functionality in the areas of information
extraction, personalization, reasoning, and querying. KiWi relies on a simple, modular
conceptual model consisting of the following building blocks:

Content Items are composable wiki pages, the primary unit of information in the
KiWi wiki. A content item consists of text or multimedia and an optional sequence
of contained content items. Thus, content item containment provides a conventional
structuring of documents, for example a chapter may consist of a sequence of sections.
For reasons of simplicity, content item containment precludes any form of overlapping
or of cycles, and thus a content item can be seen as a directed acyclic graph (of content
items).

Links are simple hypertext links and can be used for relating content items to each
other or to external web sites.

Tags and RDF annotations are meta-data that can be attached to content items
and links, describing their content or properties. They can be added by users, but can
also be created by the system through automatic reasoning. Two kinds of annotations

1http://www.kiwi-project.eu, showcase at http://showcase.kiwi-project.eu/
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are available: tags and RDF triples. Tags allow to express knowledge informally, that
is, without having to use a pre-defined vocabulary, while RDF triples are used for for-
mal knowledge representation, possibly using an ontology or some other application-
dependent pre-defined vocabulary.

To illustrate these concepts, consider again Figure 1: It shows a sample KiWi wiki
using the above structuring concepts (for sake of familiarity, we call content items doc-
uments). For example, content item (document) 1 “About KiWi” contains the content
item 2 representing a section on “Search in KiWi” and is linked to by content item 6
“Guided Tour”. It is tagged with 1.1 “introduction” and 1.2 “architecture”.

Structure, within as well as between resources, thus plays an important role for
expressing knowledge in the wiki, ranging from tags to complex graphs of links or
content item containment.

3.2. KWQL

KWQL [1], KiWi’s label-keyword query language [30], allows for combined queries
over full-text, annotations and content structure, fusing approaches from conventional
query languages with information retrieval techniques for search.

KWQL aims to make data contained in a semantic wiki accessible to all users—not
only those who have experience with query languages. Queries have little syntactic
overhead and aim at being only as complex as necessary. The query language is de-
signed to be close to the user experience, allowing queries over the elements of the
conceptual model described in the previous section.

Further, KWQL has a flat learning curve and the complexity of queries increases
with the complexity of the user’s information need. Simple KWQL queries consist of
a number of keywords and are no more complicated to write than search requests in
web search engines. On the other hand, advanced KWQL queries can impose complex
selection criteria and even reformat and aggregate the results into new wiki pages,
giving rise to a simple form of reasoning.

Some examples of KWQL queries are given in the following table:

Java Content items containing “java” directly or in any of its tags or
other meta data

ci(author:Mary) Content items authored by Mary (using author meta-data)

ci(Java OR (tag(XML) AND author:Mary))

Content items that either contain “java” or have a tag containing
“XML” and are authored by Mary

ci(tag(Java) link(target:ci(Lucene)))

Content items with a tag containing “java” that contain a link to
a content item containing “lucene”

4. A Formal Model for Structured Data: Content Graphs

In this section we formally define a generic graph-based model of structured con-
tent that is capable of capturing the rich knowledge representation features of a wide
range of knowledge management applications such as wikis, social networks, etc. We

12



distinguish data items into primary (e.g., wiki pages or people in a social network) and
annotation items (e.g., tags or categories). A content graph is defined based on a type
structure T = (D,A,E) whereD is the set of types for primary data items,A the set
of types for annotation data items, and E the set of edge types.

For KiWi,D contains a single type, “content item”,A contains the annotation types
“tag”, “RDF class”, “RDF literal”, and “RDF other”. The latter three annotation types
are used to represent RDF class, literals and all other resources. It is straightforward to
add further annotation types, but in our experiments the above annotation types suffice.
E contains two types, link (l) and containment edges (c). This suffices to represent the
primary representation mechanisms of KiWi. E.g., a link edge from a content item to
a tag represents a tagging, a link edge between two documents a (hypertext) link, a
link edge between a content item and an RDF class a type relation etc. We choose to
omit the RDF edge labels in this representation as distinguishing between edges with
different labels in the propagation did not show a marked improvement and introduces
considerable complexity.

Definition 1 (Content graph). For a given type structure T , a content graph is a tuple
G = (V, E, type,T,wT ) where V is the set of vertices (or data items) in G and E ⊆
V × V × E its set of typed edges. type : V → D ∪ A assigns a type to each node.
The textual content of data items is represented by a set T of terms and a function
wt : V × T → R that assigns a weight to each pair of a node and a term. We assume
that the term weights for each node v form a stochastic vector (i.e.,

∑
τ∈T wt(v, τ) = 1).

For the sample wiki from Figure 1, the six documents 1 to 6 (with type content item
fromD) and the tags 1.1, 1.2, 2.1, 3.1, 3.2, 4.1 (with type tag fromA) form V , (1, 2, l),
(6, 1, l), (6, 3, l), (4, 3, l), (1, 1.1, l), (1, 1.2, l), . . . , (4, 4.1, l) and (1, 2, c) form the set of
all edges E, the set of all terms in the wiki form T , and wt = {(1,“java”, 0.8), . . . ,
(2.1,“search”, 1), . . .}.

5. Computing the pestMatrix

Based on the above model for a knowledge management system, we now formally
define the propagation of term-weights over structural relations represented in a content
graph by means of an eigenvector computation.

A document’s tag is descriptive of the content of the text of said content item—
they have a close association. Similarly, the tags of a sub-document to some extent
describe the parent document since the document to which the tag applies is, after all, a
constituent part of the parent document. More generally, containment and linking in a
wiki or another set of documents indicate relationships between resources. We suggest
to exploit these relationships for approximate matching over data structure by using
them to propagate resource content. A resource thereby is extended by the terms con-
tained in other resources it is related to. Then, standard information retrieval engines
based on the vector space model can be applied to find and rank results oblivious to the
underlying structure or term-weight propagation.

To propagate term weights along structural relations, we use a novel form of transi-
tion matrix, the pest propagation matrix. In analogy to the random surfer of PageRank,
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the term-weight propagation can be explained in terms of a semi-random reader who
is navigating through the content graph looking for documents relevant to his infor-
mation need expressed by a specific term τ (or a bag of such terms). He has been
given some—incomplete—information about which nodes in the graph are relevant to
τ. He starts from one of the nodes and reads on, following connections to find other
documents that are also relevant for his information need (even if they do not literally
contain τ). When he becomes bored or loses confidence in finding more matches by
traversing the structure of the wiki (or knowledge management system, in general), he
jumps to another node that seems promising and continues the process.

To encode this intuition in the pest matrix, we first consider which connections are
likely to lead to further matches by weighting the edges occurring in a content graph.
Let H be the transposed, normalized adjacency matrix of the resulting graph. Second,
we discuss how to encode, in the leap matrix Lτ, the jump to a promising node for the
given term τ (rather than to a random node as in PageRank)

The overall pest matrix Pτ is computed as (where α is the leap factor)

Pτ = (1 − α)H + Lτ.

Each entry mi, j ∈ Pτ, that is, the probability of transitioning from node j to node i,
is thus determined primarily by two factors, the normalized edge weights of any edge
from j to i and the term weight of τ in j.

5.1. Weighted Propagation Graph

To be able to control the choices the semi-random reader makes when following
edges in the content graph, we first extend the content graph with a number of addi-
tional edges and vertices and, second, assign weights to all edges in that graph.

Definition 2 (Weighted propagation graph). A weighted propagation graph is a con-
tent graph extended with a function we : E → R2 for assigning weights to edges that
fulfills the following conditions:

• Each primary data item carries at least one annotation from each annotation
type: For each node vd ∈ V with type(vd) ∈ D and each annotation type ta ∈ A,
there is a node va ∈ V with type(va) ∈ A and (vd, va, t) ∈ E for some edge type e.

• For each edge between two primary data items there is a corresponding edge be-
tween each two annotations of the two primary data items, if they have the same
type: For each vd,wd ∈ D, va,wa ∈ A with (vd,wd, t), (vd, va, ta), (wd,wa, ta) ∈ E
and type(va) = type(wa), there is an edge (va,wa, t) ∈ E.

Edge weights are given as pairs of numbers, one for traversing the edge in its di-
rection, one for traversing it against its direction.

In the context of KiWi, the first condition requires that each document must be
tagged by at least one tag. The second condition ensures that tags of related documents
are not only related indirectly through the connection between the documents, but also
stand in a direct semantic relation.
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Proposition 1. For every content graph, a weighted propagation graph can be con-
structed by (1) adding an empty annotation node of type a to each primary data item
that does not carry an annotation of type a via an edge of arbitrary type and (2) copying
any relation between two primary data items to its same-type annotation vertices.

Consider again the sample wiki from Figure 1, the resulting weighted propagation
graph is shown in Figure 2. It contains two “dummy” tags (5.1 and 6.1) as well as a
number of added edges between tags of related documents.

We call a weighted propagation graph type-weighted, if for any two edges e1 =

(v1,w1, t), e2 = (v2,w2, t) ∈ E it holds that, if type(v1) = type(v2) and type(w1) =

type(w2), then we(e1) = we(e2). In other words, the weights of edges with the same
type and with start and end vertices of the same type respectively must be the same in
a type-weighted propagation graph. In the following, we only consider such graphs.

Let Aw be the weighted adjacency matrix of a weighted propagation graph G. Then
we normalize and transpose Aw to obtain the transition matrix H for G as follows
(where outdegree(v) denotes the number of outgoing edges of v):

H =

(
1

outdegree(vi)

(
AT

w

)
i, j

)
i, j

By normalizing with the number of outgoing links rather than the total weight of
the outgoing edges, edge weights are preserved to some extent. At the same time,
nodes with many outgoing edges are still penalized. Normalization with the out-degree
proved the most effective in our experiments compared to, e.g., normalizing with the
maximum sum of outgoing term weights (over all nodes) or with the sum of outgo-
ing term weights for each node. Different choices for normalization preserve different
properties of the original matrix and, for other applications, a different choice of nor-
malization may be advisable.

5.2. Informed Leap
Given a leap factor α ∈ (0, 1], a leap from node j occurs with a probability

P(leap| j) = α + (1 − α)(1 −
∑

i

Hi, j)

A leap may be random or informed. In a random leap, the probability of jumping
to some other node is uniformly distributed and calculated as lrnd(i, j) = 1

|Vd∪Vt |
for each

pair of vertices (i, j).
An informed leap by contrast takes the term weights, that is, the prior distribution

of terms in the content graph, into account. It is therefore term-dependent and given
as linf

τ (i, j) =
wt(i,τ)∑
k wt(k,τ) for a τ ∈ T . Thus, when the probability of following any of the

outgoing edges of a node decreases, in turn a leap becomes more likely.
In our experiments, a combination of random and informed leap, with heavy bias

towards an informed leap, proved to give the most desirable propagation behavior. The
overall leap probability is therefore distributed between that of a random leap and that
of an informed leap occurring according to the factor ρ ∈ (0, 1], which indicates which
fraction of leaps are random leaps.
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Higher values of ρ mean that, after the propagation, the term occurrences are more
evenly distributed between the nodes in the graph, while a low value of ρ, means that a
higher proportion of leaps are informed and therefore leads to term occurrences being
focused around the nodes which already contain the term before propagation.

Therefore, we obtain the leap matrix Lτ for term τ as

Lτ =

(
P(leap| j) ·

(
(1 − ρ) · linf

τ (i, j) + ρ · lrnd(i, j)
))

i, j

5.3. Properties of the pest Matrix

Definition 3 (pest matrix). Let α ∈ (0, 1] be a leap factor, H be the normalized transi-
tion matrix of a given content graph (as defined in Section 5.1) and Lτ the leap matrix
(as defined in Section 5.2) for H and term τ with random leap factor ρ ∈ (0, 1]. Then
the pest matrix Pτ is the matrix

Pτ = (1 − α)H + Lτ.

Theorem 1. The pest matrix Pτ for any content graph and term τ is column-stochastic
and strictly positive (all entries > 0).

Proof. It is easy to see that Pτ is strictly positive as both α and ρ are > 0 and thus there
is a non-zero random leap probability from each node to each other node.

Pτ is column stochastic, as for each column j∑
i

(Pτ)i, j =
∑

i

(
(1 − α)Hi, j + (Lτ)i, j

)
= (1 − α)

∑
i

Hi, j +

((
α + (1 − α)(1 −

∑
l

Hl, j)
)
·

(
(1 − ρ) ·

∑
i

linf
τ (i, j)︸       ︷︷       ︸
=1

+ρ
∑

i

lrnd(i, j)︸       ︷︷       ︸
=1

))

= (1 − α)
∑

i

Hi, j + (1 − α)(1 −
∑

l

Hl, j) + α

= 1 − α + α = 1

Corollary 1. The pest matrix Pτ has eigenvalue 1 with unique eigenvector pτ for each
term τ.

The resulting eigenvector pτ gives the new term-weights for τ in the vertices of the
content graph after term-weight propagation. It can be computed, e.g., using the power
method (which is guaranteed to converge due to Theorem 1).

The vector space representation of the content graph after term-weight propaga-
tion is the document-term matrix using the propagation vectors pτ for each term τ as
columns.
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6. Validating pest: Simpsons Wiki

In order to confirm that the described propagation approach performs as expected,
a prototype implementation of the pest matrix construction has been implemented
and experiments computing the resulting vector space representation after term-weight
propagation have been conducted. The implementation is available from http://www.

pms.ifi.lmu.de/pest.

6.1. Experiment: Setup and Parameters

As an example we choose a real world wiki, the Simpsons Wiki at http://simpsons.
wikia.com, which is self-contained, focused on a specific topic and at the same time
small enough to make it easy to judge which pages are relevant for a certain query
and to perform a large number of experiments. At the time of this writing, it includes
10,955 pages (without redirects, talk and special pages).

Wiki pages are first stripped of any markup. The resulting text is normalized, stop
word filtered2 and stemmed3. The resulting wiki page collection contains 22,407 terms.

To keep the example simple and to allow for reliable human relevance judgements,
we use only one type of edge, namely linking between pages. For computing the
adjacency matrix H, the weight of a link in outgoing direction is set to 0.2, its reverse
weight to 0.1. As parameters for computing the pest matrix, we use a leap factor of
α = 0.15 and a random leap factor of ρ = 0.25.

To judge the relative effectiveness of pest, we compare with three ranking schemes:

• Luc: The first ranking is a basic tf-idf ranking with cosine similarity. It is similar
to the default scoring used by Lucene4. Note that the idf value before propaga-
tion is used, since after propagation every term is contained in every wiki page
(though mostly with a very low weight).

• Wik: The second ranking is based on the ranking algorithm used in MediaWiki
(and thereby on Wikipedia)5: It extends the Luc ranking mechanism by compen-
sating for the differing length of wiki pages by gradually decreasing the docu-
ment score with increasing document length. Further, each page is boosted on
the basis of its number of incoming links. Finally, if the title of the wiki page
contains a query keyword, this page is boosted by a certain factor, in our case by
3.

• Goo: Where possible, we also compare with the ranking returned by a Google
query restricted to the Simpsons wiki.

2http://www.ranks.nl/resources/stopwords.html
3Using the English snowball filter http://snowball.tartarus.org/algorithms/english/

stemmer.html
4http://lucene.apache.org/java/3_0_1/api/all/org/apache/lucene/search/

Similarity.html
5http://www.mediawiki.org/wiki/Extension:Lucene-search

17



pest Score Page title Wik Goo

1 0.1348 Bart Simpson 4 +3 1 0
2 0.0340 Homer Simpson 980 +978 36 +34
3 0.0245 Lisa Simpson 281 +278 181 +178
4 0.0183 Bart the Genius 2 -2 4 0
5 0.0180 Marge Simpson 1321 +1316 548 +543
6 0.0148 Bart Gets an F 19 +13 3 -3
7 0.0115 Bart’s Bike 1 -6 - new
8 0.0112 Maggie Simpson 497 +489 678 +670
9 0.0105 Bart the General 11 +2 20 +11

10 0.0089 List of Bart Episodes in The Simpsons 3 -7 216 +206
11 0.0084 Bart Simpson (comic book series) 25 +14 18 +7
12 0.0081 Springfield 1669 +1657 - new
13 0.0077 Chirpy Boy and Bart Junior 5 -8 - new
14 0.0078 Bart vs. Australia 31 +17 12 -2
15 0.0074 The Bart Wants What It Wants 7 -8 30 +15
16 0.0073 Bart’s Haircut 6 -10 84 +68
17 0.0070 Milhouse Van Houten 248 +231 67 +50
18 0.0069 Charlie 8 -10 - new
19 0.0069 Bart Gets Famous 12 -7 6 -13
20 0.0069 Bart Junior 9 -11 - new

Table 1: Top-20 ranking for query “Bart” (each first column in Wik and Goo gives the respective rank and
each second column the pest change, “-”: page is not returned as answer at all)

6.2. Comparing pest
In the following, we use two queries for comparing the ranking produced by pest

with those discussed above: First, we look at single word queries, viz. “Bart”. Second
“moe beer” is used to illustrate the effect of pest in the presence of queries consisting
of multiple keywords.

Table 1 shows the top 20 answers for the single keyword query “Bart” using
pest with MediaWiki-style term weights (Wik ranking). In the last two columns, we
compare that ranking with the ranking returned by MediaWiki without pest and with
the ranking returned by Google (Goo ranking, with search restricted to the domain
simpsons.wikia.com).

There are a number of striking observations in this comparison:

1. Both the unmodified Wik and Goo ranking do not return any of Bart’s family
members (Homer, Lisa, Marge), Bart’s hometown, or Bart’s best friend as highly
relevant for the query “Bart”. This is clearly due to the fact that these pages
contain the term “Bart” infrequently. In contrast, pest returns all of these pages
for highly related characters or locations among the top 20 matches for the query
“Bart”. The significant difference also to the Goo ranking shows that PageRank
alone can not attribute for the improvements demonstrated by pest.

2. This effect is particularly noticeable for “Marge” and “Springfield”, which occur
at a rank below 1000 for Wik and either do not occur at all in the Goo ranking or
at a rank below 500.

Applying pest to a basic tf-idf ranking such as Luc yields even greater improvements
as shown in Table 2, where we compare the ranking of the top 20 pages using pest with
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pest rank Page title Luc rank & pest change

1 Bart Simpson 325 +324
2 Homer Simpson 1667 +1665
3 List of Bart Episodes ... 1 -2
4 Lisa Simpson 1085 +1081
5 Bart’s Bike 2 -3
6 Marge Simpson 1773 +1767
7 Bart Junior 3 -4
8 Bart the Mother/Quotes 4 -4
9 Ticket Bouncer 5 -4

10 Chirpy Boy and Bart Junior 6 -4
11 Spree for All 7 -4
12 Charlie 8 -4
13 Congressman 3 9 -4
14 Bart the Genius 84 +70
15 Bart Goes to the Movies 10 -5
16 Bike Track 12 -4
17 Maggie Simpson 1237 +1220
18 Bart Cops Out 11 -7
19 Bart Junior (frog) 17 -2
20 Bart Jumps/Credits 14 -6

Table 2: Top-20 ranking for query “Bart”

Luc term weights to Luc ranking without pest. The Bart Simpson page gets pushed
from position 325 to pole position and Bart’s direct relatives to the positions follow-
ing shortly behind. This demonstrates that the pest algorithm is capable of achieving
significant improvements if applied to a range of existing ranking schemes.

For the the multi-term query “Moe beer”, the application of pest also significantly
improves the ranking as shown in Table 3 (due to space limitations we give only the
top 10 answers). Here, we start with the Wik ranking. For example, Homer Simpson,
a frequent visitor of Moe’s Tavern (rank 4) and big consumer of duff beer (rank 3),
is ranked 2nd compared to rank 122 without pest. For completeness, the relevance
measures are given in Table 4.

In addition to the top 20 ranking, we also considered the top 100 answers for each
of the above rankings for “Bart”. The results of this comparison are summarized in
Table 4:

The number of relevant pages (manually evaluated) that are introduced by pest into
the top 100 answers is significant. At the same time, most of the pages that are dropped
from the top 100 are irrelevant and at worst a relevant page is dropped by about 50
ranks. Nearly no irrelevant pages are introduced.

All previous top 100 pages are still included in the first 140 results in the pest
ranking and the lowest position not included in the new top 100 is the former position
65. Thus, only few relevant pages are discarded or moved further to the end of the
ranking than necessary.

6.3. User Study

To determine whether users consider pest’s search results superior to the ranking
used by Wikipedia, a user study involving a forced decision task was carried out. To
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Page title Wik rank & pest change

1 Moe Szyslak 1 0
2 Homer Simpson 122 +120
3 Duff Beer 4 +1
4 Moe’s Tavern 2 -2
5 Flaming Moe’s 3 -2
6 Fudd Beer 5 -1
7 Duff Beer Advertiser 9 +2
8 Bart Simpson 365 +357
9 Homer vs. the Eighteenth Amendment 15 +6

10 It Was a Very Good Beer 14 +4
11 Marge Simpson - new
12 Lisa Simpson - new
13 Billy beer 18 +5
14 The Seven-Beer Snitch 36 +22
15 Barney Gumble 29 +14
16 Eeny Teeny Maya Moe 6 -10
17 Springfield 382 +365
18 Moe Baby Blues 7 -11
19 Homer the Moe 8 -11
20 Duff Beer Krusty Burger Buzz . . . +5

Table 3: Top-20 ranking for query “Moe beer”

“Bart”
Wik rank Luc rank

Relevant 17 17
Irrelevant 4 2

Table 4: (Ir-) relevant pages added by pest compared to the Wik and Luc ranking
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Figure 3: Percentage of participants who preferred the result returned by a pest-enhanced Wik ranking over
the a simple Wik ranking, per query

specifically evaluate the effect of pest when used together with a state-of-the-art rank-
ing technique, we chose to compare search results obtained using the Wik ranking with
pest to those of a simple Wik ranking without the application of pest.

Experimental setup. Both types of result rankings, Wik with and without pest, were
generated for twenty single-keyword queries consisting of names of Simpsons charac-
ters (for example “Bart”, pictured in table 2 and “Milhouse”), locations in the Simpsons
universe (such as “tavern” and “brewery”) and other concepts relevant to the TV-show
(for example “skateboarding”). The titles of the top 20 matching wiki pages for each
query were then placed in individual files which did not contain the name of the ranking
used and randomizing the ranking identifier. These files were then presented to eleven
participants together with the corresponding queries, all of which had at least basic
knowledge of the Simpsons. The participants were asked to indicate for each query
which search result they preferred. Though the result rankings only gave the titles of
the matching wiki pages, participants were encouraged to look up more information
about the individual results if they felt they could not make a clear decision based on
the titles alone.

Results and Discussion. Across all queries and users, the pest-enhanced ranking was
preferred 67.23 percent of the time. A chart showing for each query how many users
preferred the pest-enhanced results is given in Figure 3. Overall, participants liked
the regular Wik ranking better for four of the queries, but only by a slight margin of
about 5%. Two other queries prompted an equally divided reaction, their pest-enhanced
results were preferred by about 5%. The pest-enhanced results of fourteen queries were
more clearly preferred with scores between 63 and 100 percent.

While the results computed using pest were not considered to be more relevant for
all of the twenty queries by the majority, participants showed a palpable preference
for the pest-enhanced rankings for fourteen queries. Further, the regular Wik ranking
results were not unequivocally judged to be better for any of the queries, while on the
other hand six of the results using pestwere preferred by more than 75% of participants
with the results for one query even reaching a perfect score of 100 percent.
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Figure 4: Percentage of users who preferred the pest-enhanced ranking for less than half of the queries
(“Preference for Wik rank”), 50-70% of the queries (“Preference for pest”) and 75% and more of the queries
(“Strong Preference for pest”)

Figure 4 shows the results broken down into groups of participants formed based
on how often they indicated a preference for the pest-enhanced query results. 82% of
users overall prefer the results generated using pest, more than half of them do so for
75% or more of the queries.

The finding that the percentage of users who overall strongly prefer the pest-enhanced
ranking is higher than that of the queries that received similarly high scores suggests
that pest is to some extent divisive in that its effects are perceived as very positive by a
large amount of users, while a small group of users mostly prefers the unchanged Wik
ranking.

Overall, the results of this study indicate that users considers pest to substantially
improve the quality of result rankings.

6.4. Performance Evaluation
The comparative evaluation of the quality of the rankings with and without pest

shows the significant improvements pest can contribute to keyword search. What about
the cost?

To quantify the performance of pest, we run a large number of keyword queries on
a Intel Core 2 Duo E8400 with 8GB Ram running Sun Java 6 on a 32-bit installation
of Ubuntu 9.10. The structure of the data as well as the terms are stored in a MySQL
database. The algorithm is not parallelized and runs entirely on a single core. As a
dataset, the Simpsons wiki with 10,955 pages and 22,407 terms is used, as discussed
above. We do not use any partitioning or segmentation techniques, but hold all matrices
in memory at once, using about 2 GB of main memory.

Once the modified vector space index computed by pest is created, the query time
depends only on the used information retrieval engine. Therefore, we focus here on the
time pest spends for indexing a given structured dataset.

Unsurprisingly, the indexing time for pest scales like that of PageRank in the num-
ber of pages, i.e., linearly, as shown in Figure 6.
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Figure 5: Indexing a single term
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Figure 6: Indexing time over dataset size

Figure 5 shows the percentages of each of the steps needed for indexing a single
term with pest: The term independent part, i.e., the initialization and normalization of
the transposed, normalized adjacency matrix H for the underlying weighted propaga-
tion graph, takes on average 16 s, about 66% of the processing time of a single term.
If several terms are indexed at once, this part needs to be executed once only. For each
term, we need to create a copy of H, compute the term weights (here using Wikipedia-
style term weights), combine the copied matrix H with the resulting leap matrix and
compute the eigenvector of the resulting pestmatrix. Overall, this part takes on average
8 s and thus about 33% of the time for processing a single term.

It is worth emphasizing this result: Only about 8 s are needed to process each term.
Furthermore, we can compute the pest matrix for each term independently, even on
different cores or computers. Figure 7 further emphasizes this result: If we increase the
number of index terms, the total computation time on a single core increases, but only
linearly with small constants. Figure 8 further shows that the number of unique terms
in a document collection such as the Simpsons wiki increases only fairly slowly with
an increasing number of pages once a threshold of 5000 to 10000 terms is reached.
Thus even for large document collections, we can expect a number of index terms in
the range of tens of thousands for which the pest matrix and index can be quickly
computed by a small number of CPUs, even with the fairly unoptimized version of
pest discussed here.

Initially, this calculation has to be performed only once per term. When documents
are edited, deleted or added, only the pest vectors of the involved terms need to be
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Figure 7: Indexing time over number of indexed terms
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re-calculated.
The scalability challenge that pest faces is also less severe than that of personalized

PageRank discussed in Section 2 as an individual PageRank has to be computed not
per user but per term: The number of terms in a document collection is not directly
proportional to the number of documents; instead, as the number of documents grows,
most newly added documents only add few new words to the overall set of terms. This
applies even more for a set of thematically homogeneous set of documents. Figure 8
shows the change in the number of unique terms as the number of documents in the
dataset increases.

Many approaches to implementing personalized PageRank in a less computation-
ally expensive way have been suggested [31]. They reduce the number of PageRank
calculations necessary by limiting the granularity of personalization and thereby the
number of PageRank computations needed.

Topic-sensitive PageRank, introduced in Section 2, offers query-dependent person-
alization on the basis of manipulating the prior probabilities of classes, that is, different
topics, according to a user’s interests. The personalization is restricted in that it oper-
ates at the level of topics, not individual web pages, calculating the score of a query
as the sum of all pre-computed topic-dependent document scores multiplied by the
likelihood of class membership.

Jeh and Widom [20] present an approach where personalized PageRank vectors

24



are approximated as a linear combination of a number of partial vectors, so-called ba-
sis vectors representing certain highly-ranked web pages, pre-computed using a scal-
able dynamic programming approach. This method limits personalization through the
choice of basis vectors—the surfer can only teleport to pages represented in the basis
vectors.

BlockRank [21] combines individual web pages by their host or block, computing
local PageRank vectors on a per host basis and weighting them by the overall impor-
tance of the host. Personalization here is realized at the granularity of blocks meaning
that a user can only express his preference for a host, encoded in the weighting of local
PageRank vectors, not for an individual web page.

While none of these approaches is directly applicable to pest, it is likely that along
similar lines approximate, but faster versions of pest can be designed. The obvious way
to achieve this is a limit on the number of terms index by pest, e.g., to only the most
prominent terms, by merging synonymous or semantically close terms, or by merging
terms with similar frequency distributions.

7. Conclusion and Open Questions

pest is a unique approach to approximate matching that combines the principles
of structural relevance from approaches such as PageRank with the standard vector
space model. Its particular strength is that it runs entirely at index time and results in a
modified index representation.

In this article, we have analyzed pest’s performance on a wiki and shown that it
improves search results not only by including new matches, but also by changing the
result rankings of strict matches.

There is a wide body of further work to refine and extend pest.
We are currently using rough estimates for α and ρ as well as for the edge weights

rather than empirically validated observations. A guide to choosing these values might
be possible to derive from studying the behavior of pest on data with varying charac-
teristics.

Edge values, in particular, could also be amenable to various machine learning
approaches, using, for example, average semantic relatedness as a criterion, or to semi-
automatic approaches through user-feedback.

We have also considered a number of different algorithmic approaches to term-
weight propagation, e.g., where propagation is not based on convergence but on a
fixed number of propagation steps. Techniques for spreading activation [32, 33] might
be applicable and a comparison study is called for. Furthermore, the computation of
the pest matrix is just one of several alternatives for finding a stochastic propagation
matrix.

There are also a number of specific areas for improving pest:
1. The model for structured data described in this paper assumes that edge weights

are uniform for all terms. If edge weights are to be determined based, e.g., on the
semantic similarity of a typed edge and a term (as determined through their Google
distance or distance in an ontology), also the transposed, normalized adjacency matrix
H becomes term dependent.
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2. Links to external resources such as Linked Open Data or ontologies are cur-
rently not considered in pest. Their inclusion would allow to enrich the content graph
and thereby enhance the results of term propagation. This extension seems particularly
promising in combination with aforementioned typed links.

3. At the moment, pest makes no distinction between terms based on where they
occur in the document. One simple and obvious extension would be for example to
represent the anchor text for each link, strongly propagating the respective terms to the
linked document. This particular scheme mirrors a feature of classic PageRank, but
a wide range of further possibilities for modifying edge or term weight based on the
position of the text in the document exists.

4. Another, wiki-specific, extension is observing how the term scores of a docu-
ment change over several revisions and taking this into account as a factor when ranking
query answers.

5. Any approximate matching approach suffers from non-obvious explanations for
returned answers: In the case of a boolean query semantics, the answer is obvious,
but when term propagation is used, a document might be a highly-ranked query result
without as much as containing any query terms directly. In this case, providing an
explanation, for example that the document in question is closely connected to many
documents containing query terms, makes the matching process more transparent to
users. However, automatically computing good, minimal explanations is far from a
solved issue.

6. In pest, the term weights propagated along an edge are normalized by the num-
ber of edges incident to the same node. Thus, e.g., a document with many tags prop-
agates only a relatively smaller amount to its children than a document with few tags.
A model where the propagation along each type can not drop below a given minimum
might prove superior to the basic version of pest described here.

With the increasing size of the linked open data cloud, data providers require con-
venient means to sift through that data to discover relevant concepts and published
instances for linking with their data. To find such concepts and instances, the structure
of the involved RDF data is crucial, and thus existing search engines are insufficient.
At the same time, formal (e.g., SPARQL) queries over ontologies require extensive
training and knowledge of the structure of the involved ontologies. Here, a semantic
version of pest would provide publishers with an easy and familiar means to discover
relevant concepts and individuals in large-scale ontologies by taking the structure of
the data into consideration to return the most relevant matches to keyword searches.
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