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ABSTRACT
Recent research [34] shows that, provided a careful design,
complex event processing (CEP) on top of a modern DBMS
can compete in many cases with specialized DSMS which
have been considered superior for a long time [8]. There are
mainly two reasons why building complex event processing
on top of an existing DBMS is desirable. First event pro-
cessing profits form sophisticated techniques and algorithms
developed during decades of database research. Second new
applications are demanding more functionality, particularly
the integration of static and stateful data, but also more ex-
pressive event queries and the maintenance and later analy-
sis of logs. These new requirements force specialized DSMS
to actually re-implement common database functionality.

Starting from that point this doctoral project aims at
building an expressive and efficient complex event process-
ing system using a DBMS. For this we first define Temporal
Stream Algebra TSA which is an generalization of relational
algebra to so-called temporal streams (actually relational al-
gebra is an extremal case of TSA). Second we develop Event-
Mill, a system for efficiently evaluating TSA expressions us-
ing a database engine. TSA and Event-Mill are designed
to meet the requirements from new ambitious applications
of complex event recognition like emergency management
in large infrastructures. This includes expressive temporal
relations, flexible grouping and aggregation, the integration
of static and stateful non-event data, the simultaneous use
of multiple timestamps and time models, e.g. application
and system time, selective logging, subquery sharing, oper-
ator reordering, automatic garbage collection, situation de-
pendent query prioritization, bulk-wise, asynchronous and
distributed processing, publish-subscribe dissemination and
fault resistance.

The doctoral project is part of the international research
project EMILI on using CEP for novel forms of emergency
management in large infrastructures.
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1. MOTIVATION
The continuous and timely analysis of event-streams, of-

ten referred to as Complex Event Processing (CEP), has
become a widely recognized discipline in the last decade. In
the meantime numerous full-fledged data stream manage-
ment systems (DSMS) [18, 24, 38, 7, 19, 50, 30, 1] tackle
the derivation of higher-level knowledge from a stream of
low-level events. Most of these systems are based on the
assumption that the architecture of existing DBMS is in-
adequate [8] for an efficient processing of complex events.
The simple requirements of early CEP applications [34] and
experimental results seem to support this assumption [8].
Therefore specialized DSMS have been designed and built
from scratch.

Meanwhile the increasing recognition and acceptance of
CEP opens new challenging applications like detecting and
managing emergencies in large infrastructures. The require-
ments derived from these ambitious applications and recent
research results [34] strongly suggest that DBMS should be
reconsidered as basis for expressive and efficient complex
event processing systems.

At the same time CEP still lacks an equally strong for-
mal foundation as traditional database systems find in re-
lational algebra. Present approaches [33, 19, 23] towards a
formal foundation for CEP have serious limitations. Com-
plex temporal relations can not be expressed at all or need
unnatural and complicated constructions. The simultaneous
use of multiple time-stamps, e.g. application- and system-
time and/or different time models are not considered at all.
Grouping and aggregation capabilities are very restricted.



The proposed evaluation does neither account for an bulk-
wise, asynchronous nor distributed processing. Finally the
design of formal semantics does not unleash the full poten-
tial of optimization like operator-reordering and subquery
sharing.

For the above reasons the doctoral project presented here
aims for three main objectives:
• Meeting the increased requirements of arising new ap-

plications for CEP

• Exploiting existing database technology

• Providing a strong formal foundation for DBMS-based
CEP

As mentioned earlier the doctoral project is part of the in-
ternational research project EMILI funded by the European
Commission1 which is dedicated to exploring the benefits of
CEP technology for a proper detection and management in
large infrastructures. This is one of the upcoming new and
challenging applications for CEP.

The project EMILI focuses on three use-cases namely un-
derground metro systems, airports and power grids. A de-
tailed description is available in [48, 49]. One main lesson
learned from these use-cases is that considering the context
of an event is essential for a good situation assessment and
appropriate reactions. The context is given by static data
describing the surveyed infrastructure, e.g. its topology, the
placement of sensors or possible escape routes, and stateful
data either describing the state of some physical component,
e.g. the ventilation regime or the availability of some stair-
case, or an abstract state of the emergency management
system e.g. the current operation mode. This implies that
static and stateful date have to be tightly integrated into
the reasoning on complex events.

A simple example adopted from the metro use-case might
illustrate this. Consider a burning train stopping inside a
metro station. Unfortunately the fire is close to one stair-
case which therefore is likely to quickly fill with smoke and
should not be used for evacuation. For correctly assessing
the situation and choosing an appropriate reaction the the
system needs to combine the alarm events from smoke and
temperature sensors with static data about the location of
sensors and staircases. In this way the system can conclude
that one staircase is close to the fire, thus will be blocked
shortly and should not be used for evacuation. Consequently
the the evacuation initiated by the system directs people to
other staircases/exits. Furthermore the system changes to
emergency/fire mode as reaction to the first series of fire de-
tections. This change in operation mode, i.e. this change in
stateful data, affects the way how further events reporting
high temperature or smoke alarms near to the known fire
location are treated. Instead of raising further fire alarms
and confronting human operators with an avalanche of use-
less re-indications of the same fire, the new events are not
reported at all or are presented as detected spread of the
existing fire. In this way operators are only provided with
relevant information and can concentrate on the evacuation
process.

Further requirements derived from the EMILI use-cases
are expressive temporal relations, the simultaneous use of
multiple time-stamps and strong formal foundations. Par-
ticularly the latter is important in case of emergency man-
agement as security experts will hardly accept an approxi-
mate knowledge of “what the system will do”.
1grant agreement number 242438

Interestingly other use-cases which are completely inde-
pendent from emergency management apparently have sim-
ilar requirements. This holds for the auction use-case exam-
ined in the QONCEPT project2 of Olga Poppe [42] as well
as for general business process applications [15]. Further-
more it is in accordance with the requirements analysis in
[47].

The need for an tight integration of static and stateful
data is one of the main motivations for considering a DBMS
as basis for expressive complex event processing. Another
motivation is encouraging recent research [34] which shows
that, provided a careful design, a modern DBMS can be
turned into an efficient CEP system. In this way sophisti-
cated techniques and algorithms from database research and
tuned implementations of these techniques and algorithms
can be exploited for CEP.

As formal semantics are important for CEP in general
and emergency management in particular and exploiting
database research is already on the table, it seems to be
a natural idea to use a generalisation of relational algebra
as formal foundation for CEP. This idea is also backed by
the observation that despite some fundamental differences,
CEP and traditional databases share strong similarities with
respect to the basic intention and structure of query expres-
sions. This similarity already inspired a number of attempts
to transfer relational algebra to CEP. While keeping the ba-
sic idea, compared to previous approaches we choose quite
a different way for bringing relational algebra to CEP. In-
stead of extending or adopting relational algebra we intend
to generalize relational algebra towards so-called temporal
streams. This is done in such a way that no new (basic)
operators are needed and the characteristics of these oper-
ators, e.g. with respect to reordering, are fully preserved.
By this well known optimization techniques and algorithms
from database theory are directly applicable. The alge-
bra resulting from the generalization of relational algebra
is called Temporal Stream Algebra (TSA).

Finally we propose Event-Mill, an evaluation approach
which on the one hand is closely backed by the theory on
incremental evaluation of TSA and on the other hand is
particularly suited for an implementation on top of an ex-
isting data-base system. The main idea is to continuously
execute incremental TSA-queries. The incremental TSA-
queries perform a bulk-wise processing and their execution
is not driven by single events (or events at all) but by re-
sponse time constraints which require reevaluation at a cer-
tain frequency. Note that this is significantly different from
RETE-based evaluation in production rule systems, from
the RETE-like evaluation of CERA [21, 23] and from automaton-
based approaches [19]. Moreover Event-Mill enables asyn-
chronous and distributed processing and situation depen-
dent query prioritization.

2. STATE OF THE DOCTORAL PROJECT

2.1 Investigation of Emergency Management
Use Cases

The requirements analysis for the three EMILI use-cases,
namely public transport systems, airports and power-grids
has been completed in joint-work with Steffen Hausmann

2funded by the Deutsche Forschungsgemeinschaft (DFG)
under reference number BR 2355/1-1



[12, 11]. The derived requirements can be divided into two
categories: Requirements concerning the expressiveness of
queries and those towards query evaluation.

Requirements to the expressiveness of Queries:.
Three high-level concepts must be representable

namely events, temporary objects and actions. Tem-
porary objects can be used to represent static and stateful
data. They be created and terminated. Temporary objects
are visible from the beginning of their lifetime and can exist
for an arbitrary time until they are terminated. In contrast
to that, events are visible only at the end of their lifetime, i.e.
the end of an event is known as soon as the event becomes
visible.

Expressive temporal relations. Complex combina-
tions of temporal relations like before or within 2 minutes
are needed. For example it should be possible to express all
213 temporal relations of Allen’s interval algebra [6]. Slid-
ing, tumbling or other time-windows of a fixed size applied
to the inputs of a query are not suitable for representing
temporal relations.

Multiple time-stamps. All use-cases need at least three
different time-stamps in parallel. The first two can be iden-
tified with application- and system-time. The third time is
mainly due to simulated events used for predictions on the
future development of an emergency. For simulated events
there is a difference between the time where the underlying
data is available (applications / system-time) and the fu-
ture time for which the simulated event makes an prediction.
(For example simulated events are needed for determining
whether some staircase will remain free of smoke, i.e. will
be safe, for the full duration of an evacuation and thus can
be used for evacuation.)

Flexible grouping and aggregation. We need some
mechanism to somehow turn grouping and aggregation as
reaction to some (possibly complex) event, to apply the full
power of reasoning for selecting the events for aggregation
and to finally stop grouping and aggregation as reaction to
another event. For example one might want to count the
number of persons leaving the station starting with the first
fire-alarm and stopping with the arrival of the fire brigade.

Requirements to query evaluation.
Robustness against peeks in the event-load. In

emergency management, peeks typically result from begin-
ning emergencies when more and more sensors start firing
alarm events. Thus peaks in the event load appear at the
same time where the fastest response-time is needed.

Situation dependent query prioritization. During
an emergency those queries which are most important for the
emergency should be processed with the highest priority as
to ensure short response times. Less important queries could
be delayed, be evaluated less frequently or be completely
ignored.

Automatic garbage collection. Garbage collection is
essential for preserving a high system performance. Indeed
events that are not further relevant should be discarded as
soon as possible to free memory and to avoid unnecessary
computations. However defining a correct garbage collec-
tion strategy explicitly, e.g. choosing the right time win-
dows, is not feasible for the security experts writing the
emergency management rules. Furthermore explicit garbage
collection massively reduces maintainability of the CEP-

program. Therefore we strive for an automatic garbage col-
lection where relevance conditions are statically derived from
temporal relations specified in the query and the constraints
on temporal relations that are part of the schema.

2.2 Temporal Stream Algebra – TSA
TSA aims to be a generalization of relational algebra [2,

25]. The design of TSA follows a number of working as-
sumptions: TSA should have the same set of minimal and
orthogonal operators as relational algebra namely selection
σ, projection π̇, imbedding ι, cross product ⊗, set difference
\, grouping γ and union ∪̇, where ι serves for computing new
attributes from existing ones and is typically part of the pro-
jection operator. TSA should fully preserve the properties
of the operators particularly with regards to operator per-
mutations. TSA must be capable to simultaneously man-
age multiple timestamps and time models (even continuous
ones). TSA must enable the formulation of complex tem-
poral relations on multiple events. TSA makes minimum
assumptions on the semantic of timestamps as to allow a
maximum flexibility for higher-level languages building on
TSA.

The definition TSA bases on three main ideas

• The concept of Temporal Streams

• The integration of constraints on temporal relations
between timestamp attributes into the schema of an
relation

• The restriction of operator applications according to
the constraints on temporal relations between times-
tamp attributes

Temporal Streams. Basically a temporal stream is a
potentially infinite relation with designated timestamp at-
tributes, that always has a finite past. This means that
when restricting all timestamp attributes of the temporal
stream with an upper bound, then the resulting prefix of
the stream, i.e. the “past”, has only finite size. This just
reflects the fact that up to any point in time every CEP-
system will only receive a finite amount of data. The only
restriction for the domain of timestamp attributes is that it
must be totally ordered, especially temporal domains do not
have to be discrete (Z) but can be continuous (Q,R).

Temporal streams serve as common algebraic represen-
tation for the three high-level concepts events, temporary
objects and actions mentioned in Section 2.1. All three con-
cepts are represented as tuples of a temporal stream. At that
point we exploit the fact that TSA does not make assump-
tions about the semantics of time-stamps as the semantics
of time-stamps is likely to be different in the three cases
events, stateful objects and actions.

Stateful data represented using temporary objects implies
the need for recursion as the new state frequently depends on
the preceding one. However it seems to be sufficient to allow
a restricted form of recursive TSA-expressions called tempo-
ral hierarchical TSA-expressions where cycles have to make
temporal progress. 3 In other words recursion in the same
time-point is not allowed (as it is not for relational algebra)
and the past may not depend on the future. However re-
cursion to the future is allowed. In this way termination for

3The term temporal hierarchical is chosen as the required
temporal progress for cycles on the level of temporal streams
implies that dependencies on the data level are cycle-free, i.e.
hierarchical.



each time-point and each finite stream prefix is guaranteed.
Without time bound temporal hierarchical TSA-expressions
are Turing-complete, though.

An interesting property of temporal streams is the fact
that in the absence of timestamp attributes, a temporal
stream actually describes a normal (finite) database rela-
tion. When using only such relations, the operators of TSA
behave exactly as usual relational algebra operators. Thus
TSA is a clean generalization of relational algebra. Obvi-
ously this enables a very smooth integration of static data.

Constraints on temporal relations. Constraints are
used to provide information on temporal relations at the
schema level. The information is implicitly collected when a
selection on temporal relations is applied or when new rel-
ative time-stamps are computed. The information is stored
in the constraints and is propagated to subsequent TSA op-
erators in this way.

The information on temporal relations is mainly used for
three purposes: First for determining the correctness of an
TSA-expression. This is immediately related to the restric-
tions of operator applications described in the following.
Second for deriving wait conditions which are needed for
the evaluation of grouping, aggregation and negation. Wait
conditions ensure that the processing of an tuple is delayed
until all other tuples relevant for the processing, e.g. the
tuples in the same group, have arrived, too. For deriving
relevance conditions. Relevance conditions are used to re-
duce the size of the input to an incremental TSA-expression.
The worst-case over all relevance conditions of some tempo-
ral stream defines the relevance conditions needed for auto-
matic garbage collection.4

Restriction of operator applications. The applica-
tions of operators is restricted for two reasons: First to en-
sure that grouping, aggregation and negation can be eval-
uated and second for achieving answer-closedness. Answer-
closedness in this case means that applying an operator
to an temporal stream results in a temporal stream again.
The other property which is important for the evaluation
of grouping, aggregation and negation is called temporal
preservation. The temporal preservation property guaran-
tees that the computation of a finite prefix of the result
stream of an TSA-expression needs only finite prefixes of the
input streams of the expression and the size of the needed
prefixes can be statically determined. The necessary restric-
tion mainly affects the projection and the grouping operator.
Crudely spoken the temporal relations must imply that the
values of the remaining timestamp attributes upper bound5

the values of the discarded timestamp attributes.

2.3 Event-Mill
Event-Mill is a natural and straight-forward approach for

implementing the theory of incremental evaluation of TSA-
expressions. The basic idea is that like in a turning mill
all incremental TSA-Expressions are continuously evaluated.
With each evaluation round all events that have arrived since
the last round are processed at once, i.e. a bulk-wise pro-
cessing is performed (see Figure 1). Event-Mill can easily be
implemented on an existing database system as incremen-

4Note that the quality of temporal analysis affects the qual-
ity of wait- and relevance conditions and therefore might
have a strong impact on the performance of the evaluation.
5 In the case of grouping, the time-stamp attributes within
the grouping attributes.

Figure 1: In contrast to traditional approches Event-
Mill processes several tuples at a time

tal TSA-Expression can be read as normal relation algebra
expression.

We expect that Event-Mill fullfils the requirements for-
mulated in Section 2.1. Due to the bulk-wise processing
should be robust against peaks in the event load. A pro-
cessing strategy reacting on single events is not likely to
fulfill this requirement. Furthermore it allows situation de-
pendent query prioritization basically by running incomplete
rounds. Thus Event-Mill is apparently well-suited for the re-
quirements of emergency management but probably also for
those of many other applications. However Event-Mill might
not be the optimal choice if an application demands for a
minimum response time on the arrival of a single event.

3. RELATED WORK
Temporal Algebras [51, 36, 40] are used in so-called

Temporal Databases which are one of the (many) ancestral
fields of CEP. However Temporal Algebras do neither ac-
count for the stream aspect of CEP nor for the incremental
evaluation needed to the potentially infinite relations repre-
senting event streams.

Composition Operator Approaches are characterized
by the use of composition operators, particularly the se-
quence operator, for building complex events and expressing
temporal relations. The classification comes from [22] where
those approaches are classified as“composition operator lan-
guages”. The underlying semantics (if such) typically uses
the term Event Algebra, however they have little in com-
mon with relational algebra. The following systems and ap-
proaches belong to this category: Amit [5], ruleCore [50, 39],
CAYUGA [19] and [28, 26, 27, 17, 3, 4, 35, 54, 9, 53, 20, 13,
14, 44, 37, 29, 16, 10, 46, 45, 41].

Datastream Approaches typically use an SQL-like query
language and are classified as “data stream query languages”
in [22]. Due to their SQL-like query they are relatively close
to relational algebra. Some of them even have an formal
semantics which is an adoption relational algebra [33]. This
way of adoption is however completely different than the
one chosen for TSA. The following systems fall into this
category: PIPES / Logical Stream Algebra [32, 33], Tele-
graphCQ [18, 43], Aurora / Borealis / StreamBase / Stream-
SQL [52, 30, 1], CQL / STREAM [7], Esper [24], Coral8 [38]
and DataCell6 [31, 34]

6 Note that from the point of evaluation the DataCell ap-
proach has some familiarity to Event-Mill. It utilizes bulk



CERA is the Complex Event Relational Algebra of Michael
Eckert [21, 23] proposed as operational semantics for the
logic event query language XChangeEQ. TSA picks up many
of the ideas of CERA but somehow makes a restart as to
achieve minimal and orthogonal operators which are better
suited for optimizations. Furthermore TSA provides more
expressive temporal relations, a significantly more flexible
grouping a better temporal analysis resulting in an improved
garbage collection and an more evolved (particularly asyn-
chronous) incremental evaluation.

4. CURRENT AND FUTURE WORK
The definition of TSA is almost completed but the asyn-

chronous variant and the details of temporal analysis still
need some work. The Event-Mill approach is completely
designed and a prototype is on the way. As soon as the
prototype is available both TSA and Event-Mill should be
evaluated experimentally. Furthermore a theoretic analysis
of their computational complexity would be interesting. As
we expect that TSA preserves the nice properties of rela-
tional algebra particularly with respect to operator permu-
tations the possibilities of applying optimizations algorithms
known from relational algebra like sub-query sharing oper-
ator reordering should be examined. Further optimizations
could also be examined. The QONCEPT project [42] of
Olga Poppe aims at that direction.
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