Complex Event Processing (CEP)
Michael Eckert and Frangois Bry
Institut fiir Informatik, Ludwig-Maximilians-Universitat Miinchen
michael.eckert@pms.ifi.lmu.de, http://www.pms.ifi.lmu.de

This is an English translation of the article “Aktuelles Schlagwort: Complex
Event Processing (CEP)” (to appear in German language in Informatik-
Spektrum, Springer 2009).

Event-driven information systems demand a systematic and automatic
processing of events. Complex Event Processing (CEP) encompasses meth-
ods, techniques, and tools for processing events while they occur, i.e., in a
continuous and timely fashion. CEP derives valuable higher-level knowledge
from lower-level events; this knowledge takes the form of so called complex
events, that is, situations that can only be recognized as a combination of
several events.

1 Application Areas

Service Oriented Architecture (SOA), Event-Driven Architecture (EDA),
cost-reductions in sensor technology and the monitoring of IT systems due
to legal, contractual, or operational concerns have lead to a significantly
increased generation of events in computer systems in recent years. This de-
velopment is accompanied by a demand to manage and process these events
in an automatic, systematic, and timely fashion. Important application ar-
eas for Complex Event Processing (CEP) are the following:

Business Activity Monitoring aims at identifying problems and op-
portunities in early stages by monitoring business processes and other critical
resources. To this end, it summarizes events into so-called key performance
indicators such as, e.g., the average run time of a process.

Sensor Networks transmit measured data from the physical world,
e.g., to Supervisory Control and Data Acquisition systems that are used
for monitoring of industrial facilities. To minimize measurement and other
errors, data of multiple sensors must often be combined. Further, higher-
level symbolic situations (e.g., fire) must often be derived from raw numerical
measurements (e.g., temperature, smoke).

Market data such as stock or commodity prices can also be considered
as events. They have to be analyzed in a timely and continuous fashion in
order to recognize trends early and react to them automatically, for example,
in algorithmic trading.

The situations that must be detected in these applications and their
associated information are distributed over several events. They must be
derived from several events and their relationships through CEP.

2 Types of Complex Event Processing

The term Complex Event Processing was popularized in [9]; however, CEP
has many independent roots in different research fields, including discrete
event simulation, active databases, network management, and temporal rea-
soning. Only in recent years, CEP has emerged as a discipline in its own
right and an important trend in industry. The founding of the Event Pro-
cessing Technical Society [6] in early 2008 underlines this development.

One should distinguish in CEP the case where complex events are spec-
ified as a-priori known patters over events and the case where previously
unknown patterns should be detected as complex events. In the first case,
event query languages offer convenient means to specify complex events and
detect them efficiently. In the second case, machine learning and data min-
ing methods are applied to event streams. This article focuses on event
query languages since they are the more mature area.

2.1 Relationship to other topics

Detection of complex events is, of course, no an end in itself; an event-driven
information system should react automatically and adequately to detected
events. Typical reactions include notifications (e.g., to another system or
a human user), simple actions (e.g., buy stocks, activate fire-extinguishing
installation), or interaction with business processes (e.g., initiation of a new
process, cancellation or modification of a running process).

CEP is therefore closely linked with other topics such as visualization
of event data for human users, message-based middleware for transport of
messages, rule systems for the specification of reactive behavior (e.g., ECA
rules and reactive logic programming), and business process management. In
this article, however, we only address CEP in the narrower sense of detecting
complex events.

3 Event Queries

In contrast to database queries, event queries are evaluated continuously
while the events happen. While databases also often work with event-related
data (e.g., a history of orders), queries there are one-time and “ad-hoc”
against a finite set of data instead of continuous and “standing” against a
(conceptually) infinite stream of events as in CEP (cf. Fig. [1)).

Database queries

Des ? ?
= B 09 09 09

)

Event queries

X
K(
K
K(
K

-
<

Figure 1: Difference between database and event queries.

The requirements to an event query language can be described with the
following four aspects:

Data extraction: Events contain data that is relevant to decide
whether and how to react to them. Access to this data must be possible in
conditions of queries, in potential reactions, for enrichment with other data
(e.g., from database tables), and for construction of new events. Increas-
ingly, events are represented in XML formats; in this case, data can have a
quite complex structure.

Composition: It must be possible to join several individual events
together, so that their combined occurrences over time yield a complex event.
This composition must often be sensitive to data (e.g., join only events
concerning the same customer).

Temporal Relationships: Event queries often involve temporal con-
ditions expressing that the events must happen within a particular time
interval or in a particular order. Other relationships between events, e.g.,
causality, can also be important.

Accumulation: Queries involving negation (absence of an event) or
aggregation of event data are not sensible on infinite streams because they
can only be answered correctly when the stream ends. Accordingly, such
queries can only be issued against certain finite extracts (or “windows”) of
a stream, where their result is well-defined.

Additionally, two types of rules are important: Deductive Rules de-
fine new events based on event queries; they are comparable with views in
databases and have no side-effects. We emphasize that these deductive rules
operate on events, not on facts (like “traditional” deductive rules from logic
programming and deductive databases). Reactive rules [3] specify how to
react to (complex) events, e.g., with database updates or procedure calls.

4 Prevalent Event Query Languages

Broadly speaking, three different types of languages are currently used to
express event queries. In the following, we introduce the core ideas of these
three language styles. Additionally, we give an outlook on a recent research
project concerned with the design of an event query language at the end of
this article. The discussions here are consciously kept short and generalizing;
we refer to chapter 3 of [5] for a more detailed elaboration and bibliography.

4.1 Composition Operators

Composition operators have their origins in active database systems [10],
though newer systems like Amit [I] run independently from a database.
Complex event queries are expressed by composing single events using dif-
ferent composition operators. Typical operators are conjunction of events
(all events must happen, possibly at different times), sequence (all events
happen in the specified order), and negation within a sequence (an event
does not happen in the time between two other events). Nesting of expres-
sions makes it possible to express more complicated queries.

Many language support restrictions on which events should be considered
for the composition of a complex event. Event instance selection allows to
select, e.g., only the first of last event of a particular type. Event instance
consumption prevents the reuse of an event for further complex events if it
has already been used in another, earlier complex event.

Composition operators offer a compact and intuitive way to specify com-
plex events, where temporal relationships and negation are well-supported.
Event instance selection and consumption is a feature that is not present
in the other approaches. Yet, there are sometimes hidden problems with
the intuitive understanding of operators, e.g., several variants of the inter-
pretation of a sequence (amongst others, interleaved with other events or
not). Further, event data is often being neglected, in particular regarding
composition and aggregation.

Currently only very few CEP products are based on composition opera-
tors, among them IBM Active Middleware Technology (Amit) and ruleCore.

4.2 Data Stream Query Languages

Data stream query languages like CQL [2] are based on the database query
language SQL with the following general idea: data streams, which contain
events as tuples, are converted into relations. On these relations a regular
SQL query is evaluated. The result (another relation) is then converted back
into a data stream. Conceptually, this process is done at every time point
of a fixed discrete time axis. (See however [§] for variations.)

For the conversion of streams into relations, window operations such

as “all events of the last hour” or “the last 10 events” are used. For the
conversion of the result relation back into a stream there are three options:
only tuples that have been added in comparison with the previous result
yield a new event, only tuples that have been removed, or simply every
tuple of the (current) result.

Data stream query languages are very suitable for aggregation of event
data, as particularly necessary for market data, and offer a good integra-
tion with databases. Expressing negation and temporal relationships, on
the other hand, can often be cumbersome. The conversion from streams
to relations and back can be considered somewhat unnatural, as can the
prerequisite of a discrete time axis.

SQL-based data stream query languages are currently the most success-
ful approach and are supported in several efficient and scalable industry
products. The better known ones include Oracle CEP, Coral8, StreamBase,
Aleri and the open-source project Esper. However, there are big differences
between the respective variants and important extensions that go beyond
the general idea that has been discussed here.

4.3 Production Rules

Production rules, which nowadays are mainly used in business rule manage-
ment systems like Drools or ILOG JRules, are not an event query language
in the narrower sense. The rules are usually tightly couples with a host
programming language (e.g., Java) and specify actions to be executed when
certain states are entered [3]. The states are expresses as conditions over
objects in the so-called working memory, which are also called facts.

Their incremental evaluation (e.g., with Rete) makes production rules
also suitable for CEP. Whenever an event occurs, a corresponding fact must
be created. Event queries are then expressed as conditions over these facts.
In doing so, the programmer has much freedom and little guideline.

CEP with production rules is very flexible and well integrated with ex-
isting programming languages. However, it entails working on a lower and
—since it is state and not event oriented— somewhat unnatural abstraction
level. Especially aggregation and negation are therefore not easy to express.
Garbage collection, that is, the removal of events from the working mem-
ory, must be programmed manually. (See however [I1] for work towards an
automatic garbage collection.) Production rules have the reputation to be
less efficient than data stream query languages.

Besides their use in business rule management systems that are not fo-
cused on events, production rules are also an integral part of the CEP prod-
uct TIBCO Business Events.

5 CEP in Practical Use and Research

CEP is an industrial growth market as well as an important research area
that is emerging from coalescing branches of other research fields. Despite
first successful projects in the application areas discussed at the beginning
[7, 12], there is still high demand for experiences and comparisons of event
query languages in concrete projects. (This is also due to a certain secrecy in
algorithmic trading, which is currently still the biggest market for CEP.) Fur-
ther there are only few benchmarks to compare and predict the performance
of CEP systems. Beyond event query languages, reference architectures and
design patterns for CEP are of high importance.

5.1 Standardization and Harmonization Activities

Even though the prevalent event query languages can be categorized roughly
into three families as done in this article, there are significant differences
between the individual languages of a family. Whether a convergence to
a single, dominant query language for CEP is possible and advisable is
currently in no way agreed upon.

Efforts towards a standard for a SQL-based data stream query language
are being underway [8], but not yet within an official standardization body.
A standardized XML syntax for production rules is being developed in the
framework of the Rule Interchange Format (RIF) by the W3C; however,
the special requirements of CEP are not considered there so far. The same
applies to the Production Rule Representation (PRR) by the OMG.

To support modeling of events in UML, the OMG has recently issued a
request for proposals for an Event Metamodel and Profile (EMP). It explic-
itly mentions that the EMP should support modeling of CEP functionality.

Activities of the Event Processing Technical Society (EPTS) aim at a
coordination and harmonization, amongst others with the work on a glos-
sary of CEP terms and just initiated work on the analysis of event query
languages. Further, the EPTS wants to support standardization efforts un-
dertaken by other organizations.

5.2 Outlook on Current Research: XChange®®

Some of the problems associated with the languages discussed in Chapter 4
can be attributed to the fact that they mix the four aspects of event query
languages and, in doing so, neglect some aspects. The research project
XChangeP®Q [4] develops an event query language that follows an approach
where queries are expressed in the style of logic formulas and the four aspects
are clearly separated. XChange®@ further supports deductive rules over
events and direct, pattern-based queries against events in XML formats.

For example, the event query on the right hand side of the following de-
ductive rule expresses that an order with less than 10 items (g) is considered
late if it has not been delivered within two days.

late(id,t) <« o:order(id,q), s:shipping(id,t), w : extend(s,2 days),
while w : not delivery(t), o before s, ¢ < 10

Research on XChangeP? exemplifies the importance of good language
design and formal foundations in CEP and tries to rectify problems of the
prevalent approaches. The basic idea of writing event queries as logic for-
mulas with a separation of concerns is, e.g., also transferable to production
rules and can serve as a guideline for authoring event queries there.

5.3 Further Research Topics

Further research in Complex Event Processing is especially still needed on
formal foundations, in particular with regards to expressiveness of languages
and optimization. Important for query optimization are the exploitation
of shared (sub)expressions of queries (multi query optimization) as well as
distributed and parallel evaluation. Further research topics include deal-
ing with uncertainty in events (e.g., with probabilistic methods) and the
detection of a-priori unknown complex events (e.g., data mining on event
streams).

References

[1] A. Adi and O. Etzion. Amit — the situation manager. VLDB Journal,
13(2):177-203, 2004.

[2] A. Arasu, S. Babu, and J. Widom. The CQL continuous query language:
Semantic foundations and query execution. VLDB Journal, 15(2):121—
142, 2006.

[3] B. Berstel, P. Bonnard, F. Bry, M. Eckert, and P.-L. Patranjan. Reac-
tive rules on the Web. In Reasoning Web, Int. Summer School, number
4636 in LNCS, pages 183-239. Springer, 2007.

[4] F. Bry and M. Eckert. Rule-Based Composite Event Queries: The Lan-
guage XChange®Q and its Semantics. In Proc. Int. Conf. on Web Rea-

soning and Rule Systems, number 4524 in LNCS, pages 16-30. Springer,
2007.

[5] M. Eckert. Complex Event Processing with XChangePQ: Language
Design, Formal Semantics, and Incremental Evaluation for Querying
FEvents. PhD thesis, Institute for Informatics, University of Munich,
2008. http://edoc.ub.uni-muenchen.de/9405/.

http://edoc.ub.uni-muenchen.de/9405/

[6]
[7]

[10]

[11]

[12]

Event Processing Technical Society (EPTS). http://www.ep-ts.com.

T. Greiner et al. Business activity monitoring of norisbank taking the
example of the application easyCredit and the future adoption of com-
plex event processing (CEP). In Proc. Int. Symp. on Principles and
Practice of Programming in Java, pages 237-242. ACM, 2006.

N. Jain et al. Towards a streaming SQL standard. In Proc. Int. Conf.
on Very Large Databases, pages 1379-1390. VLDB Endowment, 2008.

D. C. Luckham. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison-Wesley,
2002.

N. W. Paton, editor. Active Rules in Database Systems. Springer, 1998.

K. Walzer, T. Breddin, and M. Groch. Relative temporal constraints
in the Rete algorithm for complex event detection. In Proc. Int. Conf.
on Distributed Event-Based Systems, pages 147-155. ACM, 2008.

G. Wittenburg et al. Fence monitoring — experimental evaluation of a
use case for wireless sensor networks. In Proc. Furop. Conf. on Wireless
Sensor Networks, volume 4373 of LNCS, pages 163-178. Springer, 2007.

	Application Areas
	Types of Complex Event Processing
	Relationship to other topics

	Event Queries
	Prevalent Event Query Languages
	Composition Operators
	Data Stream Query Languages
	Production Rules

	CEP in Practical Use and Research
	Standardization and Harmonization Activities
	Outlook on Current Research: XChangeEQ
	Further Research Topics

