# Rule-Based Composite Event Queries: The Language XChange<sup>EQ</sup> and its Semantics

François Bry, Michael Eckert
LMU München





LMU

# Motivation: Composite Events Generating and reacting to events on the Web Web services, Reactive Web Composite Events - Must be inferred from "atomic events" (messages) - Multiple atomic events, relationship between them - Need query language!







# XChange<sup>EQ</sup>: Rule-Based CEQs

- High-level, declarative query language for composite events, fully covers four dimensions
- Pattern-based queries on XML event messages: embeds Web query language Xcerpt
- Integrates into reactive rule language XChange
  - Perform automatic reactions, timing important
- Deductive (event) rules:
  - Define new, "virtual" events from received events
  - mediation, abstraction, reasoning (cf. database views)
  - Side-effect free; don't implement by reactive rules: optimization, (human) understanding

LMU

Int. Conf. on Web Reasoning and Rule Systems 2007

6

### XChange<sup>EQ</sup>: Example Rule DETECT DETECT overdue { order { id { var ID } id { var ID}, quantity { var C }, cust { var C } } ON cust { var C } } and { FROM event o: order {{ id { var ID }, END quantity { var Q }, cust { var C } }} event w: extend[o, 6h], while w: not shipped {{ id { var **ID** } }} } where { var **Q** < 10 } END LMU Int. Conf. on Web Reasoning and Rule Systems 2007

## Semantics (1)

- Declarative Semantics for XChangeEQ: model + fixpoint theories for stratified programs (A standard approach for rule languages)
- (Tarski-style) model theory:  $\frac{1}{L.E. + |c| \cdot |c|} \frac{1}{|c| \cdot |c|} \frac{1}{|$

```
\begin{split} I_i E_i r \mid & (\text{const.} i + g)^i & \text{iff soliton} x^i f \leq x & \text{this } h(i) = h^i f^i - g + 1, \\ I_i E_i r \mid & (\text{const.} i + x & \text{this } h(i)) & \text{iff coints} x^i & \text{with } h(i) = h^i f^i - g + 1, \\ I_i E_i r \mid & (\text{const.} i + x & \text{this } h(i)) & \text{if } h(i) & \text{if } h(i)
```

- Accommodates event identifiers ("event o:")
- Events have occurrence times
- · Temporal relations: fixed interpretation

LMU

Int. Conf. on Web Reasoning and Rule Systems 2007

Ω

# Semantics (2)

- · Restriction to stratified programs
  - w.r.t. negation, grouping, relative temporal events
- Fixpoint: model M<sub>P F</sub>
  - $T_P(I)$ : all events derivable by rules in  $P^{T_P(I)=I \cup \{e^t \mid \text{there exist a rule } e-Q \in P, a maximal substitution set } \Sigma_i$
  - starting with incoming event stream E  $_{TE: least fixpoint of T_P}$
  - compute fixpoints stratum by stratum

- · Theorem:
  - P stratified program, E (incoming) event stream.
  - Then: M<sub>P.E</sub> is a minimal model of P under E and
  - Independent of the stratification of P

LMU

Int. Conf. on Web Reasoning and Rule Systems 2007

9





# Summary and Outlook

- XChange<sup>EQ</sup>:
  - High-level event query language
  - Full coverage of all four dimensions, XML support
  - Support for (deductive) event rules
- Declarative Semantics
  - Model and fixpoint theory for stratified programs
  - Well-defined on unbounded event streams
- Outlook
  - Incremental, data-driven evaluation
  - Optimizations based on temporal conditions

LMU

Int. Conf. on Web Reasoning and Rule Systems 2007

12

