Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Visual Languages: A Matter of Style

Sacha Berger Francois Bry Tim Furche !

Institute for Informatics
University of Munich, Germany

Christoph Wieser 2

Salzburg Research, Austria

Abstract

This articles submits the thesis that visual data modeling and programming languages are conveniently
conceived as rendering, or ‘styling’, of conventional, textual languages. Styling has become a widespread
technique with the advent of the Web and of the markup language XML. With XML, application data can
be modeled after the application logic regardless of the intended rendering. Rendering of XML documents
is specified using style sheet languages like CSS. Provided the styling language offers the necessary func-
tionalities, style sheets can similarly specify a visual rendering of modeling and programming languages.
The advantages of the approach are manifold: visualization is achieved in a systematic manner, i.e. the
same visualization paradigms can be used for several languages; visual languages necessarily come along
with textual counterparts; visual languages are much easier to develop than in ad hoc manners.

This article first introduces rather limited extensions to the style sheet language CSS that make it amenable
to render data modeling and programming languages as visual languages. Then, it demonstrates the
approach on a use case, the experimental logic-based Web query and transformation language Xcerpt.
Finally, it is argued that the approach is especially amenable to logic-based languages.

Keywords: Visual Programming Language, Rendering, Styling

1 Introduction

Visual data modeling and programming languages are conveniently conceived as
rendering, or ‘styling’, of conventional, textual languages. Styling has become a
widespread technique with the advent of the Web and of the markup language
XML.

With XML, application data can be modeled after the application logic regard-
less of the intended rendering. Rendering of XML documents is specified using
style sheet languages like CSS. Provided the styling language offers the necessary
functionalities, style sheets can similarly specify a visual rendering of modeling and

! Email: {sacha.berger,francois.bry,tim.furche}@ifi.lmu.de
2 Email: christoph.wieser@salzburgresearch.at

©2007 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:
mailto:

CHRISTOPH WIESER

programming languages. The advantages of the approach are manifold: visualiza-
tion is achieved in a systematic manner, i.e. the same visualization paradigms can
be used for several languages; visual languages necessarily come along with textual
counterparts; visual languages are much easier to develop than in ad hoc manners.

This article first introduces rather limited extensions to the style sheet language
CSS that make it amenable to render data modeling and programming languages
as visual languages. Then, it demonstrates the approach on a use case, the exper-
imental logic-based Web query and transformation language Xcerpt. Finally, it is
argued that the approach is especially amenable to logic-based languages.

XML source Presentation
1 <bib>
2 <book year="1994" id="42"> book
3 <title> g :
4 TCP/IP Illustrated .f%ﬁil..;?f?ﬂ....l..d.ﬂ%.
5 </title>
6 <author> TCP/IP Illustrated |
author|
e |

Fig. 1. XML document (left side) and rendering using CSSNC (right side).

CSS is chosen in this study because of its admittedly limited expressive power:
if limited extensions to CSS make it possible to conceive visual languages as styling
of textual languages, than the same will hold of more involved styling languages
such as XSL-FO.

An appealing feature of CSS is that it specifies formatting instructions using
rather simple guarded rules. A limitation of CSS is that it focuses on static for-
matting rules. As a consequence scripting languages such as ECMA Script are used
in practice for dynamic adaptation of formatting. CSSM% is a novel extension of
CSS 3, the newest version of CSS, introducing just a few rules for a dynamic ren-
dering and for markup visualization. This limited extension of CSS 3 turns out to
make possible a rather advanced visualization of programs.

Even though CSSV¢ is a limited and conservative extension of CSS, CSSN¢
makes it possible

* to specify dynamic styling,
* to generalize markup visualization, and
e to integrate the keyboard as input device.

The extension of CSSNC allows for a declarative and, therefore, concise and
quite simple specification of dynamic document rendering in comparison to query
languages like XSLT [15] or scripting languages like ECMA Script [11].

2 CSS in a Nutshell

CSS 3 and its predecessors have been developed to simplify changes of the content
as well as of the presentation of HTML and XML documents by separating content
from presentation. The following rule demonstrates a well-known static styling
feature already introduced in CSS 1:

CHRISTOPH WIESER

a { text-decoration: underline; }

The left-hand head of the CSS rule, a, selects HTML anchors. The so-called
declaration on the right-hand side assigns the styling parameter to XML elements
selected by the head of a CSS rule. In the example above it specifies that anchors
are presented underlined as customary in Web pages to mark hyperlinks.

Also dynamic styling features are offered in CSS 3. The background color of
an HTML anchor can be switched to yellow while the mouse cursor is hovering
(:hover) over it:

a:hover { background-color: yellow; }

Markup especially in XML documents often conveys application relevant infor-
mation. Therefore, it might be useful to visualize it. However, CSS 2.1 and CSS 3
offer quite limited means for markup visualization. The following subsections 2.1
to 2.3 briefly introduce novel static CSS™V rules mainly aiming at visualizing XML
markup. Finally Section 2.4 introduces the rule-based interface for dynamic docu-
ment styling. Full details on how CSSV¢ extends CSS 3 can be found in [13].

CSSNE rules such as specified in a file can be linked in an XML document via
a so-called processing instructions (PI) or in the header of an XHTML document.
Note that CSSVC extensions introduced for XML elements apply also to XHTML
elements.

2.1 Markup Insertion

CSS 3 allows the insertion of plain text specified in a CSS style sheet. The pseudo-
elements ::before and ::after cause insertion of text before and after a selected
XML or HTML element.

CSSME extends these pseudo-elements of CSS 3. In addition to inserting plain
text in CSS 3, the CSSNC functions element (NAME,ATTRIBUTES, VALUE) and
attribute (NAME,VALUE) provide also inserting XML elements and attributes before
and after XML elements. The following example inserts tabs (see Fig. 5) inscribed
with element before each element in an XML document (The CSSM¢ function
element (NAME,VALUE) has only two arguments, if there are no attributes.):

*::before { content: element("a",
attribute("title","Tab"),
"elem") }

Fig. 2. Markup Insertion (CSSNVG) — elem is inserted before each XML element by
the rule.

2.2 Markup Querying

CSS 3 provides the function attr(X) for querying the content of a known XML
attribute X of an XML element. The name of an XML element and its XML
attributes can not be queried. Implementing the markup visualization in Fig. 10

3

CHRISTOPH WIESER

without generalized markup querying would mean one rule for every XML type like
bib.

XML source Presentation
1 <bib>
2 <book year="1994" id="42"> book
3 <title> : .
4 TCP/IP Illustrated :‘93::129941‘:142
5 </title>
6 <author> TCP/IP Illustrated |
author|
Pt]

Fig. 3. XML document (left side) and rendering using CSSNE (right side).

CSSNG adds the function element-name() yielding the name of the currently
selected XML element. Furthermore, one XML element can host several XML at-
tributes. Therefore, CSSNC offers attribute rules selecting XML attributes instead of
XML elements. The CSSVC functions attribute-name () and attribute-value()
query XML attribute names and values in the context of a selected XML element.
The example in Fig. 4 implements a tab in front of each XML element listing the
XML element name and all of the XML elements’ attributes including their values
as shown in Fig. 10.

XML source (see Fig. 10)

1 ... <book | year [="1994" id [E"42"> ... </book> ...

CSSNVE style sheet

1 *::before { content:

2 element ("span", element ("span", element-name())

3 * | { element("span", attribute-name() " "
4 attribute-value())

5 I D)

6 }

intermediate representation

1 ...
2 book
3 year | 1994
4 id | 42
5
<book year="1994" id="42"> ... </book> ...

Fig. 4. Generation of tabs. The presentation in Fig. 10 is obtained by rendering the intermediate represen-
tation using further CSS 3 means.

CHRISTOPH WIESER

2.3 Depth-dependent Styling

Styling depending on breadth is planned in CSS 3 [6]. Tables, for instance, can be
styled using alternating background colors for each line. CSSV¢ additionally offers
styling depending on the depth of an XML element in an XML document: The
pseudo-class :nth-descendant (an+b) restricts selections to XML elements having
an + b ancestors.

Fig. 5 demonstrates the visualization of a highly nested XML document with
colors repeating on every third level. On the left side this rendering is realized
using CSSNE and alternatively using CSS 3. Thanks to its depth-dependent styling
features, the upper CSS™VY style sheet needs only three rules. The CSS 3 style sheet
below needs one rule for every level. Hence, styling in CSS 3 is possible up to a
certain depth only as shown on the right side of Fig. 5 using the CSS 3 style sheet
on the lower right side of Fig. 5. Such a styling would also be useful for applications
such as the visualization of threads in a discussion forum.

NG . .
CSS Presentation using CSS 3
¢ y 1 } aelemem
1 *:nth-descendant (3n+1 background-color: A; —I'
2 *:nth-descendant (3n+2) { background-color: B; } emment
3 *:nth-descendant (3n+3) { background-color: C; } element]
CSS 3 :.':mc'tl
elemenr[
1 * { background-color: A; } —1
2 * % { background-color: B; } it
3 * Kk { background-color: C; }
4 * K Kk % { background-color: A; } element] same COIOr
5 * ok kK X { background-color: B; } a
6 Kok K K %k { background-color: C; } element
7 cle-cn:l
8 * Ok ok ok X Kk K { background-color: A; }
9 * ok ok ok ok ok ok ok { background-color: B; } el
10 1 |
elemen* ||

Fig. 5. Comparing Depth-dependent Styling using CSSVE and CSS 3.

2.4 Dynamic Styling Generalized

Dynamic styling in CSS 3 is limited to the dynamic pseudo-class :hover. This
construct allows dynamic styling in the local context of the mouse cursor only as
demonstrated in Section 2. This is not sufficient to implement a behavior like
folding a tab as demonstrated in Section 7: when the mouse cursor moves away, the
cursor does no longer hover over the selected XML element, and its tab would be
automatically unfolded.

CSSN@ introduces dynamic pseudo-classes for all HTML intrinsic events [1] such
as onclick or onkeypress (see [13] for sample applications). Instead of using
HTML intrinsic event attributes like for scripting languages, CSSNE allows a stan-
dalone specification of dynamic styling in separate CSSVC files that can be applied
for multiple documents. The following example in Fig. 6 shows a rather simple

dynamic CSSNC rule.

a:onclick(10) { background-color: green; }

Fig. 6. Dynamic Styling of an adaptive hyperlink (CSSNG).

5

CHRISTOPH WIESER

The rule in Fig. 6 implements an adaptive hyperlink. After 10 clicks on the
hyperlink the background color changes to green meaning that the hyperlink on the
Web page is frequented by the user.

This extension makes it possible to apply dynamic styling on different sections
of an XML document at the same time. For instance if two hyperlinks were clicked
ten times in a Web page, both will be presented with different background colors.

Similar extensions using HTML intrinsic events have been already proposed by
the W3C [8]. The following paragraphs introduce to novel capabilities of CSS™ G,

2.4.1 Recurrence Patterns.

All CSSME dynamic pseudo classes support recurrence patterns, an+b, as param-
eters. For instance the CSSNC selector *:onclick(3n+1) detects the first, the
fourth, the seventh, etc. click on an arbitrary XML element. More generally, a
CSSNG gelector fires, if an + b events occurred before.

On one hand such recurrence patterns allow to reuse CSSNC rules for folding
and unfolding as demonstrated in the following paragraph. On the other hand
recurrence patterns allow to “delay” the application of rules up until a number of
events, for instance clicks, as demonstrated in the previous Section (see adaptive
hyperlink above).

2.4.2 Dynamic Styling Combined.
A noticeable feature of the (novel) dynamic pseudo-classes of CSSV¢ is their com-
patibility with CSS 3 combinators, which allow to specify tree patterns.

Stevens |

Fig. 7. Folded visualization of an XML element title. The corresponding unfolded example is shown in
Fig. 10.

A CSS 3 selector is an alternating sequence of so-called simple selectors (already
informally introduced in Section 2) and combinators. For instance, the combinator
+ means that the simple selector on its left side must be a preceding sibling of the
simple selector on the righthand side. The CSS declaration (in curly braces) is only
applied to the XML element matched by the right simple selector.

The following example (see Fig. 8) implements alternating folding and unfolding
for the visualization of arbitrary (simple selector *) XML elements (see Fig. 7). A

click on a tab of a visualized XML element like | title | folds its visualization.

Another click on a tab unfolds it (see| title |in Fig. 10):

In the example above, the lefthand selector of the first CSSN® rule above is
composed of the two simple selectors tab:onclick(2n+1) and * combined with the
CSS 3 combinator, +. The visualization of an XML element matched by the simple

6

CHRISTOPH WIESER

1 tab:onclick(2n+1) + * {display:none} Fold on odd number of clicks.
2 tab:onclick(2n+2) + * {display:block} Unfold on even number of clicks.

Fig. 8. Combined dynamic styling in CSSNVC (rendering in Fig. 7).

selector * disappears, if a mouse click was performed on its preceding sibling XML
element, while its tab stays visible.

2.4.8 Structure-Independent Styling.

A static CSS 3 styling rule is applied to all XML elements matching its selector. A
dynamic CSS 3 styling rule is applied only to XML elements being in the context
of an input device such as an XML element laying under the mouse cursor. CSSNC
abolishes this restriction and allows (novel) so-called monorama and panorama selec-
tions as demonstrated in Fig. 7?. The Author element on the left side is highlighted,
while the mouse cursor is hovering over the Author element on the right side (see
Fig. 9).

1 Author { background-color: black; }
2 Author:hover ? Author { background-color: white; }

Fig. 9. Highlighting of Xcerpt variables.

The CSS 3 rule in line 1 defines the standard background black for XML Author
elements. In line 2 the CSSNC combinator ?, called if, is applied as follows: If an
XML Author element is hovered in an XML document, set the background color of
all XML Author elements to white.

A proof-of-concept prototypical implementation of CSSVC was implemented as
part of a diploma thesis [13] and presented [8].

3 Styling of Logic Languages

The approach described in thew previous section to conceive a visual language as
a rendering, or styling, of a textual language seems for the following two reasons
especially convenient for logic languages:

* Logic languages are declarative, i.e. they focus on both the structural and con-
ceptual organization of the data.

* Logic languages come in families that share traits, like e.g. modal languages, rule-
based languages, logic programming languages, frame logic languages. With the
approach proposed, “visualizations” can be rather easily developed and applied
to various languages of a same language family.

It is the firm belief of the authors that the approach proposed in this article has
the potential to boost the development and testing of visual languages, especially
of visual logic languages.

4 visXcerpt — the Visual Twin Sibling of Xcerpt

As an example of the visualization of a textual language using the presented ap-
proach and CSSMNC, the Web query and transformation language Xcerpt[11] and

7

CHRISTOPH WIESER

its visual counterpart visXcerpt[2] are presented. Xcerpt is a rule based deductive
language. As a textual language, it comes in two syntax flavours — an abbreviated
syntax and an XML syntax. Rules consist of a head, also called construct pattern
and a body consisting of logically connected query patterns. Query and construction
share values my means of shared variables, rules query each other heads employing
forward or backward chaining. Construct patterns may contain special grouping
constructs to collect multiple variable bindings in one result, queries may consist
of incomplete query patterns with incompleteness in breadth and/or depth and/or
order, reflecting the incertitude about size and structure of documents on the web.
Patterns are hence like ‘ezamples’ of web data searched fr in given documents.

The central part of visXcerpt, the visual rendering of Xcerpt, is the visualization
of Web data, of XML documents. As Xcerpt itself comes in XML syntax, half the job
is done by visualizing XML. Further aspects, like partiality, grouping constructs and
variables are then added to term visualization to get a full featured visualization of
query and construct patterns. Rules are then just represented as horizontal aligned
head and body, related by an arrow.

Term Visualisation

Web data and patterns are considered to have term like structure. Terms are
rendered as boxes with their name as a tab on the top, the box contains all tabbed
boxes of the subterms in the order they occur. The rendering is conceived to be
suitable for most web browsers, as they are a wide spread technology with high
adaptability to various screen sizes and resolutions. Order is given by a left-to-right
and top-to-bottom flow layout, but the layout directions should be adapted to local
writing habits of the users culture. Width is given by the width of the display or
browser employed. Nested boxes are further distinguished using colors, hence colors
represent nesting depth. To be able to make a reasonable selection of well assorted,
distinguishable and pleasant color themes, colors of upper levels are recycled for
deeper nestings.

Graph Visualization

On the Web, graph structures also need to be represented, e.g. RDF[10] data
representing graph sharped structures or hyperlink structure. In textual represen-
tations of graph structures, references are used along a spanning tree of the graph.
The presented approach of visualizing such graph structures is to model the refer-
ences as hyperlinks in a kind of browser. This way, even very large graph structures
can be represented and access to any references item is achieved by user interaction
with constant complexity — a click on a hyperlink. While browsers often provide
some means of navigating back along edges represented by hyperlinks, it is arguably
useful to explicitly give hyperlinks for reverse traversal of edges, as hence the user
is not restricted in his backward movement along edges he just visited.

Information focusing

For large documents, it is of vital necessity to give users the ability to hide
temporarily unneeded information or to focus on relevant data. This is achieved by
means of folding in or out terms behind their name tagged tabs. While elements

8

CHRISTOPH WIESER

are aligned vertically, tabs are first aligned left-to-right and then vertically, saving
even more space. The concept is strongly inspired by tree browser visualization as
e.g. seen on the well known Windows file browser.

At this level, pure static visualization already starts to merge with user interac-
tion. A visualization, is indeed arguably much more useful, with adequate support
of user interaction, especially of editing.

Textual Xcerpt Program, and visXcerpt rendering of it.

1 CONSTRUCT rule :
2 results[in file:proceedings04.xml
3 all result[|
4 var Title,
5 var Author results
6 1 1
7 FROM
8 in(resource="file:procs04.xml")
9 proceedings04[[
10 papers[[@
11 paper [[all
12 var Title as title[[]] ,
13 var Author as author[[]]
14 1]
15 1]
16 1]
17 END

Fig. 10. A single rule Xcerpt program (in abbreviated textual syntax) along with its visXcerpt rendering
— the query part exploits a partial pattern (indicated by dotted lines in the visualisation) to search for

papers in a proceedings database, constructing title/author pairs all grouped in a list of results. All Title
variables are highlighted as the mouse is hovering above one of them in visXcerpt.

A Special Purpose Editor Model

For textual languages, copy-and-paste and text typing based editors are wide
spread. Central to textual editing, is a cursor concept, that usually is a separator
of the one dimensional program. For the presented visual approach, a separator
seemed not intuitive, hence a context metaphor is used for editing: each box is a
context, it is possible to cut, copy or delete it with or without its sub boxes, it is
possible to paste the content of the cut/copy buffer into, before, after or around
a context and hence term. The rich copy and paste model is accompanied by a
template concept, giving access to all program constructs and possibly example
terms or structures that can be altered, reduced or extended.

5 A realisation using CSS and CSS"¢

5.1 Principles

The main principles of the proof-of-concept implementation are
e drawing on Web standards for
* gaining platform independency and

e reducing implementation effort.

Therefore all data formats and transformations except CSSVC Parser are based
on W3C standards. Since the CSS 2.1 grammar [7] is specified in extended Yacc

9

CHRISTOPH WIESER

and Flex syntax, the Yacc parser and the Flex lexical scanner are used to trans-
form CSSM¢ style sheets into XML format (there are no W3C standards for
this kind of transformation). All other transformations are implemented as XSL
Transformations [12].

The Styler is the heart of the system. It processes all XHTML elements in the
document tree of an (Un)styled Document recursively. Each XHTML element
passes through one test for each CSSN® rule in a CSSNC style sheet. If a test
succeeds, the XHTML style attribute of the current XHTML element is modified.
The tests are implemented in XPath [9]. Since tests are executed from the perspec-
tive of each XML element, CSSV¢ selectors need to be translated to XPath selecting
XML elements in reverse direction as demonstrated in the following example (see
Fig. 11):

CssN¢ XPath
div [:onclick(2n+1) + | * self::| * |/preceding-sibling::| div | [
span[@class=’onclick’] mod 2 = 1 mod 2]

Fig. 11. Translation of CSS Selectors in XPath (CSSNG).

6 Outlook and Conclusion

The presented approach — obtaining a visual language by mere rendering or styling
of a textual language — has been explored with the textual query language Xcerpt.
To the largest extend, this has been achieved using standard CSS, for the most
salient features however an extension of CSS has been conceived.

6.1 Conclusion

visXcerpt has been prototypically implemented and successfully applied for the pre-
sentation of Xcerpt[5][4], widely easing the comprehension of the concepts of Xcerpt.
visXcerpt’s editor model turned out convenient for a wide scale of Xcerpt program-
ming tasks from the area of HI'ML content extraction, creation and wrapping, over
XML data transformation to Semantic Web and hybrid Web and Semantic Web
reasoning|[3].

CSSNCE as an extension of CSS turned out to be easily realizable without heavy
computational overhead compared to CSS3 and CSS3. It proved itself to be not
only a tool for the implementation of visXcerpt, but especially for sophisticated
visualization of XML data or arbitrary term structures with easily realizable domain
specific behavior.

The approach of conceiving a visual language based on a textual back-end turned
out convenient in both cases, for the programmer using the language as well as for
the creator of the visual language — creating a visual language as a rendering of
a textual one was reasonably easy, and programmers using it where pleased to be

10

CHRISTOPH WIESER

able to switch between textual and visual representation, hence combining the best
editing features of visual and textual world.

To the best of the knowledge of the authors similar generic approaches of devel-
oping visual languages as mere rendering using CSS and extensions have not been
proposed so far.

6.2 Outlook

Further interesting research in the area of Xcerpt/visXcerpt is to investigate about
type support, not only in the textual language for checking and validation of pro-
grams, but also in the editing process. This could help novice users to by just
providing editing features that lead from one valid program to another, as well as
providing a type based template approach over the example based approach.

In the area of generic visualization of textual languages, it is needed to sys-
tematically investigate further features/functionalities that would be desirable for
visual languages and what existing styling languages would be a convenient basis
for adding these features.

References

[1] S. Adler, A. Berglund, J. Caruso, S. Deach, T. Graham, P. Grosso, E. Gutentag, A. Milowski, S. Parnell,
J. Richman, and S. Zilles. HTML 4.01. W3C, 1999.

[2] S. Berger. Conception of a Graphical Interface for Querying XML. Diploma thesis, Institute for
Informatics, LMU, Munich, 2003.

[3] S. Berger, F. Bry, O. Bolzer, T. Furche, S. Schaffert, and C. Wieser. Querying the standard and
semantic web using xcerpt and visxcerpt. In Proceedings of European Semantic Web Conference,
Heraklion, Crete, Greece (29th May—1st June 2005), 2005.

[4] S. Berger, F. Bry, and T. Furche. Xcerpt and visxcerpt: Integrating web querying. In Proceedings
of Programming Language Technologies for XML, Charleston, South Carolina (14th January 2006),
2006.

[5] S. Berger, F. Bry, S. Schaffert, and C. Wieser. Xcerpt and visXcerpt: From Pattern-Based to Visual
Querying of XML and Semistructured Data. In Proceedings of 29th Intl. Conference on Very Large
Databases, 2003.

[6] B. Bos. Cascading Style Sheets Under Construction. W3C, 2005.

[7] B. Bos, H. W. Lie, C. Lilley, and I. Jacobs. Cascading Style Sheets. W3C, 1998.

[8] F. Bry and C. Wieser. Web queries with style: Rendering xcerpt programs with css-ng. In Proc. of 4th
Workshop on Principles and Practice of Semantic Web Reasoning, 2006.

[9] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C, 1999.
[10] O. Lassila and R. R. Swick. Resource Description Framework (RDF). W3C, 1999.

[11] S. Schaffert and F. Bry. Querying the Web Reconsidered: A Practical Introduction to Xcerpt. In Proc.
of Extreme Markup Languages, 2004.

[12] W3C. Eztensible Stylesheet Language (XSL) 1.0, 2001.

[13] C. Wieser. CSSNG: An Extension of the Cascading Styles Sheets Language (CSS) with Dynamic
Document Rendering Features. Diploma thesis, Institute for Informatics, LMU, Munich, 2006. http:
//www.pms.ifi.lmu.de/publikationen/.

11

http://www.pms.ifi.lmu.de/publikationen/
http://www.pms.ifi.lmu.de/publikationen/

	Introduction
	CSS in a Nutshell
	Markup Insertion
	Markup Querying
	Depth-dependent Styling
	Dynamic Styling Generalized

	Styling of Logic Languages
	visXcerpt --- the Visual Twin Sibling of Xcerpt
	A realisation using CSS and CSSNG
	Principles

	Outlook and Conclusion
	Conclusion
	Outlook

	References

