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ABSTRACT

Queries for composite events typically involve the four pben
mentary dimensions of event data, event composition, ioelat
ships between events (esp. temporal and causal), and aedtumu
ing events over time windows for negation and aggregatioe W
consider a datalog-like rule language for expressing soatpos-

ite event queries and show that their evaluation can be atubet

as a problem of incrementally evaluating relational algedpres-
sions. We then show how temporal relationships betweentgven
can be utilized to make the evaluation of joins more efficignt
avoiding evaluation of certain subexpressions and by ngesior-
age of some intermediate results unnecessary.

Categories and Subject Descriptors
H.2.3 [Database M anagement]: Languages
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1. INTRODUCTION

In distributed computer systems, events are omnipreseht@an
changed as messages over networks. For many applicatismeit
sufficient anymore to query and react to only single, atoménts
(i.e., events signified by a single message). Instead, gveve
to be considered with their relationship to other eventsiment
stream or cloud. Such events (or situations) that do notisoos
one single atomic event but have to be inferred from somepatt
of several events are calledmpositeor complex events

Amongst others, interest in them is driven by: a need to under
stand the dynamic behavior in distributed large-scalermédion
systems [18]; increased generation of events from sensmrsad
drastic cost reductions in technology (e.g., RFID); a neaddni-
tor log data generated in computer systems (e.g., frauctitmie
for credit cards); a need to monitor applications, servicesl
systems (e.g., business activity monitoring, monitoringearvice
level agreements); service-oriented architecture (agcounting
for on-demand services, synchronization of activities uisibess
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processes); and the emergence of event-driven archiéeeug.,
detect and react to advantageous or dangerous situatids) [

Expressing interest in certain composite events requifesra-
posite) event query language. A sufficiently expressivguage
should cover (at least) these four complementary dimession

Dataextraction: Events contain data that is relevant for applica-
tions to decide whether and how to react to them. The datalpeust
extracted and provided (typically as bindings for variaple test
conditions (e.g., arithmetic expressions) inside the yjuwemstruct
new events, or trigger reactions (e.g., database updates).

Event composition: To support composite events, i.e., events
that consist out of several events, event queries must supED-
position constructs such as conjunction and disjunctioeveits
(more precisely, of event queries). Composition must bsitea
to event data, which is often used to correlate and filtertsv@eng.,
consider only transactions from tlsamecustomer for composi-
tion). Since reactions to events are usually sensitiveming and
order, an important questionwghena composite event is detected.
In a well-designed language, it should be possible to rezegn
when events are detected and reactions triggered withffigtdty.

Temporal (and causal) relationships: Time plays an important
role in event-driven applications. Event queries must be tabex-
press temporal conditions such as “evesAtand B happen within
1 hour, andA happens befor®.” For some applications, it is also
interesting to look at causal relationships, e.g., to espigeries
such as “eventgl and B happen, andl has caused®.” In this arti-
cle we concentrate on temporal relationships. Causaioakttips
can be queried in essentially the same mahmdote that according
to Luckham’s cause-time axiom [18], a causal relationstmplies
a temporal relationship; hence the temporal join optinniret dis-
cussed in this article apply also to causal relationships.

Event accumulation: Event queries must be able to accumu-
late events to support non-monotonic features such asiorgat
events (understood as their absence) or aggregation offrdata
multiple events over time. The reason for this is that theneve
stream is (in contrast to extensional data in a databasejumded
(or “infinite”); one therefore has to define a scope (e.gnefinter-
val) over which events are accumulated when aggregatirgyatat
querying the absence of events. Application examples wherat
accumulation is required are manifold. A business activignitor-
ing application might watch out for situations where “a ousér’s
order hasiotbeen fulfilled within 2 days” (negation). A stock mar-
ket application might require natification if “theverageof the re-
ported stock prices over the last hour raises by 5%” (agticaga

lWhile temporality and causality can be treated similarly in
queries, causality raises interesting questions aboutdamsal re-
lationships can beefinedand maintained Investigation of these
issues is planned for the future.



This work considers the evaluation of event queries fortedla
in a language that fully covers all four dimensions. To maie t
discussion concrete, we use a datalog-like rule languaggutery-
ing events (Section 2). We show how such queries (more miggcis
rule bodies) can be translated into relational algebrati{@e®).
The problem of composite event detection (i.e., evaluatfozom-
posite event queries) can then be understood as a problem of i
crementally evaluating relational algebra expressioas iticlude
temporal conditions on event occurrence times (Section\#g
then show how the temporal conditions can be utilized to ntla&e
evaluation more efficient by introducing two special (imosntal)
#-joins (Section 5). The firgt-join makes storage of the intermedi-
ate results produced by one of its arguments unnecessagyseth
ond#-join can sometimes (depending events received so farjlavoi
evaluation of one of its arguments. We also explain that W t
optimizations can be combined. Our approach is generalginou
to cover a wide range of composite event queries and we adso di
cuss how our composite event detection approach relatethéo o
approaches (Section 6).

The results in this paper are part of a work-in-progress en th
high-level event query language XChafigq?7, 8], which supports
events received as XML messages including SOAP [17] and CBE
[11], and its efficient evaluation. The rule language we & lis
a simplification that preserves the essential issues iedalv event
query evaluation. We focus on the evaluation of queries ia ru
bodies, chaining of rules is outside the scope of this paper.

To the best of our knowledge, it has not been made expliciten t
literature so far that relational algebra can be used asradfdion
for event query evaluatioh. Explicitly using relation algebra for
(composite) event detection has a number of advantagessitni
ple and well-understood yet very expressive. Through edgmce
laws it gives rise to query rewriting with the aim of obtaigimore
efficient query plans. It allows to build upon a myriad of rash
from the database community in particular for the impleragah
of operators. Of interest are in particular works on main mem
ory databases (because event processing is usually donaifin m
memory) as well as on distributed database (which givestoise
distributed evaluation of event queries). Finally thirkim terms
of relational algebra leads to optimized operators suchaadvel
temporalf-joins introduced in this article.

2. QUERYING EVENTSWITH RULES

We now introduce a rule language for composite event queries
Events are seen as simple relational facts with an assdaatair-
rence time. Following [14], events occur over titnéervalsrather
then just at time points. [t turns out that intervals are alsoy
appropriate for (composite) events that have been deriyedlbs
and thus should cover the full time interval of all their campnt
events. For example the eventmp(42, ”muffins” )" indicates
that an order for muffins with the number 42 has been completed
over the time interval3, 7].3

Often events such as “order completed” are not present as an
atomic event in the incoming event stream or cloud. Rathey th
have to be derived from existing events such as an event that-a
tomer places an “order” with identifiéd for a given quantityy of
a productp followed by an event that this order (again witf) has

20f course relational algebra is a foundation of many datastr
management systems. However, they usually use time onlyifer
dows in which data is collected; temporal relationshijgtween
events are usually not considered.

3For simplicity, we use integers to denote occurrence tinggs;h
of course our approach can deal with more realistic time nsaafe
human calendars as well.

been shipped with a tracking numherThis can be captured with
the following rule:

comp(id,p) <« o:order(id,p,q),s : shipped(id,t),

) o before s

It illustrates the first three event querying dimensionso Bwvents
of types “order” and “shipped” respectively are combinedeiit
data is extracted both to correlate the events on the ordebeu
i<d and for the construction of the newmp(id, p) event. Finally,
a temporal condition specifies that the “order” event mugipea
before the “shipped” event (i.e., the end of the interval afder”

is less than start of the interval of “shipped” according tteA's

temporal relations for intervals [3]). Note that the “ordend

“shipped” event have been given identifierand s respectively
in the query that are then used to refer to them in the temporal
dition. The occurrence time for the new “comp” event is theeti
interval covering all events detected in the body.

Events are received over time in an event stream which is as-
sumed to extend indefinitely into the future. To be able torgue
with negation (in the sense of absence of events) one firstchas
restrict the infinite event stream to a finite extract. Onazhsure-
striction (window or scope) is made, negation of events @ag
plied to the events accumulated in this windbvwccordingly we
require an accumulation window to be specified in our languag
whenever negation is used. The accumulation window candse sp
ified by another event (be reminded that events occur oves tim
intervals not points) and is introduced by the keywaitile.

Proceeding further with examples, let’s say that an ordevés-
due if it hasn't been shipped within 6 hours in the case thsg le
than 10 items were ordered and within 12 hours in the case of 10
more items. Detecting “overdue” events involves a negatien,
the absence of “shipped” events in a given accumulation evind
(which is defined here by the event with identifie):

overdue(id) «

o : order(id, p, q),w : extend(o, 6h),
while w : not shipped(id, t),q < 10

—~

2)
) overdue(id) <« o:order(id,p,q),w : extend(o, 12h),

(3 while w : not shipped(id, t),q > 10

Note that the event negation is (and must be!) sensitiveriable
bindings. Only the absence of a “shipped” event with the same
id as the “order” is relevant. In addition to the event accumula
tion required for negation, these rules show two more featuwe

can apply conditions on the event data suchyas 10 just like

one can in any database query language. We can specifyveelati
timer events, i.e., events whose occurrence time is defilatve

to some other event. The eventtend (o, 6h) begins with the start

of an “order” event (recall that its the event identifier) and ends 6
hours after the end of “order.”

Such relative timer events are particularly useful wheretioats
are involved (as in example above) or when sliding averades o
values (or other aggregations) should be computed. Agtioega
such as the computation of averages over data from severaisev
is, like negation, a non-monotonic query construct and tiae
requires the use of event accumulation.

As an example of a sliding average, consider reporting tine-nu
ber of all “shipped” events that have taken place in the la$tdurs
whenever an “overdue” event is detected. A report of a highbrer
could indicate that the shipping department is overloadddyer

4Keep in mind that accumulation here refers to the way we §peci
queries, not the way evaluation is actually performed. Kegpll
events in the accumulation windows in memory is generalishee
desirable nor necessary for query evaluation.



number that the problem is elsewhere.

rep(count(sid)) « o : overdue(oid),
w : extend_backward(o, 24h),

while w : collect shipped(sid, )

(4)

This rule uses event accumulatiomh(le) to collect all “shipped”
events over a given time window. (Note that different vaeab
oid and sid are used!) The time window is specified as a win-
dow going 24 hours into the past from the current “overduengv
(extend_backward (o, 24h)). Thecount aggregate function in the
rule head is used to yield and report the desired number.

Note that this rule queries events that have been genergted b
other rules. The rationale for supporting deductive rubean event
query language is similar to that for views in databasese&sirve
as an abstraction mechanism, making query programs mate rea
able. Rules allow to define higher-level application evenisn
lower-level (e.g., database or network) events. Differefgs can
provide different perspectives (e.g., of end-user, sysdeminis-
trator, corporate management) on the same (event-driystgra.
Rules allow to mediate between different schemas for evata. d
Additionally, rules can be beneficial when reasoning abautal
relationships of events [18]. Semantics for (stratified® gets can
be given as a model theory and fixpoint theory as is done i8] f
XChangé&®, which is an established approach for datalog [15].

In addition to deductive rules, event-based systems ysakid
require reactive rules, typically Event-Condition-ActidECA)
rules, to specify reactions to the occurrences of certagntsv We
do not address reactive rules here and refer to [8, 5] foraudgson
of reactive rules and their differences to deductive (éveriées.

3. RELATIONAL ALGEBRA FOREVENTS

To evaluate event query rules, we translate rule bodies&lto
tional algebra expressions. These serve as a logical qlamapd
we can exploit query rewriting as an optimization techniqliee
actual incremental evaluation of (possibly rewritten) regsions
will be the topic of later sections.

Whenever an event (e.gorder(42, ”muffins”, 2)%%) occurs
that matches some atomic event query (exg:, order(id, p, q))
this gives bindings for the free variables in the query (€4.—
42, p — "muffins”, ¢ — 2) together with the event's occurrence
time. We will represent the occurrence time as variable ihgsl
with the special namess andi.e, wheres is the event identifier
given in the query (e.gg.s — 3,0.e — 3). This leads directly
to representing the results of atomic event queries asaetabf
named tuples. Each atomic event quiery has an associated base
relation R; with schemasch(R;) = {i.s,i.e} U freevars(Q).

We can now translate composite event queries of rule bodies i
relational algebra expressions in a straightforward mangex-
tended) projection is used to discard variables that do notiro
in the rule head and to compute the occurrence time of thdtresu
Combination of (atomic) event queries with conjunctionrans-
lated as a natural join. Conditions on the data are expressed
selections. Maybe a bit surprisingly, temporal conditi¢gisch as
o before s are also expressed as selections; this works because w
made temporal information (i.e., occurrence times of es)epart
of the data of our base relations.

With this andR,, Ss respectively denoting the relations for:
order(id, p,q) ands : shipped(id, t), the query from example (1)
from the previous section can be expressed as:

3,3

7T7‘.s<7min{o.s,s.s},r.e%max{ae,s‘e},id,p(Uo.e<s4s(Ro X SS))

The starting time-.s of the result is the minimum of all involved
starting timesd.s, s.s), the ending time-.e is the maximum of all

Jappenedt the current timexow (i.e., for allel"*2) €  : #5

ending timesd.e, s.e).

Negation of events must be, as mentioned earlier, sensdive
variable bindings. It can be expressed using-anti-semi-join,
which is defined af Xy S = R\ msen(r)(09(R X S)).

Relative timer events require the construction of theiuo@nce
times and can thus be expressed by an extended projection.

The expression for example (2) then is (analogous for (3)):

ﬂ’hs&min{o.s,w.s},r.e%n)ax{c)‘e,w‘e},id(aq<10(

7Tw.5<—o.5,w.e<—o.e+6h¢sch(Ro) (Ro) Xaw.s<s.sAs.e<w.e S.s))

When event accumulation is used for aggregating data from
events, this requires @&join between the accumulated events and
the rest of the query, where tiieexpresses the temporal condition
given by the accumulation window. For the actual aggregaitio
the head, the grouping operatpis used. (We follow the common
notation and meaning foy as given in [15]: its partitions the input
tuples into groups of tuples having equal values on the gngugt-
tributes and for each group outputs a single tuple with tioeiging
attributes and the additional aggregated attributed.)

With T, andU, denoting the relations far : overdue(oid) and
s : shipped(sid, t), the expression for example (4) is:

Vr.s,r.e,COUNT(sid) (ﬂ-r.S%min{as,wﬁ},he%max{o.e,w.e},sid(
Tw.s—o0.s—24h,w.e—o.e,sch(To) (To) Ww.s<s.sAs.e<w.e U.s))

The framework laid out in this section is fairly general. Mos
event queries expressible in other event query languages,[&
2, 4,9, 10, 16, 19, 20, 22], can be translated into both the rul
language and the relational algebra quite edsifurther, using
the same foundation as databases, our approach extendsowell
incorporate also non-event data from databases or other déa
sources. This is useful to “enrich” event data in querieg, events
could have location identifiers and a database must be lageal
compute how close two events are in space to each other. hite t
there typically is a semantic problem when database datagelsa
during event detection, which we do not address in this work.

4. INCREMENTAL EVALUATION

Evaluating composite event queries, usually requires a-dat
driven, incremental approach for efficiency reasons: wankedin
one evaluation step (an evaluation step is performed wleersev
relevant event occurs) of an event query should not be reitone
future evaluation.

For example, when evaluating a rule like

()

any joins performed already between “a” and “b” events sthooit
be recomputed upon reception of a “c” event.

The problem of evaluating of a composite event qu@ry(given
as a relational algebra expression) can be formulated apwise
procedure as follows: In each evaluation step, we are giveet a
E of events (relational facts with associated occurrence titinat

d(u,v,w,z) «— i:a(u,v),j:blv,w),k:clw,z),

i before k, j during k

now). We are interested in all answers (composite events) pro-
duced byQ, that happerat the current timewow, i.e., we are re-
quired to deliver as a result onnew = or.c=now(Q). Note that
computation of@Q.,.., can however require knowledge of events
that happenebeforethe current time. This means that in addition
to delivering the result we will have to also maintain soméada
structures that store old events for use in future evaloagieps.

SNote however that we do not discuss event consumption or in-
stance selection [23] here.



We assume that the evaluation steps are performed in the @irde

event occurrence times here. A discussion of how this o
can be lifted is given in Section 7.

Making the evaluation incremental concerns primarily thal-e
uation of joins. These are “blocking” operators, i.e., thirrent
inputs may have to be combined with future inputs. For siect
and projection this is not the case and they can directlyuubeir
results. (Note that the grouping operator as we used it iptée-
ous section can be understood as non-blocking since th&ibpc
has already been performed by a join in its input.)

The basic idea for making a joiR X S incremental is to have
it store its inputs if they might be needed in future evalhuasteps.
We use the basic fact th& X S = (Ria X Soiq) U (Rpew X
Sold) U (Rold X Snew) U (Rnew X Snew): WhereRnew andsnew
contain only the events happening at the current time Fangdand

So14 @any (relevant) events that happened before. When perfgrmin
the join in an evaluation stefi?,;4 X S,i4 Need not be computed

because it has already been computed by the previous steps.

The best way to describe such an incremental evaluation is to
perceive each node in the expression tree as an object whgh h

as children node objects for its subexpressions (argunestsie
auxiliary data, and a method eval() which delivers the tesfidval-
uating the expression (only those events happening at thentu
time). We additionally assume a global gétof all events hap-
pening at the current time as described above, which willdeslu
for evaluating atomic events. The nodes for atomic eventigsie
selection, and joins can then be written in pseudo code kil

AtomicNode extends QueryNode:
AtomicQueryA;
Relation eval():
return A(F);

SelectionNode extends QueryNode:
QueryNodeQ);
ConditionC;
Relation eval():
returnoc(Q.eval());

JoinNode extends QueryNode:

QueryNodeQ 1, Qr;

RelationL 4, Roid;

Relation eval():
Lyew :=Qr.eval(); Rnew = Qr.eval();
J = (Lnew X Rold) U (Lold Do Rnew) U (Lnew X Rnew);
Lold = Lold U Lnew; Rold = Rold U Rnew;
returnJ,

Nodes for relative timer events (extended projections3 ptbdlly
generate tuples with an occurrence tighe that lies in the future

(i.e.,j.e > now). These should not be passed on to the parent node

immediately, but only in a later evaluation step. They aerdfore

stored in a relatioR ge1qy.q UNtil the time has progressed further:

RelativeTimerNode extends QueryNode:

QueryNodeQ);

RelationRaeciayed;

EventAttribute:,j;

Durations’, ¢’;

Relation eval():
Rnew = 7Tj4s<7i.s+s’,j.e<fi4e+e/,sch(Q)(Q'evalo);
J = Tj.e<now (Rdelayed U Rnew)
Rdelayed = 0j.e>now (Rdelayed U Rnew)
returnJ;

Note that our approach does not assume that the relatiayel al
bra expressions have any special form. This means in pkaticu
that expressions obtained by the translation from the pusvsec-
tion can first be rewritten into more efficient logical quertans
using the usual rules of relational algebra.

5. TEMPORAL JOIN OPTIMIZATION

When we look at how example (1) is evaluated, we can see that
the join requires us to evaluate and store both inputs. Bgiden
ering the temporal condition of the selection performeearatte
join, we could do better: It is unnecessary to store resudlth®
“shipped” query — the temporal conditiane < s.s of the selec-
tion will discard any tuples generated by the jo{#,c. X Soid)
and (Rnew M Snew). Further, it is unnecessary to evaluate the
right input (the “shipped” query) as long as no “order” eveas
happened, again due to the temporal condition. Similanopé-
tions based on temporal conditions apply to the other exasnpl

We now introduce tempor#kjoins that allow to make such op-
timizations describing both the optimized evaluation @& @koins
and the requirements on the conditiénin general g will not be
a single comparison (such ag < s.s) but a conjunction of mul-
tiple such comparisons. We will writ¥ < Y for the conjunction
Asex Nyey ® <y for convenience. For ease of presentation we
keep assuming that events arrive in temporal order.

5.1 Streaming Input

A 0-join node where the right input is streaming and not stored
is a simple variation of a normal join node:

RightStreamingJoinNode extends QueryNode:
QueryNodeQ 1, Qr;
Condition#;
RelationL,q4;
Relation eval():
Lyew :=Qr.eval(); Rnew = Qr.eval();
J = UG(Lold X Rnew);
Lold = Lold U Lnew;
returnJ;

We have the following requirement: A joiQr Xy Qr may
be realized by a right streaming join node when the condifion
implies a comparisot’ of the form¢’ = X < Y such thatX is
the set of all ending times occurring in the left subexp@ss) 1,
andY is a non-empty subset of the ending times occurring the right
subexpressiod) g. Formally: X = {z.e | z.e € sch(Q)}) and
Y #0.Y C {y.e | y.e € sch(Qr)}).

To obtain the implied’, the query rewriter usually has to use the
fact that for any event, i.s < ¢.e. Accordingly,f = o.e < s.sin
the (rewritten) joinR, M, c<s.s Ss for example (1) implie®’ =
o.e < s.e and can thus be evaluated with a right streaming join.

Itis important to see that in the general case a single casgrar
does not suffice for the conditiad. We must really consider sets
X, Y of time points on both sides of the comparis&ihn< Y. An
evaluation plan for example (5) could contain the followjaips:

(Ri M S5) Wi eck.snk.s<jsnje<k.e Lh-

The second join here can be evaluated with a right streaming j
because its condition implie§i.e, j.e} < {k.e}. However if
we drop the conditiory during k from the example rule (5), we
would have(R; M S;) M;.cr.s Tx. A right streaming join
would yield incorrect results here, becausevents might have
to be paired up withyj events that happen later and thus must be
stored. Of course the expression can be rewritten to theagquot



(Ri M;.e<k.s Ti) M S5, where a right streaming join can be used
for the first join.

The analogous optimization can be made for the left input and
will be used in Section 5.3.

5.2 Suppressing Subexpression Evaluation

We now turn to a second optimization, where we avoid the eval-
uation of the right argument (subexpression) hjain. Unlike the
previous optimization, this optimization is dependenttmndurrent
state of the evaluation of the left input. We can only suppmal-
uation of the right argument when we are sure that no inpum fro
the left will be paired up with an input that could come frone th
right side.

As knowledge about the current state of the evaluation, vee ne
lower bounds on the starting and ending times of all everdas th
might come (potentially in the future) as left input (dertbt&(i.s),
Ib(i.e), etc.). Note that the lower bound can in general not be com-
puted just from the stored evenis,; and the result of evaluat-
ing the left subexpressioh,..,. Consider again the expression
(Ri M S;) M cck.s Tk. The evaluation ofl, can be suppressed
givenlb(i.e) > now. However since events are first joined wit
events before arriving as input to the right joi3 <5, the lower
bound of: cannot be derived just from the input to the right join.

Provided that event sources are able to deliver lower botinds
can simply compute the lower bounds as a ritaguring the eval-
uation using that the evaluation is from left to right. Atamiodes
initialize 1b(i.s) andlb(i.e), join nodes setb(t) to the minimum
of the currentlb(¢) and the lowest value farin their storesL,q
and R4 for eacht. Nodes for relative timer events compute the
lower bounds of their timer events from the currénin the same
manner as the corresponding extended projection. In thefcoch
Section 4 on must therefore only add

Ib(j.s) :=1b(i.s) + s'; Ib(j.e) :=Ib(i.e) + €’;

before the return statement.

We can now give the pseudo code fofgoin that suppresses
evaluation of its right subexpression based on the valué &br
some time point attribute¥ (these will be defined below when we
give the requirement ofj).

SuppressingJoinNode extends QueryNode:
QueryNodeQ 1, Qr;
Condition®;
TimePointAttributesX;
RelationLold, Roia,
Relation eval():
Lpew = Qr.eval();
for eacht € {y.s € sch(Qr)} U{y.e € sch(Qr)}
Ib(t) :== min{lb(t)} U m¢(Loa);
if max{lb(z) | z € X} > now then
J=0; R:=0;
else
Rpew = Qr.eval();
J = 0'9((L7Lew X Rold) U (Lold X Rnew)
U(Lnew X Rnew));
Rold = Rold U Rnew;
for eacht € {y.s € sch(Qr)} U {y.e € sch(Qr)}
(t) = min{lb(t)} U m¢(Rotd);
Lold = Lold U Lnew;
returnJ;

SWhen the event source is another rule, this is possible witho
much difficulty. External event sources usually deliveryotiine
point events and in this case the lower bounds are sidflys) =
Ib(i.e) = now. Relative timer events will be discussed shortly.

The requirement on the conditighis that it implies a compar-
ison®’ = X < Y such thatY is the set of all starting times oc-
curring in the right subexpressi@pr and X is a non-empty subset
of the starting and ending times occurring in the left subeggion
Qr. Formally: X # 0, X C {z.s | z.s € sch(Qr)} U {z.e |
z.e € sch(Qr)} andY = {y.s | y.s € sch(Qr)}. The setX is
used in the pseudo code above. Note that we require a restrict
on thestartingtimes on the right side. If one of the event sources
on the right side is a rule, this allows us to use a backwagiratg
approach and suppress the evaluation of this rule. If theicgsn
is only on the ending time, such a rule must still be evaluated
order to update its event stores.

5.3 Combination

Both optimizations can be combined in some cases. fFjoén
R, Mo c<s.s Ss from example (1) can be evaluated both with the
right input streaming and suppressing (when possiblejatian of
the right subexpression. This is a quite common case sintgde
ral conditions of the formi before j are common in event queries.
There are also cases where we want the left input streaming
while suppressing evaluation of the right subexpressiohis 1
the case for the second join in

(Ri M Sj) Wi eck.snk.s<jsnje<k.e Lk

from example (5). This is also a quite common case since it is
introduced by temporal conditions of the forduring j as well as
by event accumulation (formhile 7 : .. .).
Both combinations of the streaming and suppreséHajns and
the necessary conditions are straightforward and not sksclihere
in depth for space reasons.

6. RELATED WORK

Popular approaches for the detection of composite evecitgia
finite state automata [16, 22, 4] and event trees (or grafji@s)1P,
20, 1]. The automata approach explains well sequences ofsve
occurring on time points. However it's unclear how it could b
extended to events occurring over time intervals and toetate
data between events. The importance of time intervals fentsv
is discussed in [14, 1]. The importance of correlating detavben
events has been emphasized in this article as well as in 2]%n

Our approach of translating event queries into relatiofggtaa
expressions that are evaluated incrementally can be unddras
a generalization of event trees. The grounding in relatialzgebra
explains better how event data is treated and gives a sttwtg t
retical foundation, which opens the door to query optimaratn
the form of rewriting. As mentioned before, dealing with eve
data is also emphasized in [2] and [9], which are also basdten
idea of event trees. The optimizé¢oins introduced in this article
can be seen as generalizations some event tree operatbrasuc
sequence operators. There are two important differencegth
First, rewriting has not been explored for event tree opesathis
means that there is usually only one event tree (which gooreds
to a query plan) for a given event query and, e.g., the seguenc
operator willalwaysbhe used when the event query contains a se-
quence. This corresponds to choosing the joins order siceptd
the temporal sequence of events. Our approach is more fexibl
allowing for different join orders while still making tempal op-
timizations when the join order permits. This is favorabéeduse
the join order that makes temporal optimizations is not ssaely
the most efficient (e.g., due to larger intermediate repults

The basic idea of incremental evaluation of joins can bedaon
the rete algorithm [13] as well as in work on view maintenaimce
databases [6, 21]. However, these works consider only feutsh,



in contrast to events, do not have an occurrence time. Qgitions
using temporal conditions, like those presented in thiskware
therefore not considered there.

7. CONCLUSION AND FUTURE WORK

We have presented a method for detecting composite events

based on an incremental evaluation of relational algebpaesx
sions. Relational algebra provides a clear theoreticattfasrea-
soning about event queries, in particular query rewritingdal on
equivalence. Also evaluation of relational algebra (intipatar
joins) is very well investigated for distributed databasesl this
should give rise to considering distributed event queryuateon.

While we have made the assumption that events are processed (8]

in their temporal order, this assumption can be lifted,,éng.as-
suming a maximal delay for events and buffering all eventsHe
delay time. In the case of the (right) streaming join, thétigput
then requires a small buffer and event arriving out-of-o@ethe
left have to be joined with all events in the right buffer. Rbe
suppressing join, the set of current evéhused when evaluating
the right subexpression then becomes the set of all eventwin

buffer. This works well as long as no non-monotonic query-con

structs (aggregation and negation) are involved. In thasesthe
query processor must either wait for the full delay time todarce
an answer or be allowed to alter given answers.

We have shown two optimizations for joins that rely on tenapor
conditions provided in the queries. We plan to investigatéher
(temporal) optimizations in the future, in particular téig to the
removal of event which have “timed-out.” Finally, the unigerg
idea of the suppressing join could be taken further: in thisky
the right subexpression is either fully evaluated or noluated.
Using variable bindings from the left input, it is also coivedle to
evaluate the right subexpression only for the current fatibind-
ings (again, provided that certain temporal conditionssatisfied).
This would be similar to sideways information passing angliap
cable both to event sources that are other rules (via undigeand
to external event sources which allow content-based sigisers.

To apply such optimizations it is generally necessary taritew
queries (based on the laws of relational algebra and (s)me&e
soning about the temporal conditions). Development a gpleny-
ner that uses rewriting rules to obtain such more efficiemryu
plans is ongoing research. A major challenge here is thatrassed
planning (as common in databases) is not readily applicdide

cause the common cost formulas do not consider a step-wase ev

ation and the necessary estimates (cardinalities of oelstidistri-
bution of domain values) might not be available for evergatns
or clouds at the time the query is compiled.
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