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ABSTRACT
Queries for composite events typically involve the four comple-
mentary dimensions of event data, event composition, relation-
ships between events (esp. temporal and causal), and accumulat-
ing events over time windows for negation and aggregation. We
consider a datalog-like rule language for expressing such compos-
ite event queries and show that their evaluation can be understood
as a problem of incrementally evaluating relational algebra expres-
sions. We then show how temporal relationships between events
can be utilized to make the evaluation of joins more efficientby
avoiding evaluation of certain subexpressions and by making stor-
age of some intermediate results unnecessary.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages

Keywords
Complex Event Processing, Composite Event Queries, Rules

1. INTRODUCTION
In distributed computer systems, events are omnipresent and ex-

changed as messages over networks. For many applications itis not
sufficient anymore to query and react to only single, atomic events
(i.e., events signified by a single message). Instead, events have
to be considered with their relationship to other events in an event
stream or cloud. Such events (or situations) that do not consist of
one single atomic event but have to be inferred from some pattern
of several events are calledcompositeor complex events.

Amongst others, interest in them is driven by: a need to under-
stand the dynamic behavior in distributed large-scale information
systems [18]; increased generation of events from sensors due to
drastic cost reductions in technology (e.g., RFID); a need to moni-
tor log data generated in computer systems (e.g., fraud detection
for credit cards); a need to monitor applications, services, and
systems (e.g., business activity monitoring, monitoring of service
level agreements); service-oriented architecture (e.g.,accounting
for on-demand services, synchronization of activities in business
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processes); and the emergence of event-driven architecture (e.g.,
detect and react to advantageous or dangerous situations) [12].

Expressing interest in certain composite events requires a(com-
posite) event query language. A sufficiently expressive language
should cover (at least) these four complementary dimensions:

Data extraction: Events contain data that is relevant for applica-
tions to decide whether and how to react to them. The data mustbe
extracted and provided (typically as bindings for variables) to test
conditions (e.g., arithmetic expressions) inside the query, construct
new events, or trigger reactions (e.g., database updates).

Event composition: To support composite events, i.e., events
that consist out of several events, event queries must support com-
position constructs such as conjunction and disjunction ofevents
(more precisely, of event queries). Composition must be sensitive
to event data, which is often used to correlate and filter events (e.g.,
consider only transactions from thesamecustomer for composi-
tion). Since reactions to events are usually sensitive to timing and
order, an important question iswhena composite event is detected.
In a well-designed language, it should be possible to recognize
when events are detected and reactions triggered without difficulty.

Temporal (and causal) relationships: Time plays an important
role in event-driven applications. Event queries must be able to ex-
press temporal conditions such as “eventsA andB happen within
1 hour, andA happens beforeB.” For some applications, it is also
interesting to look at causal relationships, e.g., to express queries
such as “eventsA andB happen, andA has causedB.” In this arti-
cle we concentrate on temporal relationships. Causal relationships
can be queried in essentially the same manner.1 Note that according
to Luckham’s cause-time axiom [18], a causal relationship implies
a temporal relationship; hence the temporal join optimizations dis-
cussed in this article apply also to causal relationships.

Event accumulation: Event queries must be able to accumu-
late events to support non-monotonic features such as negation of
events (understood as their absence) or aggregation of datafrom
multiple events over time. The reason for this is that the event
stream is (in contrast to extensional data in a database) unbounded
(or “infinite”); one therefore has to define a scope (e.g., a time inter-
val) over which events are accumulated when aggregating data or
querying the absence of events. Application examples whereevent
accumulation is required are manifold. A business activitymonitor-
ing application might watch out for situations where “a customer’s
order hasnotbeen fulfilled within 2 days” (negation). A stock mar-
ket application might require notification if “theaverageof the re-
ported stock prices over the last hour raises by 5%” (aggregation).

1While temporality and causality can be treated similarly in
queries, causality raises interesting questions about howcausal re-
lationships can bedefinedandmaintained. Investigation of these
issues is planned for the future.



This work considers the evaluation of event queries formulated
in a language that fully covers all four dimensions. To make the
discussion concrete, we use a datalog-like rule language for query-
ing events (Section 2). We show how such queries (more precisely,
rule bodies) can be translated into relational algebra (Section 3).
The problem of composite event detection (i.e., evaluationof com-
posite event queries) can then be understood as a problem of in-
crementally evaluating relational algebra expressions that include
temporal conditions on event occurrence times (Section 4).We
then show how the temporal conditions can be utilized to makethe
evaluation more efficient by introducing two special (incremental)
θ-joins (Section 5). The firstθ-join makes storage of the intermedi-
ate results produced by one of its arguments unnecessary. The sec-
ondθ-join can sometimes (depending events received so far) avoid
evaluation of one of its arguments. We also explain that the two
optimizations can be combined. Our approach is general enough
to cover a wide range of composite event queries and we also dis-
cuss how our composite event detection approach relates to other
approaches (Section 6).

The results in this paper are part of a work-in-progress on the
high-level event query language XChangeEQ [7, 8], which supports
events received as XML messages including SOAP [17] and CBE
[11], and its efficient evaluation. The rule language we use here is
a simplification that preserves the essential issues involved in event
query evaluation. We focus on the evaluation of queries in rule
bodies, chaining of rules is outside the scope of this paper.

To the best of our knowledge, it has not been made explicit in the
literature so far that relational algebra can be used as a foundation
for event query evaluation.2 Explicitly using relation algebra for
(composite) event detection has a number of advantages: It is sim-
ple and well-understood yet very expressive. Through equivalence
laws it gives rise to query rewriting with the aim of obtaining more
efficient query plans. It allows to build upon a myriad of research
from the database community in particular for the implementation
of operators. Of interest are in particular works on main mem-
ory databases (because event processing is usually done in main
memory) as well as on distributed database (which gives riseto a
distributed evaluation of event queries). Finally thinking in terms
of relational algebra leads to optimized operators such as the novel
temporalθ-joins introduced in this article.

2. QUERYING EVENTS WITH RULES
We now introduce a rule language for composite event queries.

Events are seen as simple relational facts with an associated occur-
rence time. Following [14], events occur over timeintervalsrather
then just at time points. It turns out that intervals are alsovery
appropriate for (composite) events that have been derived by rules
and thus should cover the full time interval of all their component
events. For example the eventcomp(42, ”muffins”)[3,7] indicates
that an order for muffins with the number 42 has been completed
over the time interval[3, 7].3

Often events such as “order completed” are not present as an
atomic event in the incoming event stream or cloud. Rather they
have to be derived from existing events such as an event that acus-
tomer places an “order” with identifierid for a given quantityq of
a productp followed by an event that this order (again withid) has
2Of course relational algebra is a foundation of many data stream
management systems. However, they usually use time only forwin-
dows in which data is collected; temporal relationshipsbetween
events are usually not considered.
3For simplicity, we use integers to denote occurrence times here;
of course our approach can deal with more realistic time models of
human calendars as well.

been shipped with a tracking numbert. This can be captured with
the following rule:

(1)
comp(id, p) ← o : order(id, p, q), s : shipped(id, t),

o before s

It illustrates the first three event querying dimensions. Two events
of types “order” and “shipped” respectively are combined. Event
data is extracted both to correlate the events on the order number
id and for the construction of the newcomp(id, p) event. Finally,
a temporal condition specifies that the “order” event must happen
before the “shipped” event (i.e., the end of the interval of “order”
is less than start of the interval of “shipped” according to Allen’s
temporal relations for intervals [3]). Note that the “order” and
“shipped” event have been given identifierso and s respectively
in the query that are then used to refer to them in the temporalcon-
dition. The occurrence time for the new “comp” event is the time
interval covering all events detected in the body.

Events are received over time in an event stream which is as-
sumed to extend indefinitely into the future. To be able to query
with negation (in the sense of absence of events) one first hasto
restrict the infinite event stream to a finite extract. Once such a re-
striction (window or scope) is made, negation of events can be ap-
plied to the events accumulated in this window.4 Accordingly we
require an accumulation window to be specified in our language
whenever negation is used. The accumulation window can be spec-
ified by another event (be reminded that events occur over time
intervals not points) and is introduced by the keywordwhile.

Proceeding further with examples, let’s say that an order isover-
due if it hasn’t been shipped within 6 hours in the case that less
than 10 items were ordered and within 12 hours in the case of 10or
more items. Detecting “overdue” events involves a negation, i.e.,
the absence of “shipped” events in a given accumulation window
(which is defined here by the event with identifierw):

(2)
overdue(id) ← o : order(id, p, q), w : extend(o, 6h),

while w : not shipped(id, t), q < 10

(3)
overdue(id) ← o : order(id, p, q), w : extend(o, 12h),

while w : not shipped(id, t), q ≥ 10

Note that the event negation is (and must be!) sensitive to variable
bindings. Only the absence of a “shipped” event with the same
id as the “order” is relevant. In addition to the event accumula-
tion required for negation, these rules show two more features: We
can apply conditions on the event data such asq < 10 just like
one can in any database query language. We can specify relative
timer events, i.e., events whose occurrence time is defined relative
to some other event. The eventextend(o, 6h) begins with the start
of an “order” event (recall thato its the event identifier) and ends 6
hours after the end of “order.”

Such relative timer events are particularly useful when time-outs
are involved (as in example above) or when sliding averages of
values (or other aggregations) should be computed. Aggregation
such as the computation of averages over data from several events
is, like negation, a non-monotonic query construct and thusalso
requires the use of event accumulation.

As an example of a sliding average, consider reporting the num-
ber of all “shipped” events that have taken place in the last 24 hours
whenever an “overdue” event is detected. A report of a high number
could indicate that the shipping department is overloaded,a lower

4Keep in mind that accumulation here refers to the way we specify
queries, not the way evaluation is actually performed. Keeping all
events in the accumulation windows in memory is generally neither
desirable nor necessary for query evaluation.



number that the problem is elsewhere.

(4)
rep(count(sid)) ← o : overdue(oid),

w : extend_backward(o, 24h),
while w : collect shipped(sid, t)

This rule uses event accumulation (while) to collect all “shipped”
events over a given time window. (Note that different variables
oid and sid are used!) The time window is specified as a win-
dow going 24 hours into the past from the current “overdue” event
(extend_backward(o, 24h)). Thecount aggregate function in the
rule head is used to yield and report the desired number.

Note that this rule queries events that have been generated by
other rules. The rationale for supporting deductive rules in an event
query language is similar to that for views in databases: Rules serve
as an abstraction mechanism, making query programs more read-
able. Rules allow to define higher-level application eventsfrom
lower-level (e.g., database or network) events. Differentrules can
provide different perspectives (e.g., of end-user, systemadminis-
trator, corporate management) on the same (event-driven) system.
Rules allow to mediate between different schemas for event data.
Additionally, rules can be beneficial when reasoning about causal
relationships of events [18]. Semantics for (stratified) rule sets can
be given as a model theory and fixpoint theory as is done in [8] for
XChangeEQ, which is an established approach for datalog [15].

In addition to deductive rules, event-based systems usually also
require reactive rules, typically Event-Condition-Action (ECA)
rules, to specify reactions to the occurrences of certain events. We
do not address reactive rules here and refer to [8, 5] for a discussion
of reactive rules and their differences to deductive (event) rules.

3. RELATIONAL ALGEBRA FOR EVENTS
To evaluate event query rules, we translate rule bodies intorela-

tional algebra expressions. These serve as a logical query plan and
we can exploit query rewriting as an optimization technique. The
actual incremental evaluation of (possibly rewritten) expressions
will be the topic of later sections.

Whenever an event (e.g.,order(42, ”muffins”, 2)[3,3]) occurs
that matches some atomic event query (e.g.,o : order(id, p, q))
this gives bindings for the free variables in the query (e.g., id 7→
42, p 7→ ”muffins”, q 7→ 2) together with the event’s occurrence
time. We will represent the occurrence time as variable bindings
with the special namesi.s andi.e, wherei is the event identifier
given in the query (e.g.,o.s 7→ 3, o.e 7→ 3). This leads directly
to representing the results of atomic event queries as relations of
named tuples. Each atomic event queryi : Q has an associated base
relationRi with schemasch(Ri) = {i.s, i.e} ∪ freevars(Q).

We can now translate composite event queries of rule bodies into
relational algebra expressions in a straightforward manner. (Ex-
tended) projection is used to discard variables that do not occur
in the rule head and to compute the occurrence time of the result.
Combination of (atomic) event queries with conjunction is trans-
lated as a natural join. Conditions on the data are expressedas
selections. Maybe a bit surprisingly, temporal conditions(such as
o before s are also expressed as selections; this works because we
made temporal information (i.e., occurrence times of events) part
of the data of our base relations.

With this andRo, Ss respectively denoting the relations foro :
order(id, p,q) ands : shipped(id, t), the query from example (1)
from the previous section can be expressed as:

πr.s←min{o.s,s.s},r.e←max{o.e,s.e},id,p(σo.e<s.s(Ro 1 Ss))

The starting timer.s of the result is the minimum of all involved
starting times (o.s, s.s), the ending timer.e is the maximum of all

ending times (o.e, s.e).
Negation of events must be, as mentioned earlier, sensitiveto

variable bindings. It can be expressed using aθ-anti-semi-join,
which is defined asR ⋉θ S = R \ πsch(R)(σθ(R 1 S)).

Relative timer events require the construction of their occurrence
times and can thus be expressed by an extended projection.

The expression for example (2) then is (analogous for (3)):

πr.s←min{o.s,w.s},r.e←max{o.e,w.e},id(σq<10(
πw.s←o.s,w.e←o.e+6h,sch(Ro)(Ro) ⋉w.s<s.s∧s.e<w.e Ss))

When event accumulation is used for aggregating data from
events, this requires aθ-join between the accumulated events and
the rest of the query, where theθ expresses the temporal condition
given by the accumulation window. For the actual aggregation in
the head, the grouping operatorγ is used. (We follow the common
notation and meaning forγ as given in [15]: its partitions the input
tuples into groups of tuples having equal values on the grouping at-
tributes and for each group outputs a single tuple with the grouping
attributes and the additional aggregated attributed.)

With To andUs denoting the relations foro : overdue(oid) and
s : shipped(sid, t), the expression for example (4) is:

γr.s,r.e,COUNT (sid)(πr.s←min{o.s,w.s},r.e←max{o.e,w.e},sid(
πw.s←o.s−24h,w.e←o.e,sch(To)(To) 1w.s<s.s∧s.e<w.e Us))

The framework laid out in this section is fairly general. Most
event queries expressible in other event query languages, e.g., [1,
2, 4, 9, 10, 16, 19, 20, 22], can be translated into both the rule
language and the relational algebra quite easily.5 Further, using
the same foundation as databases, our approach extends wellto
incorporate also non-event data from databases or other static data
sources. This is useful to “enrich” event data in queries, e.g., events
could have location identifiers and a database must be lookedup to
compute how close two events are in space to each other. Note that
there typically is a semantic problem when database data changes
during event detection, which we do not address in this work.

4. INCREMENTAL EVALUATION
Evaluating composite event queries, usually requires a data-

driven, incremental approach for efficiency reasons: work done in
one evaluation step (an evaluation step is performed whenever a
relevant event occurs) of an event query should not be redonein
future evaluation.

For example, when evaluating a rule like

(5)
d(u, v, w, x) ← i : a(u, v), j : b(v,w), k : c(w, x),

i before k, j during k

any joins performed already between “a” and “b” events should not
be recomputed upon reception of a “c” event.

The problem of evaluating of a composite event queryQr (given
as a relational algebra expression) can be formulated as a stepwise
procedure as follows: In each evaluation step, we are given aset
E of events (relational facts with associated occurrence time) that
happenedat the current timenow (i.e., for alle[t1,t2] ∈ E : t2 =
now). We are interested in all answers (composite events) pro-
duced byQr that happenat the current timenow, i.e., we are re-
quired to deliver as a result onlyQnew = σr.e=now(Q). Note that
computation ofQnew can however require knowledge of events
that happenedbeforethe current time. This means that in addition
to delivering the result we will have to also maintain some data
structures that store old events for use in future evaluation steps.

5Note however that we do not discuss event consumption or in-
stance selection [23] here.



We assume that the evaluation steps are performed in the order of
event occurrence times here. A discussion of how this restriction
can be lifted is given in Section 7.

Making the evaluation incremental concerns primarily the eval-
uation of joins. These are “blocking” operators, i.e., their current
inputs may have to be combined with future inputs. For selection
and projection this is not the case and they can directly output their
results. (Note that the grouping operator as we used it in theprevi-
ous section can be understood as non-blocking since the blocking
has already been performed by a join in its input.)

The basic idea for making a joinR 1 S incremental is to have
it store its inputs if they might be needed in future evaluation steps.
We use the basic fact thatR 1 S = (Rold 1 Sold) ∪ (Rnew 1

Sold)∪ (Rold 1 Snew)∪ (Rnew 1 Snew), whereRnew andSnew

contain only the events happening at the current time, andRold and
Sold any (relevant) events that happened before. When performing
the join in an evaluation step,Rold 1 Sold need not be computed
because it has already been computed by the previous steps.

The best way to describe such an incremental evaluation is to
perceive each node in the expression tree as an object which has
as children node objects for its subexpressions (arguments), some
auxiliary data, and a method eval() which delivers the result of eval-
uating the expression (only those events happening at the current
time). We additionally assume a global setE of all events hap-
pening at the current time as described above, which will be used
for evaluating atomic events. The nodes for atomic event queries,
selection, and joins can then be written in pseudo code as follows:

AtomicNode extends QueryNode:
AtomicQueryA;
Relation eval():

returnA(E);

SelectionNode extends QueryNode:
QueryNodeQ;
ConditionC;
Relation eval():

returnσC(Q.eval());

JoinNode extends QueryNode:
QueryNodeQL, QR;
RelationLold, Rold;
Relation eval():

Lnew := QL.eval();Rnew := QR.eval();
J := (Lnew 1 Rold) ∪ (Lold 1 Rnew) ∪ (Lnew 1 Rnew);
Lold := Lold ∪ Lnew ; Rold := Rold ∪Rnew ;
returnJ ;

Nodes for relative timer events (extended projections) potentially
generate tuples with an occurrence timej.e that lies in the future
(i.e.,j.e > now). These should not be passed on to the parent node
immediately, but only in a later evaluation step. They are therefore
stored in a relationRdelayed until the time has progressed further:

RelativeTimerNode extends QueryNode:
QueryNodeQ;
RelationRdelayed;
EventAttributei,j;
Durations′, e′;
Relation eval():

Rnew := πj.s←i.s+s′,j.e←i.e+e′,sch(Q)(Q.eval());
J := σj.e≤now(Rdelayed ∪Rnew)
Rdelayed := σj.e>now(Rdelayed ∪Rnew)
returnJ ;

Note that our approach does not assume that the relational alge-
bra expressions have any special form. This means in particular
that expressions obtained by the translation from the previous sec-
tion can first be rewritten into more efficient logical query plans
using the usual rules of relational algebra.

5. TEMPORAL JOIN OPTIMIZATION
When we look at how example (1) is evaluated, we can see that

the join requires us to evaluate and store both inputs. By consid-
ering the temporal condition of the selection performed after the
join, we could do better: It is unnecessary to store results of the
“shipped” query — the temporal conditiono.e < s.s of the selec-
tion will discard any tuples generated by the joins(Rnew 1 Sold)
and (Rnew 1 Snew). Further, it is unnecessary to evaluate the
right input (the “shipped” query) as long as no “order” eventhas
happened, again due to the temporal condition. Similar optimiza-
tions based on temporal conditions apply to the other examples.

We now introduce temporalθ-joins that allow to make such op-
timizations describing both the optimized evaluation of the θ-joins
and the requirements on the conditionθ. In general,θ will not be
a single comparison (such aso.e < s.s) but a conjunction of mul-
tiple such comparisons. We will writeX < Y for the conjunction
V

x∈X

V

y∈Y
x < y for convenience. For ease of presentation we

keep assuming that events arrive in temporal order.

5.1 Streaming Input
A θ-join node where the right input is streaming and not stored

is a simple variation of a normal join node:

RightStreamingJoinNode extends QueryNode:
QueryNodeQL, QR;
Conditionθ;
RelationLold;
Relation eval():

Lnew := QL.eval();Rnew := QR.eval();
J := σθ(Lold 1 Rnew);
Lold := Lold ∪ Lnew ;
returnJ ;

We have the following requirement: A joinQL 1θ QR may
be realized by a right streaming join node when the conditionθ
implies a comparisonθ′ of the formθ′ = X < Y such thatX is
the set of all ending times occurring in the left subexpression QL

andY is a non-empty subset of the ending times occurring the right
subexpressionQR. Formally: X = {x.e | x.e ∈ sch(QL)}) and
Y 6= ∅, Y ⊆ {y.e | y.e ∈ sch(QR)}).

To obtain the impliedθ′, the query rewriter usually has to use the
fact that for any eventi, i.s ≤ i.e. Accordingly,θ = o.e < s.s in
the (rewritten) joinRo 1o.e<s.s Ss for example (1) impliesθ′ =
o.e < s.e and can thus be evaluated with a right streaming join.

It is important to see that in the general case a single comparison
does not suffice for the conditionθ′. We must really consider sets
X, Y of time points on both sides of the comparisonX < Y . An
evaluation plan for example (5) could contain the followingjoins:

(Ri 1 Sj) 1i.e<k.s∧k.s<j.s∧j.e<k.e Tk.

The second join here can be evaluated with a right streaming join,
because its condition implies{i.e, j.e} < {k.e}. However if
we drop the conditionj during k from the example rule (5), we
would have(Ri 1 Sj) 1i.e<k.s Tk. A right streaming join
would yield incorrect results here, becausek events might have
to be paired up withj events that happen later and thus must be
stored. Of course the expression can be rewritten to the equivalent



(Ri 1i.e<k.s Tk) 1 Sj , where a right streaming join can be used
for the first join.

The analogous optimization can be made for the left input and
will be used in Section 5.3.

5.2 Suppressing Subexpression Evaluation
We now turn to a second optimization, where we avoid the eval-

uation of the right argument (subexpression) in aθ-join. Unlike the
previous optimization, this optimization is dependent on the current
state of the evaluation of the left input. We can only suppress eval-
uation of the right argument when we are sure that no input from
the left will be paired up with an input that could come from the
right side.

As knowledge about the current state of the evaluation, we need
lower bounds on the starting and ending times of all events that
might come (potentially in the future) as left input (denoted lb(i.s),
lb(i.e), etc.). Note that the lower bound can in general not be com-
puted just from the stored eventsLold and the result of evaluat-
ing the left subexpressionLnew . Consider again the expression
(Ri 1 Sj) 1i.e<k.s Tk. The evaluation ofTk can be suppressed
givenlb(i.e) ≥ now. However sincei events are first joined withj
events before arriving as input to the right join1i.e<k.s, the lower
bound ofi cannot be derived just from the input to the right join.

Provided that event sources are able to deliver lower bounds,6 we
can simply compute the lower bounds as a maplb during the eval-
uation using that the evaluation is from left to right. Atomic nodes
initialize lb(i.s) and lb(i.e), join nodes setlb(t) to the minimum
of the currentlb(t) and the lowest value fort in their storesLold

andRold for eacht. Nodes for relative timer events compute the
lower bounds of their timer events from the currentlb in the same
manner as the corresponding extended projection. In the code from
Section 4 on must therefore only add

lb(j.s) := lb(i.s) + s′; lb(j.e) := lb(i.e) + e′;

before the return statement.
We can now give the pseudo code for aθ-join that suppresses

evaluation of its right subexpression based on the value oflb for
some time point attributesX (these will be defined below when we
give the requirement onθ).

SuppressingJoinNode extends QueryNode:
QueryNodeQL, QR;
Conditionθ;
TimePointAttributesX;
RelationLold, Rold;
Relation eval():

Lnew := QL.eval();
for eacht ∈ {y.s ∈ sch(QL)} ∪ {y.e ∈ sch(QL)}

lb(t) := min{lb(t)} ∪ πt(Lold);
if max{lb(x) | x ∈ X} ≥ now then

J := ∅; R := ∅;
else

Rnew := QR.eval();
J := σθ((Lnew 1 Rold) ∪ (Lold 1 Rnew)

∪(Lnew 1 Rnew));
Rold := Rold ∪Rnew ;
for eacht ∈ {y.s ∈ sch(QR)} ∪ {y.e ∈ sch(QR)}

lb(t) := min{lb(t)} ∪ πt(Rold);
Lold := Lold ∪ Lnew ;
returnJ ;

6When the event source is another rule, this is possible without
much difficulty. External event sources usually deliver only time
point events and in this case the lower bounds are simplylb(i.s) =
lb(i.e) = now. Relative timer events will be discussed shortly.

The requirement on the conditionθ is that it implies a compar-
ison θ′ = X < Y such thatY is the set of all starting times oc-
curring in the right subexpressionQR andX is a non-empty subset
of the starting and ending times occurring in the left subexpression
QL. Formally: X 6= ∅, X ⊆ {x.s | x.s ∈ sch(QL)} ∪ {x.e |
x.e ∈ sch(QL)} andY = {y.s | y.s ∈ sch(QL)}. The setX is
used in the pseudo code above. Note that we require a restriction
on thestarting times on the right side. If one of the event sources
on the right side is a rule, this allows us to use a backward-chaining
approach and suppress the evaluation of this rule. If the restriction
is only on the ending time, such a rule must still be evaluatedin
order to update its event stores.

5.3 Combination
Both optimizations can be combined in some cases. Theθ-join

Ro 1o.e<s.s Ss from example (1) can be evaluated both with the
right input streaming and suppressing (when possible) evaluation of
the right subexpression. This is a quite common case since tempo-
ral conditions of the formi before j are common in event queries.

There are also cases where we want the left input streaming
while suppressing evaluation of the right subexpression. This is
the case for the second join in

(Ri 1 Sj) 1i.e<k.s∧k.s<j.s∧j.e<k.e Tk.

from example (5). This is also a quite common case since it is
introduced by temporal conditions of the formi during j as well as
by event accumulation (formwhile i : . . . ).

Both combinations of the streaming and suppressingθ-joins and
the necessary conditions are straightforward and not discussed here
in depth for space reasons.

6. RELATED WORK
Popular approaches for the detection of composite events include

finite state automata [16, 22, 4] and event trees (or graphs) [10, 19,
20, 1]. The automata approach explains well sequences of events
occurring on time points. However it’s unclear how it could be
extended to events occurring over time intervals and to correlate
data between events. The importance of time intervals for events
is discussed in [14, 1]. The importance of correlating data between
events has been emphasized in this article as well as in [2] and [9].

Our approach of translating event queries into relational algebra
expressions that are evaluated incrementally can be understood as
a generalization of event trees. The grounding in relational algebra
explains better how event data is treated and gives a strong theo-
retical foundation, which opens the door to query optimization in
the form of rewriting. As mentioned before, dealing with event
data is also emphasized in [2] and [9], which are also based onthe
idea of event trees. The optimizedθ-joins introduced in this article
can be seen as generalizations some event tree operators such as
sequence operators. There are two important differences though:
First, rewriting has not been explored for event tree operators; this
means that there is usually only one event tree (which corresponds
to a query plan) for a given event query and, e.g., the sequence
operator willalwaysbe used when the event query contains a se-
quence. This corresponds to choosing the joins order according to
the temporal sequence of events. Our approach is more flexible,
allowing for different join orders while still making temporal op-
timizations when the join order permits. This is favorable because
the join order that makes temporal optimizations is not necessarily
the most efficient (e.g., due to larger intermediate results).

The basic idea of incremental evaluation of joins can be found in
the rete algorithm [13] as well as in work on view maintenancein
databases [6, 21]. However, these works consider only factswhich,



in contrast to events, do not have an occurrence time. Optimizations
using temporal conditions, like those presented in this work, are
therefore not considered there.

7. CONCLUSION AND FUTURE WORK
We have presented a method for detecting composite events

based on an incremental evaluation of relational algebra expres-
sions. Relational algebra provides a clear theoretical basis for rea-
soning about event queries, in particular query rewriting based on
equivalence. Also evaluation of relational algebra (in particular
joins) is very well investigated for distributed databasesand this
should give rise to considering distributed event query evaluation.

While we have made the assumption that events are processed
in their temporal order, this assumption can be lifted, e.g., by as-
suming a maximal delay for events and buffering all events for the
delay time. In the case of the (right) streaming join, the right input
then requires a small buffer and event arriving out-of-order on the
left have to be joined with all events in the right buffer. Forthe
suppressing join, the set of current eventE used when evaluating
the right subexpression then becomes the set of all events inthe
buffer. This works well as long as no non-monotonic query con-
structs (aggregation and negation) are involved. In those cases the
query processor must either wait for the full delay time to produce
an answer or be allowed to alter given answers.

We have shown two optimizations for joins that rely on temporal
conditions provided in the queries. We plan to investigate further
(temporal) optimizations in the future, in particular relating to the
removal of event which have “timed-out.” Finally, the underlying
idea of the suppressing join could be taken further: in this work,
the right subexpression is either fully evaluated or not evaluated.
Using variable bindings from the left input, it is also conceivable to
evaluate the right subexpression only for the current variable bind-
ings (again, provided that certain temporal conditions aresatisfied).
This would be similar to sideways information passing and appli-
cable both to event sources that are other rules (via unification) and
to external event sources which allow content-based subscriptions.

To apply such optimizations it is generally necessary to rewrite
queries (based on the laws of relational algebra and (simple) rea-
soning about the temporal conditions). Development a queryplan-
ner that uses rewriting rules to obtain such more efficient query
plans is ongoing research. A major challenge here is that cost-based
planning (as common in databases) is not readily applicable, be-
cause the common cost formulas do not consider a step-wise evalu-
ation and the necessary estimates (cardinalities of relations, distri-
bution of domain values) might not be available for event streams
or clouds at the time the query is compiled.
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