
Multi-Calendar Appointment Scheduling:

Calendar Modeling and Constraint Reasoning

Stephanie Spranger and François Bry

Institute for Informatics, Univ. Munich, Germany
http://www.pms.ifi.lmu.de

contact: spranger@pms.ifi.lmu.de

Abstract. This article proposes a framework to model and reason on
what we call multi-calendar appointment scheduling problems. Multi-
calendar appointment scheduling problems such as planning a phone
conference of three persons in France, Tunisia, and Japan refer to various
temporal conditions, involving arbitrary calendric types such as months
(Islamic months are defined differently from Gregorian months) possi-
bly belonging to different calendars (e.g. the Gregorian calendar and the
Islamic calendar). To solve such problems, we suggest a new class of
Constraint Satisfaction Problems (CSPs); we call them Multi-Calendar
CSPs. In this framework, the constraint variables are identified with fi-
nite, convex intervals in some calendric type and time constraints on
such variables are expressed in terms of typed finite domain constraints.
To solve time constraints which are defined on variables of different cal-
endric types, a novel constraint, called calendar conversion constraint is
proposed.

1 Introduction

This article proposes a framework to model and reason on multi-calendar ap-
pointment scheduling problems such as scheduling the phone conference of three
persons in France, Tunisia, and Japan. The framework used to infer a possi-
ble time slot has to consider the personal and professional time constraints of
the persons. Furthermore, everyone’s calendar data preferably should be ex-
pressed in the calendar the person is used to and consider the different time
zones involved. Problems such as multi-calendar appointment scheduling that
involve arbitrary calendric data possibly referring to different calendars are, in
particular, typical for the Web and the Semantic Web, since data on the Web
is inherently distributed and heterogeneous. In fact, internationalization and lo-
calization are two important aspects the Web and Semantic Web community is
striving for (http://www.w3.org/International). That means, modeling and
reasoning on temporal and calendric data in the Web and Semantic Web, cal-
endar data conversion, e.g. from Gregorian to Islamic months, from Gregorian
weeks to Gregorian months or between Japanese and Gregorian year numbering
that must be performed for calculations should be invisible to the users. Thus,

http://www.w3.org/International

solving such multi-calendar appointment scheduling problems should be aware of
differences between cultural and/or professional calendars in use today.

So as to make it possible for every user to specify calendars and to express
calendric data in the calendar he/she is used to, the Calendar and Time Type
System CaTTS [1] has been developed. CaTTS consists of two languages, a type
definition language, CaTTS-DL, and a constraint language, CaTTS-CL. CaTTS
is based on a formal time model in accordance with the set-theoretic tradition of
time granularity systems. However, CaTTS is purely interval-based, reflecting a
widespread common-sense understanding of time: a time point such as “Tuesday,
January 3 2006, 9 a.m.”, expressed in the time granularity “hour” is internally
modeled by a time interval with the duration of 1 hour.

This article is structured as follows. First, we briefly introduce into calendar
modeling using the language CaTTS. Second, the basic principles and properties
of Multi-Calendar Constraint Satisfaction Problems, Multi-Calendar CSPs for
short, are introduced. Multi-Calendar CSPs refer to and rely on calendric types
modeled in CaTTS. Such problems allow for modeling and solving multi-calendar
appointment scheduling problems where appointments can be identified with
finite, convex intervals in some calendric type and which are related by (metric)
time constraints such as “A must start two days before B” or “an exam week
must finish the running teaching term”. Multi-Calendar CSPs are expressed in
terms of typed finite domain constraints. Third, to solve constraints which involve
variables of different calendric types, we suggest a calendar conversion constraint
transforming the associated domains into some common calendric type. The
calendar conversion constraint is based on an implicit coercion semantics for
subtyping in CaTTS. Finally, we conclude and address some perspectives on
multi-calendar appointment scheduling.

2 Principles of the Multi-Calendar CSP Framework

In [2] an approach to simple, i.e. point-based metric temporal reasoning with
time granularities have been proposed. This framework allows for modeling and
reasoning with simple temporal constraints on points (with time granularity) and
distances between points (with time granularity) in a DLR Horn framework1. In
this framework, one can express constraints like “at time t (in time granularity g),
person A is in London”, but neither “an event e (in time granularity g) happens
during a task t (in time granularity h)” nor “an event e (in time granularity g)
happens 5 time units (in granularity h) before an event e′ (in time granularity
k”. To model and solve such metric temporal constraints, a more expressive
framework is required; in particular, one must not only refer to time points but
also to time intervals. Starting from the point-based model of [2], an interval
can be represented by an ordered pair of points with the first point less than,
i.e. before the second. To ensure that such intervals can meet, i.e. only having
1 DLR (Disjunctive Linear Relations) [3] deals with the representation of temporal

constraints by means of disjunctions of linear constraints (linear inequalities and
inequations).

one endpoint in common, the endpoints i− and i+ of an interval must fulfill
i− < i+. This can be achieved when the intervals are closed in their starting
points and open on their ending points (or vice versa). However, this requirement
is conflicting with the fact that a time model based on points does not correspond
with an intuitive notion of time. Furthermore, with this point-based approach,
the modeling of temporal knowledge is significantly complicated, because both,
points and intervals have to be considered. Moreover, e.g. an event e holding
sometime during an interval i which in turn is during an interval i′ holds during
i′, as well. Thus, relations between intervals and events may be “carried forward”
such that reasoning can be kept local. It is not clear how to maintain this locality
when considering intervals modeled by endpoints in a point-based time model.

To overcome the problems of point-based time models, our approach to model
and solve multi-calendar appointment scheduling problems is based purely on
intervals. In practice, time points can be simulated by considering intervals that
are small enough. For example, in scheduling a phone conference, time points
can in general be presented by intervals with a duration of 1 minute or second,
i.e. the smallest calendric type chosen. Representing time intervals using finite
domains with domains typed after some calendric type, we are also able to handle
quantifications such as “an event e (in time granularity g) happens 5 time units
(in granularity h) before an event e′ (in time granularity k”. Furthermore, this
interval-based approach opens us with the possibility to additionally incorporate
generalized (i.e. finite, non-convex) and (infinite) periodic intervals, as well.

3 Multi-Calendar Appointment Scheduling

Multi-calendar appointment scheduling problems are a specific kind of metric
temporal reasoning problems involving arbitrary calendric data and expressions.
Let us consider the following appointment scheduling problem:

Example 1. A person plans a meeting lasting 3 working days after 20th April
2005 and before May 2005. A colleague’s visit of 1 week must overlap with the
planned meeting.

month

week

working day

day

4 (April 2005) 5

17 18 19 20

↑
20.4.2005 (Wednesday)

21 22 23 24 25 26 27 28 29 30 31 32

↑
1.5.2005 (Sunday)

13 14 15 16 17 18 19 20 21 22 23

4 5

Fig. 1. The calendric types addressed in Example 1.

To properly analyze and solve such a problem, we are led to an abstract an-
alyze of activities that take time, such as “meeting” and “visit”. In our context,

such activities can be identified with finite, convex intervals, isomorphic to sub-
sets of the integers. Activities may refer to different calendric types. A calendric
type is a (user-defined) calendar unit or a calendric expression such as “day”,
“working week”, “teaching term”, or “cs123 lecture”2. According to Example 1,
the activity “meeting” refers to working days (i.e. Monday to Friday)3 while the
activity “visit” refers to weeks. Figure 1 illustrates the different calendric types
addressed in Example 1. Activities are temporally related – either in terms of
quantifications, e.g. the meeting must have a duration of 3 working days or in
terms of interval relations, e.g. the meeting must be before 20th April 2005 or
the visit must overlap the meeting. Such temporal relations are referred to as
time constraints. The principle extension of our approach to (metric) temporal
constraint satisfaction is that such time constraints may be applied to variables
that refer to any user-defined calendric type. We call such CSPs Multi-Calendar
CSPs.

The calendar type language CaTTS-DL [1] provides declarative language
constructs to define calendric types such as those referred to in Example 1. In
what follows, we illustrate how to specify a CaTTS-DL calendar that can be used
to solve the afore introduced multi-calendar appointment scheduling problem:

calendar CalendarExample : S ig =
cal

type day ;
type week = aggregate 7 day @ day (−3);
type month = aggregate

31 day named january ,
alternate month (i)
| (i div 12) mod 4 == 0 && (i div 12) mod 400 != 100 &&
(i div 12) mod 400 != 200 && (i div 12) mod 400 != 300
−> 29 day

| otherwise −> 28 day
end named february ,
31 day named march ,
30 day named ap r i l ,
31 day named may ,
30 day named june ,
31 day named ju ly ,
31 day named august ,
30 day named september ,
31 day named october ,
30 day named november ,
31 day named december

@ day (−90);
type working day = se lect day (i) where

relative i in week >= 1 && relative i in week <= 5 ;
end

2 The Computer Science lecture with identifier ‘cs123’.
3 One might also refer to a calendric type “working day” that excludes weekend days

and holidays, depending on some user’s definition of such a type.

Each CaTTS-DL calendar specification has an identifier (in this example
CalendarExample) that is assigned to a CaTTS-DL calendar specified within
the keywords cal and end. Sig is the type of this calendar which is not given
in this example.4 The reference type of this calendar is day. It is specified by a
parameterless type constructor. The type week is defined from the type day by
using the CaTTS-DL aggregate type constructor. The type constructor’s argu-
ment is a predicate. In case of type week, this predicate is defined over elements
from type day. It is specified by a duration of 7 days (denoted 7 day) and an
anchor of this duration in days (denoted day(-3)). This type definition is read
as follows: each element of type week has a duration of 7 days and weeks are an-
chored at days such that the first week, i.e. the week with index 1 starts with the
day that has index -3. In this example, -3 refers to the Monday before 1st April
2005, i.e. 28th March 2005. Thus, the type week is defined in the CaTTS-DL
calendar CalendarExample such that each week element starts on a Monday and
has a duration of 7 consecutive days. The type month is also defined by a pred-
icate over elements from the type day using the CaTTS-DL aggregate type
constructor. This time, the type’s predicate is specified by a periodic pattern
with finite many exceptions, i.e. a finite sequence of durations (denoted 31 day
named january, ..., 31 day named december) and an anchor (denoted
day(-90)). To define leap year regulations in Februaries, CaTTS-DL’s alter-
nate construct can be used within which the conditions of Gregorian leap year
rules are formulated. The anchor is chosen such that the month with index 1
starts with the day with index -90. In this example, this means that January
has index 1 and starts with 1st January 2005. Thus, April 2005 has the internal
index 4, as illustrated in Figure 1. The type working day is defined using the
CaTTS-DL type constructor select. In this case, the type constructor has as
argument a predicate over elements from type day, as well. The predicate rel-
ative i in week >= 1 && relative i in week <= 5 selects the first 5 days
out of each week, that is Monday to Friday from each week.

The language CaTTS provides, in addition to the calendar type definition
language CaTTS-DL, with the constraint language CaTTS-CL [1]. CaTTS-CL
allows for modeling multi-calendar appointment scheduling problems which re-
fer to calendars specified in CaTTS-DL. Note that CaTTS-DL also includes a
formatting language CaTTS-FDL [4] in which formats for calendric types such
as "20.01.2006" of type “day” and "WS 2005/06" (the winter term in years
2005/2006) of type “term”. The problem illustrated in Example 1 can be mod-
eled in CaTTS-CL as follows:

program SchedulingExample =
prog

use calendar unqualified CalendarExample ;
use format unqualified CatalogExample ;

Meeting i s 3 working day && V i s i t i s 1 week &&

4 The reader is referred to [4] for further readings on specifying and typing calendars
using CaTTS-DL.

Meeting after "20.04.2005 " && Meeting before "05.2005" &&
V i s i t overlaps Meeting

end

Each CaTTS-CL program has an identifier (here: SchedulingExample) that
is assigned to a program specified within the keywords prog and end. The pro-
gram initially imports one or more CaTTS-DL calendar specifications using the
language construct use calendar possibly followed by the keyword unqual-
ified, i.e. using the imported calendar with short names. In the afore given
CaTTS-CL program the CaTTS-DL calendar CalendarExample which has been
specified in this section is imported unqualified. Furthermore, this CaTTS-CL
program imports a CaTTS-FDL format catalog, denoted use format unquali-
fied CatalogExample. CaTTS-FDL is the format definition language of CaTTS
with which one can define (date and time) formats for the elements of calendric
types defined in some CaTTS-DL calendar specification such as “20.04.2005” of
type day or “WS 2005/06” of type teaching term. A more detailed presentation
of CaTTS-FDL can be found in [4]. For now and the rest of this article, we assume
that a CaTTS-FDL catalog CatalogExample has been defined. The constraint
variables for the activities Meeting and Visit are defined using the CaTTS-CL
is-constraint followed by a duration, i.e. Meeting is 3 working day and Visit
is 1 week. The constraint Meeting is 3 working day is read as follows: The
constraint variable Meeting is associated to the domain that consists of any in-
terval of 3 consecutive working days, e.g. Friday, 22nd April 2005 - Monday, 25th
April 2005 - Tuesday, 26th April 2005. && denotes constraint conjunction. The
conditions that the meeting must start after 20th April 2005, and that it must
end before May 2005 are modeled using the CaTTS-CL time constraints before
and after which have the common interpretations of the corresponding interval
relations [5]. Similarly, the condition that the visit must overlap the meeting is
modeled using the CaTTS-CL time constraint overlaps, denoted Visit over-
laps Meeting which refers to the corresponding interval relation “overlaps”[5].
The complete CaTTS-CL syntax is given in Appendix A.

After having specified one or more CaTTS-DL calendars and some CaTTS-
CL program that refers to some of those calendars, CaTTS-CL’s multi-calendar
constraint solver computes an answer to the specified problem. An answer to a
CaTTS-CL program is a consistent Multi-Calendar CSP that is no further re-
ducible. The answer to the problem given in Example 1 and modeled in CaTTS-
CL (as previously illustrated) is the following:

Meeting i s 3 working day &&
(begin of Meeting) within ["21.04.2005 " . . "22.04.2005 "] &&
V i s i t i s 1 week &&
(begin of V i s i t) within ["W04 .2005" . . "W04 .2005"]

The answer constrains the possible values the variables Meeting and Visit can
be associated with: Meeting is a finite, convex interval of three consecutive
working days (denoted Meeting is 3 working day) and the scheduled meet-
ing can either start on the working day ”21.04.2005” or on the working day

"22.04.2005", denoted (begin of Meeting) within ["21.04.2005".."22.
04.2005"]. The answer to the constraint variable Visit is given analogously.

Having the answer represented in CaTTS-CL, the programmer might ask
for one or all solutions to this answer. A solution is computed by searching the
reduced Multi-Calendar CSP using backtracking. The solutions to the considered
problem are given in the following:5

(Meeting= ["21.04.2005 " . . "25.04.2005 "] && V i s i t= "W04 .2005") | |
(Meeting= ["22.04.2005 " . . "26.04.2005 "] && V i s i t= "W04 .2005")

The first solution Meeting= ["21.04.2005".."25.04.2005"] && Visit= "W04.
2005" is read as follows: the constraint variable Meeting is assigned to the in-
terval [”21.04.2005”..”25.04.2005”] from its associated domain (of working days)
and the constraint variable Visit is assigned to the interval "W04.2005" from
is associated domain (of weeks). The second solution is read analogously.

4 Multi-Calendar Constraint Satisfaction

Meeting :: 1..∞ + 3..3, working day

“20.04.2005” :: 20..20 + 1..1, day “05.2005” :: 5..5 + 1..1, month

Visit :: 1..∞ + 1..1, week

�

overlaps

�
�

�
��
before

�
�

�
��

after

Fig. 2. Illustration of the appointment scheduling problem of Example 1 as
constraint network.

A Multi-Calendar CSP is a finite sequence of variables with respective typed
domains together with a finite set of time constraints, each on a subsequence
of these variables. More formally, a time constraint is a subset of the Cartesian
product of the domains of the variables. A time constraint is solved, if it equals
this Cartesian product. An Multi-Calendar CSP is solved, if all its constraints
are solved.

Multi-Calendar CSPs can be illustrated in terms of constraint networks by
a directed graph where the variables (which represent activities) with their as-
sociated typed domains, called calendar domain expressions, are represented
by nodes. The time constraints are represented by directed arcs between those
variables according to Figure 2. The calendar domain expression ”Meeting ::
5 || denotes a disjunction.

1..∞ + 3..3, working day” represents the CaTTS-CL constraint Meeting is 3
working day. It is read as follows: the finite domain variable Meeting is associ-
ated to the domain 1..∞ + 3..3, working day which consists of two ordinary finite
domains, the first represents the meeting’s starting time and the second one its
duration. Those two domains are combined using an additive operation (denoted
+).6 “working day” denotes the calendric type of Meeting which is defined in a
CaTTS-DL calendar specification. I.e. the possible starting time of the meeting
is any working day, represented by its internal integer index and the meeting has
a duration of (minimal and maximal) 3 (working days). Possible values Meeting
can be instantiated with are the intervals [1, 3], [2, 4], etc. The CaTTS-CL time
constraint Meeting after "20.04.2005" is modeled by a directed arrow. The
remaining time constraints and calendar domain expressions are modeled in the
same manner.

Recall that a solution to a CSP is an assignment of each of the variables to
values from their domains such that all the constraints in the CSP are satis-
fied. The idea to solve CSPs modeled as constraint networks is to remove those
values from the domains of the variables that do not participate in a solution
to the problem. That is, each time a time constraint like after is applied, the
domains of the variables that participate in the constraint are reduced. But,
if we try to apply the time constraint Meeting after "20.04.2005", the fol-
lowing problem appears: Meeting is associated with a calendar domain of type
working day while "20.04.2005" is associated with a calendar domain of type
day. Thus, using an ordinary finite domain solver, the Multi-Calendar CSPs illus-
trated in Figure 2 cannot be solved. Therefore, we suggest the following: solving
Multi-Calendar CSPs involves constraint transformation and calendar domain
conversion of some time constraint that is applied to variables of different cal-
endric types. This solution is based on the principle of a coercion semantics for
subtyping in CaTTS-CL together with a novel kind of constraint, called calendar
conversion constraint. The conversion constraint relies on and refers to calen-
dric types defined in CaTTS-DL: to apply any time constraint if the related
variables have different calendric types, the calendar domains of the involved
variables have to be converted into domains that represent the equivalent sets
of times, however in some common calendric type both domains can be repre-
sented in. E.g. to apply the time constraint “overlaps” on the variables “visit” (of
calendric type “week”) and “meeting” (of calendric type “working day”)”, the
associated calendar domains of “visit” and “meeting” have to be converted into
equivalent domains represented in a calendric type “common” to types “week”
and “working day” such as “day”: a week is a set of 7 consecutive days and
a working day is a specific day selected from the set of all days. Additionally,
the representations of the associated calendar domains in the different calendric
types are related to each other in terms of the conversion constraint. E.g. the
conversion constraint relates the calendar domain representation of “visit” in

6 Given the starting time s and the duration d of an interval, its ending time e is
e := s + d − 1.

terms of type “week” to its calendar domain representation in terms of type
“day”.

4.1 The Constraint Solver

To solve Multi-Calendar CSPs, we have defined a coercion semantics for subtyp-
ing that compiles away subtyping during type checking a CaTTS-CL program
against a CaTTS-DL calendar specification. In particular, this coercion seman-
tics translates a CaTTS-CL program into an equivalent program in the con-
straint system typedFD. The constraint system typedFD is an extension of the
constraint system Finite Domains [6] with (1) typed calendar domains and (2)
the conversion constraint: ∀α, β ∈ C. α ≤ β, Xα � Y β . α, β are calendric types
defined in a CaTTS-DL calendar specification C.7 Using this constraint system
typedFD, Multi-Calendar CSPs with finite domain variables can be solved. This
extension takes advantage of existing local consistency algorithms approximat-
ing a solution to such problems which are known to be NP-hard. The main idea
is to chose some subproblem in which to eliminate local inconsistency, and then
iterate such elimination in all the chosen subproblems until stability. That means
in particular that local consistency techniques make implicit inconsistencies ex-
plicit. To solve Multi-Calendar CSPs, we use bounds consistency [7], because the
calendar domains are represented by a set of interval domains (i.e. one for the
starting time and one for the duration).

The Underlying Coercion Semantics In principle, the coercion semantics is
defined by a transformation of a CaTTS-CL time constraint Xγ Ct Y β to a set of
constraints in the system typedFD: Xα Ct Y α∧Xα � Xγ ∧Y α � Y β . Since this
transformation is done implicitly without the programmer guiding the (sub)type
checker, it is called implicit coercion where subtyping is “compiled away” during
type checking. The calendric type α is the quasi-join8 of the calendric types γ and
β defined in some CaTTS-DL calendar specification. The quasi-join is computed
w.r.t. to the CaTTS-DL subtype relation, and it is denoted α := γ ∨ β.

Definition 1. (Subtype Relation) Let τ and σ calendric types defined in
CaTTS-DL. Then σ is a subtype of τ , denoted σ ≤ τ , if ∀i ∈ Z ∃j ∈ Z. τ(j) ⊆
σ(i).

According to Example 1, working day ≤ day, week ≤ day, and month ≤ day,
but not month ≤ week.

Definition 2. (Calendar) Let τ1, . . . , τn be calendric types.
A calendar C is a finite set of calendric types {τ1, . . . , τn} such that there exists
a τi ∈ C and for all τj ∈ C, i, j ∈ {1...n} and i ��= j τj ≤ τi.
τi ∈ C is called reference of the calendar C.
7 Xα denotes a calendar domain expression of calendric type α where α is defined in

some CaTTS-DL calendar specification C.
8 A quasi-join is slightly weaker than the ordinary lattice join.

According to Example 1, C = {day, working day, week, month} where the
reference type is day, i.e. working day ≤ day, week ≤ day, and month ≤ day.

Note that a finite set SC of calendars is also a calendar according to Definition
2, if either the references of the calendars in SC are aligned, i.e. identical except
for the numbering of their indices or there exists a type τ0 which is ≤-comparable
with the references of the calendars belonging to SC. In particular, calendar
alignment provides a means to reason with calendric types specified in different
calendars, i.e. for multi-calendar reasoning. In the following, by C we refer to a
finite set of aligned calendars.

To ensure calendric type conversion between any pair of calendric types in
some calendar C, we define a quasi-join of two calendric types according to the
subtype relation. According to calendars, a quasi-join is slightly weaker than the
ordinary lattice join, which only allows for the first condition of Proposition 1.
The second condition of Proposition 1 is an extension to deal with calendars
which are not (always) lattices. This exception results from the characteristics
of the subtype relation, and, in particular, CaTTS-DL’s possibility to construct
a new calendric type by conjunction and/or disjunction of two other (already
defined) types.

Proposition 1. Let (C,≤) be a calendar.
For any pair of calendric types τt and τs of C, there exists a quasi-join χ ∈ C

such that τt ∨ τs = χ, i.e. τt ≤ χ, τs ≤ χ, and for all τi ∈ C with τs ≤ τi and
τt ≤ τi, either

1. χ ≤ τi or
2. τi < χ, and there exists another τk ∈ C with τs, τt ≤ τk, τk < χ and τi, τk

being incomparable.

Thus, (C,≤) is a quasi-semi lattice.

For example, the CaTTS-CL time constraint

Visitweek overlaps Meetingworking day

is transformed as follows into constraints in the system typedFD: computing
the quasi-join of the CaTTS-DL types week and working day (according to the
CaTTS-DL calendar specified in Section 3) yields the type day. Recall that in
this CaTTS-DL calendar specification, types week and working day has been
both specified as subtypes from type day by predicates pday and qday aggregating
(resp. selecting) subsets from the set of days:

day
��

week (aggregate pday)≥
��≥ working day (select qday)

The following typedFD constraint then replaces the original CaTTS-CL time
constraint:

Visitday overlaps Meetingday ∧
Visitday � Visitweek ∧

Meetingday � Meetingworking day

That is, the time constraint “overlaps” is now applied on calendar domains
of “Visit” and “Meeting” represented in the quasi-join type “day” of the orig-
inal types “week” (resp. “working day) of “Visit” (resp. “Meeting”), and the
conversion constraints relates those two pairs of different representations of time
in different calendric types to each other. Thus, using the conversion constraint,
the temporal information hidden within the different calendric types is preserved
during constraint solving Multi-Calendar CSPs.

The Calendar Conversion Constraint The core of the multi-calendar con-
straint solver for Multi-Calendar CSPs is its so-called conversion constraint :

∀α, β ∈ C. α ≤ β, Xα � Y β

where α, β are calendric types defined in a CaTTS-DL calendar specification C.
In principle, the conversion constraint defines a kind of “equivalence relation”

between calendar domains that refer to different calendric types. It relies on and
refers to calendric types defined in some CaTTS-DL calendar specification. In
particular, for each pair of calendric types α and β where α ≤ β in a CaTTS-
DL calendar specification, a conversion function [4] is automatically generated
from the (user-defined) type predicates by CaTTS-DL’s language processor be-
fore performing any constraint propagation. Those functions are applied during
constraint solving whenever a conversion constraint is propagated on variables of
types α and β. Applying the conversion constraint on Xα and Y β , new calendar
domain expressions are added for X and Y . The new domains are such that the
possible time intervals of X in type α correspond to the possible time intervals
of Y in type β, and vice versa. This is achieved by adapting the bounds of the
starting times of X and Y such that the bounds of X (which refer to type α)
are started by the bounds of Y (which refer to type β) and by adapting the
bounds of the durations of X and Y such that the bounds of X (which refer to
durations of type α) correspond to the bounds of Y (which refer to durations of
type β). The conversion constraint thus ensures that the bounds of the interval
domains that represent the starting times of X in type α are equivalent to the
bounds of the interval domains that represent the starting times of Y in type
β. Furthermore, this constraint ensures that the bounds of the intervals that
represent the durations of X in type α always correspond to the bounds of the
intervals domains that represent the durations of Y . For example,

X :: 1..8 + 7..7, day � Y :: 1..2 + 1..1, week

according to the following illustration:

week

day1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2

Then the time interval [8, 14] of days represented by X corresponds to the time
interval [2, 2] of weeks represented by Y , for example.

Thanks to the conversion constraint, (transformed) time constraints such as
Visitday overlaps Meetingday can be propagated using an ordinary finite domain
solver over integers.

4.2 Properties of the Constraint Solver

Now let us turn our attention to some formal properties of the multi-calendar
constraint solver. We present those properties in short without giving the com-
plete proofs here, just highlighting its basic ideas.

Completeness The proposed constraint solver for Multi-Calendar CSPs is com-
plete, i.e. if the solver terminates with an equivalent bounds consistent problem,
then the original problem is (globally) consistent. This can be shown in two
steps:

1. solution generation from a bounds consistent Multi-Calendar CSP is straight-
forward, and

2. if the Multi-Calendar CSP is consistent, then the algorithm terminates with
bounds consistency.

Concerning the first claim, it is first to note that all time constraints are rep-
resented in terms of classical finite domain constraints for which completeness
has been shown [7,8]. Thus, it remains to show that from a bounds consistent
conversion constraint a solution can be computed straightforward from the do-
mains the participating variables are associated with. This is shown by straight-
forwardly applying the conversion constraint ∀α, β ∈ C. α ≤ β, Xα � Y β on the
minimal solutions for Xα and Y β which are always solutions to the considered
Multi-Calendar CSP.

Concerning the second claim, the argumentation for termination of classical
CSPs with finite domain variables also applies for the conversion constraint. As
with classical CSPs, the algorithm for Multi-Calendar CSPs terminates with
failure, if the original Multi-Calendar CSPs is inconsistent [4].

Complexity Testing for consistency of a Multi-Calendar CSPs in the afore in-
troduced framework is linear in both the number of constraints and the number
of variables w.r.t. the size of the calendar domains. This follows from the argu-
mentation that testing consistency of classical CSPs over finite domain variables
where the domains are represented by intervals is linear [8,6] and from the fact
that the access to a CaTTS-DL conversion function in the conversion constraint
can be done in constant time. Thus, the algorithm remains linear for Multi-
Calendar CSPs with finite domain variables. The conversion function access can
be done in constant time, since the conversion functions can be always generated
from the types’ predicates before performing any constraint propagation, at least
by approximating the conversion function [4].

Note that to search for one or all solutions to a bounds consistent Multi-
Calendar CSPs is NP-hard.

Meeting :: 1..∞ + 3..3, working day

���
Meeting :: 1..∞ + 3..5, day

“20.04.2005” :: 20..20 + 1..1, day “05.2005” :: 5..5 + 1..1, month

���
“05.2005”:: 31..31 + 31..31,dayVisit :: 1..∞ + 1..1, week

���
Visit :: 1..∞ + 7..7, day

�

overlaps

�
�

�
���

before

�
�

�
���

after

Fig. 3. Illustration of the appointment scheduling problem of Example 1 with
conversion constraints as constraint network.

4.3 Example

Let us turn our attention back to Example 1. Having transformed the CaTTS-
CL program given in Section 3 into the constraint system typedFD as previously
described, this problem can be now illustrated by the constraint network given
in Figure 3. This example is used in the following to demonstrate the working
of the multi-calendar constraint solver.

Now we can reduce the calendar domains in the calendar domain expressions
in this constraint network by applying the different time constraints which always
involve applications of the related conversion constraints: applying the time con-
straint “after” on “Meeting” and “20.04.2005”, reduces the domain of “Meeting”
such that its smallest possible starting time is the day “21.04.2005”, i.e. Meet-
ing :: 21..∞ + 3..5, day9, and, therewith, Meeting :: 16..∞ + 3..3, working day
according to the indexing used in Figure 1 which is computed by propagating
the conversion constraint on the two different calendar domains of the variable
“Meeting”. That is, we have removed all those days possibly starting the interval
“Meeting” that do not satisfy the constraint “Meeting after 20.04.2005”. We say,
that the constraint “after” propagates to the Meeting that it cannot start before
“21.04.2005” which, in turn propagates this information into an equivalent set
expressed in terms of working days. In the same way, we proceed by applying
the remaining time constraints (and thus the associated conversion constraints)

9 Note that the variable duration of this constraint (denoted 3..5) results from the
conversion: three consecutive working days might be Friday-Monday-Tuesday. In
terms of days this is Friday-Saturday-Sunday-Monday-Tuesday, i.e. 5 days.

until the Multi-Calendar CSP is not further reducible, i.e. until no further con-
straint propagation would reduce any of the considered domains. The not further
reducible Multi-Calendar CSP is illustrated in Figure 4.

Meeting ::16..17 + 3..3, working day

���
Meeting :: 21..22 + 3..5, day

“20.04.2005” :: 20..20 + 1..1, day “05.2005” :: 5..5 + 1..1, month

���
“05.2005”:: 31..31 + 31..31,dayVisit :: 4..4 + 1..1, week

���
Visit :: 18..18 + 7..7, day

�

overlaps

�
�

�
���

before

�
�

�
���

after

Fig. 4. Illustration of the answer to the appointment scheduling problem of
Example 1 as constraint network.

5 Related Work

We have proposed a framework to model and to reason on multi-calendar ap-
pointment scheduling problems. Calendar modeling is done using the language
CaTTS-DL. Multi-Calendar CSPs can be modeled in CaTTS-CL. Such CSPs
rely on and refer to calendric types defined in CaTTS-DL. In the framework
of CaTTS, the notion of calendric type is based on the concept of time gran-
ularities [9,10,2,11]. Time granularities are well-investigated in theory in both
Artificial Intelligence and Database Systems. In practice, time granularities are
(at least to some extend) implemented with TSQL, however, not widely applied
in temporal and active database systems. A novelty of CaTTS is however that
CaTTS is a programming language approach defining time granularities as types.
Furthermore, CaTTS introduces a novel relation between time granularities, i.e.
the subtype relation. Note that CaTTS’ subtype relation is derived from two
more restrictive relations aggregation of and inclusion of [1] sufficient to specify
almost any calendric type in use today, modifying relations between time granu-
larities out of the large set of (possible) relationships between time granularities
[2].

Multi-Calendar constraint satisfaction as proposed involves metric temporal
constraints over intervals. Multi-Calendar CSPs go beyond simple, metric tem-
poral reasoning with time granularities [2]. In particular, using merely simple,

metric temporal reasoning frameworks (which provide with constraints to model
points and distances between points in a DLR Horn framework) one could ex-
press temporal constraints such as “person A is at the bank”, but neither “an
event e happens during a task t” nor “an event e happens 5 time units before an
event e”’.10 Such constraints can be however expressed in the proposed Multi-
Calendar CSP framework where such CSPs are modeled by metric, interval-based
time constraints in a typed finite domain constraint framework which allows for
reasoning on such constraints where the domains of the variables possibly refer
to different calendric types.. Furthermore, the suggested framework for Multi-
Calendar CSPs yields a complete solution to the problem of time granularity
conversion addressed in [12]. Actually, time granularity conversion is inherent to
the operational semantics of the language CaTTS-CL.

Multi-Calendar CSPs inherently differ form qualitative temporal constraint
problems [13,5,14] where (temporal) relations such as interval relations are spec-
ified and propagated between objects. An example of a merely qualitative tem-
poral reasoning problem is the following: different persons come and leave a
bank under certain constraints which are expressed in terms of temporal rela-
tions. Then one might ask questions such as “Could possibly persons A and B
meet at the bank’s entrance?”. We claim that such kinds of questions does not
frequently appear in appointment scheduling problems considered so far. Qual-
itative temporal reasoning thus performs reasoning on the temporal relations
that hold between the different temporal objects whereas multi-calendar con-
straint satisfaction performs reasoning on the temporal objects (which refer to
intervals with calendric types) themselves.

To summarize, Multi-Calendar CSPs are intended to model and solve (sim-
ple) multi-calendar scheduling problems where activities can be identified with
finite convex intervals in any calendric type. Conditions on and between such ac-
tivities are restricted to metric time constraints which can be modeled in terms
of typed finite domain constraints. Furthermore, our approach provides with a
complete and elegant solution to calendric type conversion for multi-calendar
constraint satisfaction. The proposed constraint solver goes beyond proposals
for simple, i.e. point-based metric temporal reasoning with time granularities.

Note that the proposed constraint reasoner is not designed for solving opti-
mization problems like “schedule working shifts of workers including the worker’s
specified preferences”. Such problems might involve soft constraints [15] and/or
preferences [16], not expressible using CaTTS and not solvable using the multi-
calendar constraint solver proposed in this article.

6 Perspectives

This article has introduced a framework for Multi-Calendar CSPs, in particu-
lar, to model and solve multi-calendar appointment scheduling problems. Multi-
Calendar CSPs base on the calendar modeling language CaTTS. Multi-Calendar
10 Such constraints cannot be expressed in qualitative temporal reasoning frameworks,

as well.

CSPs are a new class of CSPs over finite domain variables with typed finite
domain variables along with a novel constraint, the conversion constraint for
calendar domain conversion of different calendric types defined in a CaTTS-DL
calendar specification. Multi-Calendar CSPs have the same good properties as
classical CSPs, i.e. consistency test is linear and the solver is complete.

As already mentioned, Multi-Calendar CSPs only support constraint vari-
ables which can be represented by finite convex intervals in some calendric types.
On the one hand, this restriction to finite intervals over a calendric type allows
for an efficient implementation of a constraint solver. On the other hand, this re-
striction considerably limits the set of temporal reasoning problems that can be
modeled and solved: several problems such as travel planning involve calendric
data that refers to generalized, i.e. not necessarily convex and finite intervals. To
model and solve such problems, the time constraints provided with CaTTS-CL
need to be extended such that they can propagate variables that refer to gener-
alized intervals. In addition, time constraints (e.g. particular relations that often
appear between non-convex time intervals, or time constraints used in order to
relate periodic intervals such as Tuesdays are “periodically after” Mondays) will
be then useful.

Another extension concerns the specification of preferences on CaTTS-CL
time constraints. Furthermore, to model multi-calendar optimization problems,
an extension of the introduced Multi-Calendar CSP framework with soft con-
straints might be useful.

Acknowledgment

This research has been funded in part by the PhD Program Logics in Com-
puter Science (GKLI) and the European Commission and by the Swiss Federal
Office for Education and Science within the 6th Framework Program project
REWERSE number 506779 (cf. http://rewerse.net).

The authors thank Frank André Rieß who has worked on the implementation
of the multi-calendar constraint solver and Arnaud Lallouet for valuable and
fruitful discussions.

References

1. Bry, F., Rieß, F.A., Spranger, S.: CaTTS: Calendar Types and Constraints for
Web Applications. In: Proc. 14th Int. World Wide Web Conference, Japan. (2005)

2. Bettini, C., Jajodia, S., Wang, S.: Time Granularities in Databases, Data Mining,
and Temporal Reasoning. Springer-Verlag (2000)

3. Jonsson, P., Bäckström, C.: A unifying approach to temporal constraint reasoning.
Artificial Intelligence 102 (1998) 143–155

4. Spranger, S.: Calendars as Types – Data Modeling, Constraint Reasoning, and
Type Checking with Calendars. PhD Thesis. Herbert Utz Verlag, München (2006)

5. Allen, J.: Maintaining Knowledge about Temporal Intervals. Communications of
the ACM 26 (1983) 832–843

http://rewerse.net

6. Frühwirth, T., Abdennadher, S.: Essentials of Constraint Programming. Cognitive
Technologies. Springer-Verlag (2003)

7. van Hentenryck, P., Saraswat, V., Deville, Y.: Constraint Processing in cc(FD).
Technical Report, unpublished Manuscript (1992)

8. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press (1993)
9. Montanari, A.: Metric and Layered Temporal Logics for Time Granularity. ILLC

Dissertation Series 1996-02, University of Amsterdam (1996)
10. Jensen, C., (eds.), C.D.: The consensus glossary of temporal database concepts -

February 1998 version. (1998)
11. Euzenat, J.: Granularity in Relational Formalisms with Applications to Time and

Space Representation. Computational Intelligence 17 (2001) 703–737
12. Franceschet, M., Montanari, A.: A Combined Approach to Temporal Logics for

Time Granularity. In: Workshop on Methods for Modalities. (2001)
13. Vilain, M.: A System for Reasoning about Time. In: Proceedings of the 2nd

National (US) Conference on Artificial Intelligence, AAAI Press (1982) 197–201
14. Meiri, I.: Combining Qualitative and Quantitative Constraints in Temporal Rea-

soning. Artificial Intelligence 87 (1996) 343–385
15. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based Constraint Satisfaction and

Optimization. Journal of the ACM 44 (1997) 201–236
16. Prestwich, S., Rossi, F., K.B.Venable, Walsh, T.: Constrained CP-Nets. In: Italian

Conference on Computational Logic. (2004)

A The Syntax of CaTTS-CL

ce ::= CaTTS-CL expressions:
k constant
X variable
i index
n τ duration, n ∈ N

[ce..ce] endpoint interval
ce upto ce duration interval
ce downto ce duration interval
X is 1 τ event
X is τ task
X is n τ task with duration n ∈ N

ce R ce interval constraint
ce � ce metric constraint
duration ce duration of
index ce index of
begin of ce begin of
end of ce end of
shift ce forward ce forward shift
shift ce backward ce backward shift
extend ce by ce interval extension
shorten ce by ce interval shortening
relative ce in τ 〈 � i 〉 relative in
relative ce to τ 〈 � i 〉 relative to
min(ce) minimum
max(ce) maximum
ce && ce conjunction

where

R ∈ {equals, before, after, starts, started by, finishes, finished by, during,
contains, meets, met by, overlaps, overlapped by, within, on or before,
on or after}

� ∈ {==, <=, <, >, >=, ! =}
τ calendric type defined in a CaTTS-DL calendar specification

B Proof

Proof. (Proposition 1) For a pair of types τ and σ of calendar C, consider the
set of upper bounds U(τ, σ) = {υ|τ ≤ υ, σ ≤ υ}.
(Existence) If τs = τt = α, with α being the top element of C, then U(τs, τt) =
{α}, and our proposition is satisfied through (1). So, if τs ∨ τt exists, so does
τ ′
s ∨ τt, with τ ′

s direct subtype of Cs: If τs ≤ τt so is τ ′
s ≤ τt and in this case

Ct is the join, as τt ∈ U(τ ′
s, τt) satisfies (1). In case of τt < τs, either τt ≤ τ ′

s

and thus τ ′
s ∈ U(τ ′

s, τt) satisfies (1), or else τt and τ ′
s are incomparable and thus

τs ∈ U(τ ′
s, τt) satisfies (1). Finally, if Ct and τs are incomparable, τ ′

s cannot be
greater than or equal to τt, because then τt would have to be less than of equal
τs; either τ ′

s, too, is incomparable to Ct and thus τ ′
s ∨ τt = τs ∨ τt ∈ U(τ ′

s, τt)
satisfies (2), or else τ ′

s ≤ τt and thus τt ∈ U(τ ′
s, τt) satisfies (1).

(Uniqueness) Be χ = τs ∨ τt. Let’s assume χ′ would also qualify as a join of τs

and τt. If χ′ and χ were incomparable, then neither χ′ ≤ χ nor χ < χ′ and thus
χ′ violates (1) and (2). If χ′ < χ, then χ must have satisfied (2), thus exist an
upper bound σk incomparable to χ′; however, all upper bounds are comparable
to χ′ if it is a join (1,2). Finally, if χ < χ′, then χ′ must satisfy (2), thus exist
an upper bound σk incomparable to χ, failing analogously.

	Multi-Calendar Appointment Scheduling: Calendar Modeling and Constraint Reasoning
	Stephanie Spranger (University of Munich), François Bry (University of Munich)

