A High-Level Query Language for Events

Francois Bry Michael Eckert
University of Munich, Institute for Informatics University of Munich, Institute for Informatics
http://mww.pms.ifi.Imu.de, bry@pms.ifi.imu.de http://www.pms.ifi.Imu.de, eckert@pms.ifi.Imu.de

Abstract Composite events as patterns of events do not exist ex-
plicity “by themselves” in an event stream (as single mes-
Nowadays events are omnipresent and exchanged as mesages). Rather they are implicit and the patterns are conve-
sages over networks. Characteristic for applications in- niently specified by event queries.
volving advanced (or complex) event processing is the need Querying events has much in common with querying
to (1) utilize data contained in the events, (2) detect pat- database data (using languages such as SQL or XQuery). In
terns made up of multiple events (so-called composite gient particular, events usually contain data and the messageés us
(3) reason about temporal and causal relationships of esjent to transmit them are in a conventional data format such as
(4) accumulate events for negation and data aggregation. XML; a key example of this are XML-based SOAP messages
This article describes a high-level language approach for [18] used to communicate with Web Services. Processing of
expressing gueries to events. Its foundations are: emhgddi such message events comprises querying data in events and
of a query language for XML and other Web data formats, constructing new events or data.
support for rule-based reasoning, and a complete coverdge o There are, however, also important differences between
the four dimensions mentioned above. guerying database data and events:
e Events are received over time in a stream-like manner,
while in a database all facts are available at once and
1. Introduction stored on disk.
e Event streams are unbounded, potentially infinite, into
In distributed computer systems, events are omnipresent the future, whereas databases are finite. This has es-
and exchanged as messages over networks. Business applica- pecially consequences for non-monotonic query features
tions use events to interact with other applications or huma such as negation or aggregation.
users. Increasing business demands and advances in technol e Relationships between events such as temporal order or
ogy make the current techniques for processing events-insuf causality play an important role for querying events. In

ficient. Amongst others, interest in complex event procegsi databases, relationships between facts are usually part of
(CEP) is driven by: the data (e.g., functional dependencies)
¢ aneed to understand the dynamic behavior in distributed e Timing of answers has to be considered when querying
large-scale information systems [20], events: event queries are evaluated continously against
e increased generation of events from sensors due to dras- the event stream and generate answers at different times.
tic cost reductions in technology (e.g., RFID), These answers may trigger actions such as updates to
e a need to monitor log data generated in computer sys- a database. Typically actions are sensitive to ordering;
tems (e.g., fraud detection in credit card transaction)logs hence it is importamivhenan answer to an event query
e service-oriented architecture (e.g., accounting for on- is detected.

demand services, synchronization of activities in busi- e Query evaluation and optimization for event streams re-
ness processes, monitoring of service level agreements), quires different methods than for databases. In event
e the emergence of event-driven architecture (e.g., detect streams a large number of (standing) queries are eval-
and react to advantageous or dangerous situations) [12]. uated against small pieces of incoming data (events).
For many emerging applications it is not sufficient any- Evaluation is thus usually data-driven, rather than query-
more to query and react to only single, atomic events (i.e., driven. Optimization relies on exploiting similarities-be
events signified by a single message). Instead, events have tween queries rather than indexing data.
to be considered with their relationship to other events in a This article describes work in progress on a high-level
stream of events. Such events (or situations) that do net conevent query language, focusing in particular on the languag
sist of one single atomic event but have to be inferred fromdesign. Our language is well-suited for use in enterprise ap
some pattern of several events are catlethposite events plications built upon Web Service standards. In partigutar

supports events that are received as SOAP (or other XML) The foundations of the high-level event query language de-
messages. It can be deployed as a stand-alone event mediseribed in this article are:
tion component in an event-driven architecture [12], asieve e It embeds the XML query language Xcerpt to specify

component of the framework for reactivity and evolution on classes of relevant events, extract data (in the form of
the Web described in [21] and [22], and as part (sub-language variable bindings) from them, and construct new events.
of the reactive Web language XChange [41 8]. e It supports rules as an abstraction and reasoning mecha-
Our new approach to an event query language is motivated nism, for the same reasons and with the same benefits of
by previous work on XChange, a language employing Event- views in traditional database systems.
Condition-Action rules to program distributed, reactivelw/ e Its syntax enforces a separation of the four querying di-
applications and services. XChange includes composite eve mensions described above, yielding a clear language de-
query capabilities [8, 7] that are similar to those foundén a sign, making queries easy to read and understand, and

tive databases [17, 16, 11, 10, 1]. Our experience in XChange giving programmers the benefit of a separation of con-
has taught us that there is a considerable gap between the re- cerns. Even more importantly, this separation allows to
guirements posed by applications and the expressivityef cu argue that the language reaches a certain degree of ex-
rent event query languages. pressive completeness.

There are (at least) the following four complementary di- Our language is in the combination of these foundations
mensions that need to be considered in designing a suffiquite different from previous composite event query lan-
ciently expressive event query language: guages. We improve on previous work on composite event

Data extraction: Events contain data that is relevant to query languages in the following ways: It is a high-levellan
whether and how to react. For events that are received aguage with a clear design that is easy to use and provides
SOAP messages (or in other XML formats), the data canthe appropriate abstractions for querying events. It empha
be structured quite complex (semi-structured). The data ofsizes the necessity to query data in events, in particukai-se
events must be extracted and provided (typically as bind-structured XML messages. Being targeted towards SOAP and
ings for variables) to construct new events or trigger ieast ~ Web Services, it is particularly suitable for use in busaes-
(e.g., database updates). plications domains. We make an attempt towards expressive

Event composition: To support composite events, i.e., completeness by completely covering all four query dimen-
events that are made up out of several events, event queriesions explained earlier. Finally, with the separation afi-co
must support composition constructs such as the conjunctio cerns, we hope to avoid misinterpretations of queries, &s th
and disjunction of events (or more precisely of event qserie can happen easily with other languages (see the discussions
since composite events can only be defined through composin [27, 15, 1]).
ite event queries). Using the example of a stock market application, we intro-

Temporal (and causal) relationships: Time plays anim- duce our event query language incrementally, starting from
portant role in event-driven applications. Event queriesin queries to single (atomic) events (Section 2). We add com-
be able to express temporal conditions such as “evisd plexity and expressivity with deductive and reactive rdtas
B happen within 1 hour, and happens befor8.” For some events (Section 3), the composition of (several) events-(Se
applications, it is also interesting to look at causal iefat tion 4), temporal conditions on events (Section 5), and even

ships, e.g., to express queries such as “evdndsd B hap- accumulation (Section 6). We end with a short discussion of
pen, and4 has caused.” (In this article we concentrate only ~semantics and evaluation methods (Section 7), and conclu-
on temporal relationships, causality is future work) sions and future work (Section 8).

Event accumulation: Event queries must be able to ac-))
cumulate events to support non-monotonic features such ag. Querying Atomic Events
negation (absence) of events, aggregation of data, oritepet

tive events. The reason for this is that the event streammis (i Application level events in distributed enterprise sysiem

contrast to extensional data in a database) infinite; orre-the are nowadays often representeq as XML messages, especially
as SOAP messages. Where this is not the case (e.g., sensor

fore has to define a scope (e.g., a time interval) over which . . :
events are accumulated when aggregating data or queryinevents in proprietary data formats), events can still cenve
ﬂiently be represented and queried as XRL.

the absence of events. Application examples where event ac-) . .
S ;) . o In our stock market example we will be using four atomic
cumulation s required are manifold. A business activitynmo)
events: stock buys, stock sells, and orders to buy or sell

itoring application might watch out for situations where “a o
)) s N stocks. Involved applications could also generate further
customer’s order hasot been fulfilled within 2 days” (nega-) :
events; these would not affect our example queries. The left

tion). A stock market application might require notificatio . : . :
if “the averageof the reported stock prices over the last hour side of Figure 1 depicts the buy and buy order events in XML

raises by 5%” (aggregation). 2Itis not necessary to actually materialize the XML repréation for ev-
ery incoming non-XML event, of course: instead queries @frdnslated for

1The new event query language described in this article isidered as a this non-XML format, much like one can rewrite queries toath@ise views
replacement of the previous composite event query langifagé XChange. instead of materializing views.

<order> order [timer:datetime {{

<orderld>4711</orderld> orderid { 4711 }, date { "2006-09—18" }, catts:tradingDay {{
<customepJohn</customep customer { "John” }, time { "9:00" } }}dayOfWeek{ var D }
<buy> buy [1}
<stock>IBM</stock> stock { "IBM" }, . . .
<limit >3.14</limit > limit { 3.14 }, Fig. 3. Queries for absolute timer events
<volume>40S00</volume> volume { 4000 }
</buy>] .
<lorder>] example query does not match the order event from Figure 1,
<buy> buy [but matches the buy event with = {01}, 01 = {I —
<orderld>4711</orderld> orderld { 4711 }, 4242 C — John, S +— IBM, P — 2.71,V +— 4000}.
Stradeldsazaauadeld Cretomet B Xcerpt has the following advantages over other XML
<stock>IBM </stock> stock { "IBM" }, query languages such as XQuery [5] for querying events:
e e B o 21060} (1) The notion of an event matching or not matching a query
</buy>] gives a straight-forward notion for defining classes of rele
vant events using queries. (2) Unlike XQuery, Xcerpt has a
Fig. 1. XML and term representation of an event clear separation of querying (selecting) data and cortitigic
new data. So far, we have only used the query-part of Xcerpt.
3) Due to the separation, Xcerpt provides clear semartics f
buy {{ p ptp
{raderd { var 1 }, the variable bindings using the concept of substitutios;set
gt’géim{ef\/grvgf}c 2 this is especially convenient when composing events. Inrcom
price { var P }. parison, in XQuery a variable takes different values aediff
}}VO'Ume {var vV} ent steps (e.g., iterations of a FOR-loop).
where { var P % var V >= 10000 } In addition to event messages, event queries can query for

timer events. Absolute timer events are time points or inter
vals defined without reference to the occurrence time of some
other event. They are specified just like queries to event mes

(sell and sell order are analogous). Details such as SOAP en- . . .
velopes are skipped in this article sages. The left of Figure 3 shows a query for a given time and

_ . date. Restrictions apply on the structure and on the places
For conciseness and human readability, we use a “ter bRl b

Y . X : here variables can be used. For example, it is not allowed
syntax fpr data, quernes, and construction of data. Thitrig to skipt i e in thedat et i me event query or use a variable
side of Figure 1 depicts the XML events as (data) terms. Theinside it — otherwise the timer would fire continously. How-
term syntax is slightly more general than XML, indicating . e - o
whether the order of children is relevant (square bradkgjs ever, one may skip théat e specification, yielding a periodic

¢ v b event.
orno (cgry raceﬁ).) Various calendar systems such as CaTTS [9] can be used
Querying such single event messages is a two-fold task:

. to define application-specific calendar events that are more
one has to (1) specify a class of relevant events (e.g., gl bu PP p

d(2 data f h h .~ complex than the simpldat et i me event. An example is
events) and (2) extract data from the events (e.9., thejprice 4, query for trading days on the right of Figure 3. This timer

We embed the XML query language Xcerpt to both specify event stretches over a whole time interval of a trading day
classes of relevant events and extract data from the event§e g., 9am to 5pm); the event is detected at the end of the

Figure 2 shows an event query that recognizes buy events Wiﬂi‘nterval

a price total 01$,1O 000 or-more.)) Relative timer events, i.e., time points or intervals deafine
Xcerpt queries describe a pattern that is matched againsf, re|ation to some other event will be looked at in Section 4
the data. Query terms can be partial (indicated by doubleg oyent composition.

brackets or braces), meaning that a matching data term can

contain subterms not specified in the query, or total (indida 3. Reactive and Deductive Rules for Events
by single brackets or braces). The queries can contain vari- -

Fig. 2. Atomic event query

ables (keyword/ar), which will be bound to the matching Our language uses two kinds of rules: deductive rules and
data, and asher e-clause can be attached to specify non- reactive rules. Deductive rules allow to define new, “vittua
structural (e.g., arithmetic) conditions. events from the events that are received. They have no side ef

In this article, we will stick to simple queries as above. fects and are analogous to the definition of views for dabas
Note however that Xcerpt supports more advanced featureglata. The arguments why rules for events are required are
such as subterm negation, optional subterm specificatir, s basically the same as why views are required in databases:
terms at arbitrary depth, and queries to graph-shaped datél) Rules serve as an abstraction mechanism, making query
such as RDF [14]. An introduction to Xcerpt is given in [25]. programs more readable (especially important when event

The result of evaluating an Xcerpt query on an event mes-queries get long, as they do for SOAP messages). (2) Rules al-
sage is the sef of all possible substitutions for the free vari- low to define higher-level application events from lowerde
ables in the query (non-matching is signified¥y= (). Our (e.g., database or network) events. (3) Different rulegean

DETECT bigbuy {
tradeld { var | },
customer { var C },
stock { var S} }
ON buy {{
tradeld { var 1| },
customer { var C },
stock { var S},
price { var P},
volume { var V }
}} where { var P % var V >= 10000 }
END

Fig. 4. Deductive rule
RAISE to(recipient="http :// auditor.com”,
transport="http ://.../soap/bindings/HTTP/{)

var B

}
ON var B —> bigbuy {{ }}
END

Fig. 5. Reactive rule

vide different perspectives (e.g., of end-user, systemi@dm

DETECT fees {

customer { var C },

amount { 0.01 x var P var V } }
ON or {

buy {{
customer { var C },

price { var P},
volume { var V } }},

sell {{

customer { var C },

price { var P},
volume { var V } }} }
END

Fig. 6. Disjunction of event queries

4. Composition of Events

So far, we have only been looking at queries to single
events. Since temporal conditions are dealt with sepgratel
only two operatorspr andand, are necessary to compose
event queries int@omposite event queriegNegation falls
under event accumulation, see Section 6.) Both composition

istrator, corporate management) on the same (event-grivenoperators are multi-ary, allowing to compose any (positive
system. (4) Rules allow to mediate between different sclsema number of event queries, and written in prefix notation.

for event data.

When event queries are composed with every answer

Additionally, rules can be beneficial when reasoning aboutto one of the constituent queries is also an answer to the com-

causal relationships of events [20].

Figure 4 shows a deductive rule deriving a new event “big-

posite query. The rule in Figure 6 gives an example: every
time it recognizes a buy or sell event, it generates a newteven

buy” from buy events satisfying the earlier event query of signaling the feesl(of the total), the customer has to pay

Figure 2. Deductive rules follow the synt®ETECT event
constructionON event quenEND. The event construction in

for the transaction.
Disjunctions are not strictly necessary: Instead of one rul

the rule head is simply a data term augmented with variables; — b\ ¢, one could simply write two rules — b anda « c.

which will be replaced by their values obtained from evaluat
ing the event query in the rule body. The event constructon i
also called a construct term; more involved constructidh wi
be seen in Section 6 when we look at aggregation of data.

As the example shows however, they are quite convenient and
avoid redundancy.

Conjunctions on the other hand do increase the expres-
sivity. When two event queries are composed veitid, an

At present we do not allow recursive rules and rule sets; answer to the composite event query is generated for every

relaxations of this restriction (e.g., stratified rule jete a
matter for future work.

pair of answers to the constituent queries. If the consiitue
queries share free variables, only pairs with “compatible”

Reactive rules are used for specifying a reaction to the oc-variable assignments are considered.
currence of an event. The usual (re)action is constructing a Figure 7 illustrates the use of tleand operator. The “or-
new event message (as with deductive rules) and use it to calflerfulfilled” event is detected for every corresponding jodi
some Web Service. For tasks involving accessing and updatbuy order and buy event as well as for every corresponding
ing persistent data, the event queries can be used in thé-Evenpair of sell order and sell event. The events have to agree

Condition-Action rules of the reactive language XChange.
An example for a reactive rule is in Figure 5; it forwards

on variablesD (theor der | d) andT (which is bound to an
XML element name being eithdéruy or sel |). The occur-

every bigbuy event (as derived in Figure 4) to a Web Ser-rence time of the detected “orderfulfilled” event is (by défa

vice ht t p: / / audi t or. comusing SOAP’s HTTP trans-
port binding. The syntax for reactive rules is similar to de-
ductive rules, only they start with the keywoRAIl SE, and
inthe rule head o() is used together witheci pi ent and
transport to specifywherethe message goes ahow. Al-
ternatively tot o() , addressing information can be specified

in the header of a SOAP message using WS-Addressing [6].
The distinction between deductive and reactive rules is im-

portant. While it is possible to “abuse” reactive rules to-si

the time interval enclosing the respective constituenhtsze

Event queries composed witr andand can be nested.
Since the operators are associative, the multi-ary genaral
tions are obvious. For examplend{a, b, c} canbe un-
derstood asnd{and{a, b}, c}.

Composition of events gives rise to defining relative timer
events, i.e., time points or intervals defined in relatiothi®
occurrence time of some other event. Figure 8 shows a com-
posite event query querying for an order event and a timer

ulate deductive rules (by sending oneself the result), ithis covering the whole time interval between the order event and
undesirable: it is misleading for programmers, less efficie one minute after the order event. We will see this timer event
in the evaluation, and by allowing recursion and cyclesyrisk be used later in Section 6 when querying for the absence of a

DETECT orderfulfilled {
orderld { var O },
tradeld { var | },

stock { var S },
type { var T} }
ON and {
order {
orderld { var O },
var T {{
stock { var S} }} },
var T {{

orderld { var O },

tradeld { var I } }} }
END
Fig. 7. Conjunction of event queries
and {
event o: order{{ orderld { var O} }},

event t: extend[event o, 1 min]}

Fig. 8. Composition with relative timer event

corresponding buy event in this time interval.

An eventidentifier ¢) is given to the left of the event query
after the keyworcevent . It is then used in the definition
of the relative timerext end[event o, 1 m n] which
specifies a time interval one minute longer than the occur-
rence interval 0b. (The time point at whicl occurs is under-

stood for this purpose as a degenerated time interval of zero

length.) The eventidentifi¢ris not necessary here, but can be
specified anyway. Event identifiers will also be used in tem-
poral conditions and event accumulation (Sections 5 and 6).
The following constructors for relative timers are curbgnt
supported: ext end[e, d] (adding the duration! to the
end of e’'s time interval),short en[e, d] (subtractingd
from the end ofe), ext end- begi n[e, d], shorten-
begi n[e, d] (adding/subtractingd from the begin of
e), shift-forward[e, d], shift-backward[e, d]
(movinge forward/backward byf).

5. Temporal Conditions

Temporal conditions on events and causal relationships be
tween events play an important role in querying events. We
concentrate in this paper on temporal conditions, though th
approach generalizes to causal relationships.

Reasoning about occurrence times of events and their tem

poral order is less demanding both in requirements posed
on event sources and computation resources than reasoning

about causality. Temporal relationships between events ca
be determined only by looking at the occurrence times of
events, which come “for free” with the event stream. Causal

relationships require assistance by or intimate knowledge

about the applications reacting to and generating eveves(e

sources). They either have to be maintained extensionally
(e.g., as tables in a database or as part of the event data) or e

defined intensionally (e.g., by defining causal relatiopshi
again as some form of composite event queries).

The event identifiers that we have introduced in the previ-
ous section are also used when specifying temporal conditio
on events. Just like conditions on event data, temporalieond

DETECT earlyResellWithLoss{
customer { var C },
stock { var S}

3
ON and {
event b: buy{{
customer { var C },
stock { var S },
price { var P1} }},
event s: sell {{
customer { var C },
stock { var S },
price { var P2}
} where {b before s, timeDiff(b,sxlhour, var Pkvar P2
END

Fig. 9. Event query with temporal conditions

tions are specified in theher e-clause of an event query.

An example of an event query involving temporal condi-
tions is given in Figure 9. It detects situations where a cus-
tomer first buys stocks and then sells them again within ashor
time (less than 1 hour) at a lower price. The query shows that
both qualitative conditionsb(bef or e s) and quantitative
(or metric) conditionst(i meDi ff (b, s) < 1 hour) are
required. In addition, the query also includes a data candit
for the price yar Pl >var P2).

In principle, various external calendar and time reasoning
systems could be used to specify and evaluate temporal con
ditions. However, many optimizations for the evaluation of
event queries require knowledge about temporal conditions
In the example above, using the conditionbef ore s al-
lows to (1) completely avoid evaluating the sell query until
a buy event is received and (2) use the values for variables
C and S obtained from buy events when evaluating the sell
query.

Our language deals with non-periodic time intervals (time
points are treated as degenerated intervals of zero length)
periodic time intervals (i.e., sequences of non-perioatiert
vals), and durations (lengths of time) and provides thefoll
ing built-in constructs for specifying temporal conditfon

- o Eventidentifiers¢vent e). They give as value the oc-
currence time (a non-periodic time interval) of the event
they are bound to.

Constructors for absolute time points and time intervals
such as datetine("2006-09-18T09: 00").
Periodic intervals are allowed and application-
dependent constructors can be specified externally,
e.g..catts: tradi ngDay() .3

Constructors for durations such@sni n 14 sec.
Functions for creating durations from time intervals such
astimeDi ff(i,j) andl ength(i).

Functions for manipulating time intervals such as
extend(i,d),shift-forward(i,d).

Relations for durations>, <, <=, >=, =, e.g., as in
timeDiff(i,j) < 1 hour.

3The requirement for externally defined periodic time ingdsvs that an
iterator delivers the individual intervals in system tiregered by their start-
ing time. Thus a periodic interval liker adi ngday can be understood as a
functiont : N — T x T with begin(¢(7)) < begin(¢(i + 1)).

and { DETECT andthen [var X, var Y]

event s: sell{{ }}, event s: sell {{ }} ON and {

event t: timer:datetime{{ where { event x: var X,
date { "2006—09—-18" }, s before datetime (event y: var Y
time { "9:00" } "2006—09—18T09:00") } where {x before y}

13! } END

} where { s before t} . . .
,)) Fig. 11. Rules simulating a sequence operator
Fig. 10. Timer events vs. time constructors

DETECT buyOrderOverdue{ orderld { var | } }

. . . ON and
e Allen’s 13 relations for time intervals [3] such as anev{em o: order{{
bef ore,af ter,during,contains,overl aps.* orderld { var | } }},
. . . event t: extend(o, 1 min),
When comparing two time intervals at least one of them while t: not buy {
has to be non-periodic, and the relatidrsf or e and orderld { var I } }

af t er should not be used for periodic intervals atall. gnp

Note that there is an important difference between timer Fig. 12. Event accumulation for negation
events used in queries and references to time as part of

wher e-conditions. Timer events have to happen for the eventryrther, deductive rules can be used to define syntactia suga

query to yield an answer (i.e., they are waited for), whiteeti for common cases as illustrated in Figure 11.
references in conditions can lie in the future and only retstr

the possible answers to an event query. In Figure 10, all ang, Event Accumulation
swers to the event query on the left are detected at the same
time (2006- 09- 18T09: 00), while the answers to the event Event querying displays its differences to database query-
guery on the right occur at different times (whenever a sell ing most perspicuously in non-monotonic query featureb suc
eventis received). as negation or aggregation. For database queries, theadata t
Our language differs significantly from most other event be considered for negation or aggregation is readily abvigila
query languagésin the respect that temporal relationships in the database and this databasinige.® In contrast, events
between events are specified as temporal conditions sepaare received over time in an event stream which is poteptiall
rately from the event composition itself and that thus ohly t ~ infinite. To be able to query with negation or aggregatior on
two composition operatomnd andor are needed. Previous first has to restrict the infinite event stream to a finite ettra
work on event query languages tended to have an “algebraic’Once such a restriction (window or scope) is made, nega-
flavor with lots of different event composition operatons-(i ~ tion and aggregation of events can be applied to the events
cluding a sequence operator). Apart from giving a separa-accumulated in this window and differ not much from their
tion of concerns and being easily extensible to application database counterparts.
dependent calendars, our approach thus avoids some prob- Such an accumulation window has to be of finite temporal
lems with the semantics and intuitive understanding of manyextent, i.e., be given by a finite interval. It should be possi
composition operators. ble to determine this window dynamically depending on the

To illustrate the last point, consider an event query ask-€vent stream received so far. Typical examples are the time
ing for eventsa, b, ¢ to happen, where happens before windows “from event until eventb,” “one minute until event
andb happens before. Using the temporal condition in our)" “from eventa for one minute,” and (since events can oc-
approach, this is straight-forward. Using a sequence cempoCUr over time intervals, not just time points) “while everit
sition operator (usually denote}l as well as an (temporal) The last example of a window subsumes the first three since
conjunction operator (with the same semantics asamd- they can in turn be defined as composite events (using rela-
operator; often denoted with or AA), one might be tempted tive timers, see Section 4). We hence content ourselves with
to write an event querga; ¢)A(b; ¢). This however does not ~ Only looking at this case. (Syntactic sugar for the simplér b
yield the intended result sinadifferentc-events can be used common cases will be defined as the language matures.)
in answering the query. (A correct way to write the query ~ Negation is supported by applying thet operator to an
would be(aAb); ¢.) Similar examples are in [27, 15, 1]. event query. A time window is specified with the keyword

From this toy example, it might seem that for small com- whi | e and the _event identifier (_)f the event defining the win-
posite event queries (detecting only two or three evenyg, sa d0W- The meaning is as one might expect: the negated event
the separation makes queries a bit lengthy. However in realdueérywhi I e ¢ not ¢ is successful if and only if no event
life, already atomic event queries are much longer (usuallySatisfyingg occurs during the time interval given by An
several lines) than theher e-clause and event identifiers.

6Recursive rules or views may allow to define infinite databaaten-
sionally. However, the extensional data (the “base fadtssjill finite.

4“Exact” relationships such ast ar t s orequal s are less useful since 7Keep in mind that accumulation here refers to the way we $peci
different events rarely begin or end at exactly the same @@ but are queries, not the way evaluation is actually performed. Kegpll events
included for the sake of completeness. in the accumulation windows in memory is generally neithesidhble nor

5Cf. references [17, 16, 11, 23, 28, 27, 20,19, 2, 1, 7] necessary for query evaluation.

RAISE to(recipient="http ://example.com”, ing and an ending event. Aggregation has rarely been con-

r;fi’:tsngD’;ﬁ"*/‘;\}gr;”éél{/ soap/bindings/HTTP/Y) sidered in work on composite events. A notable exception
‘;“ entry)E ’ is [23], which however applies only to relational data (not
;locpkri{ce"?faf }i all var P)} semi-structured or XML) and does not have the benefits of a
rogu b Var% separation of the query dimensions as our approach.
} group-by } p query pp
ON d . .
M nt 1 catts:tradingDag(1. 7. Approaches for Semantics and Evaluation
while t: collect sell {
stock { var S} Formal and declarative semantics, especially model-
rice { var P} } P y
END P theoretic semantics, are as desirable for an event query lan

guage as they are for data query languages. Formal semantics
of languages provide a reference to implementors and help
it detects stocks Ordergreatly in standardization efforts. T_hey_ aIIow_to prove-cor
rectness of evaluation methods, which is particularly impo
tant for research on optimization. They give rise to proofs
about properties of the language in general, certain dasse

Fig. 13. Event accumulation for aggregation

example can be seen in Figure 12:
that are overdue, i.e., where no matching buy or sell transac
tion has taken place within one minute after placing theorde

The accumulation window is specified by the event query queries, or individual queries. An example for such a prop-

which is a timer relative to the order event. Observe that the : u . N
. . erty is the “bounded lifespan property” for the class of deg
negated query can contain variablésére) that are also used . . .
event queries” defined and proven in [8]. Finally, an easy to

gﬂ;ﬁi m;essnegatmn; the example reveals the strong need tBnderstand and “mathematically aesthetic” model theory is

. . indicati f dl desi d helps identjfyi
Let us now turn to aggregation. As common in rule-based 1 o caton ota goodianguage design and neips | englyin

| i fruct d ifhélagl of design flaws.
anguages, aggregation constructs are used ora A model-theoretic semantics for our language can be de-
rule, since it is related to the construction of new data. The

task of thebodvi v collectinath dat " fined along the lines of the model theory of the data query
Caglle(z:ting gvgésts(,)ir;]}éﬁg sg dl;l%f : ?uelgeizsgxila? f:;otrheevreu:gz language Xcerpt [24] by extending it with temporal features

X 2 = 2% This is h tside th f thi , Wh

tion and indicated by the keywordol | ect. The rule in 'S 1S NOWever outside the Scope of This paper, where we

Fi 13 sh in the bod t lecti I concentrate on the general design of the language and syntax
Igure 15 Shows In the body an event query collecting Sell - pejated work on semantics for event queries usually has
events over a full trading day.

; , an “algebraic flavor” (as the languages themselves do),avher
hThe a}ICtu?l agg_regatl?n t?]kes place in the head of the(;u'ethe semantics for operators are given as functions betweeen s
where all sales prices?) for the same stock) are averaged ,ances (or histories or traces) of events, e.g., [28, 1gfe-A

and a report containing one entry for each stock is generated, ¢ .an pe argued to be less declarative than model theories
The reportis sent at the end of the trading day; this is reftect expressinghow an event is to be detected rather thahat

n t.he syntax by the fact thaat ts: tradi ngDay{{ }}is eventis to be detected. They are however a very valuable step
written as an event, i.e., has to actually occur. towards evaluation and optimization

The aggregation in the head of the rule follows the syntax gyajyation of event queries differs strongly from database
and semantics of the Web query language Xcerpt, again ShOWqUeries. Query evaluation in databases is usually query-

ing that it is beneficial to base an event query language on &jjyen. In contrast, evaluation of composite event quesies
data query language. The keywal indicates a structural g event stream should be data-driven (or “event-drivemd) a
aggregation, generating @nt ry element for each distinct jncremental for efficency reasons. Data-driven approaches
value of the variable5' (indicated withgr oup- by). Inside ,seq in the past include finite automata [17], special pets n

theent ry-element an aggregation functiavg is used 10 [16] and event trees or graphs with inner nodes storing isem
compute the average price for each individual stock. For acomposed” events and a bottom-up flow of events [11].

full account of aggregation syntax, see work on Xcerpt [24]. pqr event queries putting an emphasis on data in the form
We have seen in this section how negation and aggregationy yariable bindings, an event graph approach seems most fit-
in event queries can be treated just like in database quaries ting. Inner nodes in the graph need to perform joins on vari-
our approach, once a window or scope has been introducedpes shared between different constituent queries of a com
(with the keywordwhi | e) limiting the event stream to a fi- posite query [7]. This makes event graphs much similar to
nite extract. The window is specified by a (composite) event,ete [13], which is primarily used for production rules sys-

making our approach more general than negation operators ifems. Scalability of such approaches is indicated in [2].
many related works, where the window is given by a start-

8. Conclusions and Future Work

8Such variables occurring in negated and non-negated forke mzalu-

ation slightly more complicated and less efficient, espigciathe negated In this article. we have introduced a high-level event query
query applies to a time windoweforethe variable is bound in some other !

event query. See work on thé t hout -operator in XChange [7] for an ac- Ignguage. It deViaFeS frqm previous |angyages in a separa-
count how the situation can be treated. tion of the query dimensions data extraction, event compo-

sition, temporal and other relationships, and event aceumu [9] F.Bry, F.-A. RieR3, and S. Spranger. CaTTS: Calendarsgrel
lation. This separation allows a complete coverage of each constraints for Web applications. Rroc. Int. World Wide Web
of the dimensions, yielding a language that can be argued to __ Conf.ACM Press, 2005.
have reached a degree of expressive completeness. [10] A. P. Bughmann, J. Zimmermann, J. A. Blakeley, e}nd D. L.
. . . Wells. Building an integrated active OODBMS: Requirements
We have put emphasis on queries to events represented in

. architecture, and design decisions.Aroc. Int. Conf. on Data
XML and other Web formats, making our event query lan- Engineering IEEE, 1995,

guage suited for use in service-oriented and event-driven a [11] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and SKkn.

chitectures based on Web Services. Important for practical ~ Composite events for active databases: Semantics, corestt

use, rules are supported as an abstraction mechanisme®ueri detection. InProc. Int. Conf. on Very Large Data Basd994.

and rules for events are also relevant in efforts to bringgul [12] O. Etzion. Towards an event-driven architecture: Afids-

including reactive rules, to the (Semantic) Web [26]. tructure for event processing (position paper). Pliroc. Intl. .
A limitation of the language so far is that it does not sup- Conf. on Rules and Rule Markup Languages for the Semantic

. . . . Weh Springer, 2005.
port event instance selection and event instance consompti 1131 ¢ | Forgy. A fast algorithm for the many pattern/marbjest

[28]. It could be argued that they are of less importance for pattern match problemartif. Intelligence 19(1), 1982.
business-level events, where similar effects can be agtliev [14] T. Furche, F. Bry, and O. Bolzer. Marriages of convenin

by considering the data contained in the events. However, in Triples and graphs, RDF and XML in Web querying. Iht.
stance selection can, e.g., be quite important for sensmtgyv Workshop on Principles and Practice of Semantic Web Reason-

Investigation of this limitation is planned for the future. ing. Springer, 2005.
We are agllso considerin restrictionsp on queries keepin de-[ls] A. Galton and J. C. Augusto. Two approaches to event def-
9 4 pIng inition. In Proc. Int. Conf. on Database and Expert Systems

mand§ on event storage constant (see also [8]). Caus_al re_la- Applications Springer, 2002.

tionships between events have only been touched on briefly in16] s. Gatziu and K. R. Dittrich. Events in an active objedented

this article and will be treated in more detail in the future. database system. Morkshop on Rules in Database Systems
Implementation of our language in the scope of XChange Springer, 1993. . . .

is Ongoing work. (The current prototype of Xchange [29] [17] N. H. Geh.a.nl, H V Jagadlsh, and O. Shmuell.. Composite

still uses the event language described in [7], but the avalu event specification in active databases: Model & implementa

tion method used is similar to the one outlined in Section 7.) 18] t,'\(/?nét'dlgitr'] gfglf' g%x(gﬁéarg\%%aﬁgciﬁﬁﬁiﬂ on. 2003

Optimization methods for evaluating large numbers of event{19] A. Hinze and A. Voisard. A parameterized algebra forrgve

queries are also being explored. notification services. IfProc. Int. Symp. on Temporal Repre-
sentation and ReasonintEEE, 2002.
Acknowledgments [20] D. C. Luckham. The Power of Events: An Introduction to

Complex Event Processing in Distributed Enterprise System
This research has been funded by the European Commis- Addison-Wesley, 2002.
sion and by the Swiss Federal Office for Education and Sci-[21] W. May, J. J. Alferes, and R. Amador. Active rules in the-S
ence within the 6th Framework Programme project REW- mantic Web: Dealing with language heterogeneityPtac. Int. _
ERSE number 506779t p: / / r ewer se. net). Conf. on Rules and Rule Markup Languages for the Semantic
Web Springer, 2005.
[22] W. May, J. J. Alferes, and R. Amador. Ontology- and

resources-based approach to evolution and reactivityeirstt

[1] R.Adaikkalavan and S. Chakravarthy. SnooplB: Inteivased mantic Web. InProc. Int. Conf. on Ontologies, Databases, and

PP . . Applications of SemanticSpringer, 2005.
x%c&;%zzg:g;z:;g;Stoescnlc; npf:)ersasctlve databasata and [23] I. Motakis and C. Zaniolo. Temporal aggregation in ee&ti

[2] A.Adiand O. Etzion. Amit— the situation managént. J. on database rules. IRroc. Int. Conf. on Management of Data

SIGMOD) ACM Press, 1997.
Very Large Data Based3(2), 2004. (! .
[3] J. FYAIIe%. Maintainir?g Kgo)wledge About Temporal Intats. [24] S. SchaffertXcerpt: A Rule-Based Query and Transformation

Communications of the ACN26(11), 1983. Language for the WebPhD thesis, Inst. f. Informatics, U. of

[4] J. Bailey, F. Bry, M. Eckert, and P.-L. Patranjan. Favs of Munich, 2004. , , _
XChange, a rule-based reactive language for the (Semanticf2°] S- Schaffert and F. Bry. Querying the Web reconsidergd:
Web. InProc. Intl. Conf. on Rules and Rule Markup Languages practical introduction to Xcerpt. IRroc. Extreme Markup Lan-

for the Semantic WelSpringer, 2005. guages 2004. .
[5] S. Boag et al. XQuenF/) 18: An XML query language. W3C [26] W3C. Rule interchange format working group chartert p:

candidate recommendation, 2005. /1 www. W3. or g/ 2005/ rul es/ wg/ charter.

[6] D. Box et al. Web services addressing (WS-Addressinggow [27] D. Zhu and A. S. Sethi. SEL, a new event pattern specifica-
member submission. 2004. tion language for event correlation. Int. Conf. on Computer

References

[7] F. Bry, M. Eckert, and P.-L. Patranjan. Querying corsip® Communications and Network&EE, 2001,
events for reactivity on the Web. IRroc. Int. Workshop on [28] D. Zimmer and R. Unland. On the semantics of complex &en
XML Research and ApplicationSpringer, 2006. in active database management system®rdé. Int. Conf. on
[8] F. Bry, M. Eckert, and P.-L. Patranjan. Reactivity dvetWeb: Data EngineeringlEEE, 1999.

Paradigms and applications of the language XChahgg.Web ~ [29] http://www. reactiveweb. or g/ xchange.
Engineering 5(1), 2006.

