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ABSTRACT

Data referring to cultural calendars such as the widespread
Gregorian dates but also dates after the Chinese, Hebrew, or
Islamic calendars as well as data referring to professional cal-
endars like fiscal years or teaching terms are omnipresent on
the Web. Formalisms such as XML Schema have acknowl-
edged this by offering a rather extensive set of Gregorian
dates and times as basic data types. This article introduces
into CaTTS, the Calendar and Time Type System. CaTTS
goes far beyond predefined date and time types after the
Gregorian calendar as supported by XML Schema. CaTTS
first gives rise to declaratively specify more or less complex
cultural or professional calendars including specificities such
as leap seconds, leap years, and time zones. CaTTS fur-
ther offers a tool for the static type checking (of data typed
after calendar(s) defined in CaTTS). CaTTS finally offers
a language for declaratively expressing and a solver for effi-
ciently solving temporal constraints (referring to calendar(s)
expressed in CaTTS). CaTTS complements data modeling
and reasoning methods designed for generic Semantic Web
applications such as RDF or OWL with methods specific to
the particular application domain of calendars and time.

Categories and Subject Descriptors

1.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—representation languages; D.3.1
[Programming Languages]: Formal Definitions and The-
ory—syntax
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1. INTRODUCTION

Data referring to cultural calendars such as the widespread
Gregorian dates but also dates after the Chinese, Hebrew,
or Islamic calendars as well as data referring to professional
calendars like fiscal years or teaching terms are omnipresent
on the Web. Most likely, they will play an essential role on
the Semantic Web, too. Formalisms such as XML Schema
have acknowledged this by offering a rather extensive set of
Gregorian dates and times as basic data types.

This article introduces into CaTTS, the Calendar and
Time Type System that goes far beyond predefined date
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Figure 1: Languages of CATTS.

and time types after the Gregorian calendar. CaTTS con-
sists of two languages, a type definition language, CaTTS-
DL, and a constraint language, CaTTS-CL, of a (common)
parser for both languages, and of a language processor for
each language.

Using the (type) definition language CaTTS-DL, one can
specify in a rather simple manner more or less complex,
cultural or professional calendars [3]. Specificities like leap
seconds, leap years, and time zones can be easily expressed
in CaTTS-DL. Calendars expressed in CaTTS-DL are com-
posable in the sense that the language offers a means for
modules. Thus, one can extend a standard calendar such as
the Gregorian calendar used in Germany with a particular
teaching calendar, e.g. the one of a specific German univer-
sity.

CaTTS-DL gives rise to defining both, calendric data types
specific to a particular calendar — such as “working-day”,
“Easter-Monday”, “exam-week”, or “CS123-lecture” (defin-
ing the times when the Computer Science lecture number
123 takes place) — using the language fragment CaTTS-
TDL (for Type Definition Language) of CaTTS-DL, and
data formats for such data types — such as “5.10.2004”,
“2004/10/05”, or “Tue Oct 5 16:39:36 CEST 2004” — using
the language fragment CaTTS-FDL (for Format Definition
Language) of CaTTS-DL.

The language processor for CaTTS-DL consists of two
software components, a static type checker and a predicate
interpreter. Consider a calendar C specified in CaTTS-
DL and a program P in the language CaTTS-CL, XQuery,
XSLT or any other program P with type annotations re-
ferring to types and/or formats specified in the calendar C.
CaTTS’ static type checker verifies and/or extends the type
annotations in P generating a type checked version P’ of P:

calendar C program P

CaTTS’ static
type checker

type checked version P’ of P



Consider a type definition T" (e.g. “working-day” or “exam-
week”) from a calendar specified in CaTTS-DL and a data
item D (e.g. “2004/10/05”). CaTTS’ predicate interpreter
detects whether the data item D has type T (e.g. whether
“2004/10/05” is a “working-day” or an “exam-week” - the
later being probably false):

data item D

predicate /

interpreter

type definition T’

yes/no

Both CaTTS-DL and CaTTS-CL provide (the same) pre-
defined functions (e.g. shift forward and backward, during,
and usual arithmetics) and polytypic constructors, in par-
ticular the time interval constructor and the duration con-
structor. Using these functions and constructors, one can
express for example, “the second day after working day X”
(in CaTTS: shift X:working-day forward 2 day) and the

type “intervals of working days” (in CaTTS: [working-day]).

CaTTS’ type checker can be used for static type checking
of programs or specifications in any language (e.g. XQuery,
XSLT, XML Schema), using date formats enriched with type
annotations after some calendar specified in CaTTS-DL. In
particular, it is used for the static type checking of temporal
constraint programs in CaTTS-CL, the constraint language
of CaTTS.

Using CaTTS’ constraint language CaTTS-CL, one can
express a wide range of temporal constraints referring to the
types defined in calendar(s) specified in the definition lan-
guage CaTTS-DL. For example, if one specifies in CaTTS-
DL a calendar defining both, the Gregorian calendar (with
types such as “Easter-Monday” or “legal-holiday”) and the
teaching calendar of a given university (with types such as
“working-day”, “CS123-lecture”, and “exam-week”), then
one can refer in CaTTS-CL to “days that are neither legal
holidays, nor days within an examination week” and ex-
press constraints on such days such as “strictly after Easter
Monday and before June”. Thus, using CaTTS-CL one can
express real-life, Web, Semantic Web, and Web service re-
lated problems such as searching for train connections or
making appointments (e.g. for audio or video conferences)
over several time zones.

CaTTS provides with a constraint solver for problems ex-
pressed in CaTTS-CL. This solver refers to and relies on
the type predicates generated from a calendar definition in
CaTTS-DL. This makes search space restrictions possible
that would not be possible if the calendar and temporal no-
tion would be specified in a generic formalism such as first-
order logic and processed with generic reasoning methods
such as first-order logic theorem provers.

2. CATTS AND THE SEMANTIC WEB

CaTTS complements data modeling and reasoning meth-
ods such as RDF [15] or OWL [14] designed for generic Se-
mantic Web applications with methods specific to a particu-
lar application domain, that of calendars and time. CaTTS
approach is a form of “theory reasoning” like “paramodula-
tion”. Like paramodulation ensures natural expressing and
efficient processing of equality in resolution theorem proving,

CaTTS makes a user friendly expression and an efficient pro-
cessing of calendric types and constraints possible. CaTTS$S
departs from time ontologies such as the DAML Ontology
of Time [4] or time in OWL-S [10] as follows:

e CaTTS considerably simplifies the modeling of speci-
ficities of cultural calendars (such as leap years, sun-
based cycles like Gregorian years, or lunar-based cycles
like Hebrew months),

e CaTTS provides both, a static type checker and type
predicates for every CaTTS calendar(s) specification,

e CaTTS comes along with a constraint solver dedicated
to calendar definitions that (1) processes CaTTS type
annotations as constraints and (2) the language of which
is amenable to CaTTS static type checking.

3. CATTS’ MODEL IN A NUTSHELL

This section is a mathematical prologue that can be skip
in a first reading.

CaTTS’ notion of time is linear. CaTTS is not intended
for expressing possible futures, hence it is not based on a
“branching time”. Most common-sense, Web and Semantic
Web and many Web service application can be conveniently
modeled in a linear time framework.

CaTTS’ notion of time is purely interval-based, i.e. tem-
poral data of every kind have a duration. This reflects a
widespread common-sense understanding of time according
to which one mostly refer to time interval, not to time points.
E.g. one refers to “2004/10/05”, a day, or to “Ist week of Oc-
tober 20047, a week. Even time point-like data such as 9:25
can be perceived as having a duration, possibly as small as
one second or one millisecond. Considering only time inter-
vals and no time points has two advantages. First, it signif-
icantly simplifies data modeling, an advantage for CaTT§’
users. Second, it simplifies data processing, i.e. static type
checking and constraint reasoning, an advantage for CaTTS’
language processors. However, CaTTS can deal with time
point-like data like the beginning of a week or whether a day
d falls into a week w or not, as well.

In order to formalize CaTTS (time point-less) model, how-
ever, time points have to be considered:

Definition 1. A base time line is a pair (7,<7) where
7 is an infinite set (isomorphic to R) and <7 is a total order
on 7 such that 7 is not bounded for <7. An element ¢ of
7T is called time point.

Each CaTTS type definition creates a discrete image of
the time line since CaTTS data types define data items with
durations. E.g. data types “day” and “working-day” imply
two (different) images of the time line: days partition the
time line, working days correspond to a portion of the day
partition of the time line. Both images of the time line are
discrete, i.e. isomorphic to Z. The notion of time granularity
[2] formalizes such “discretizations” of the time line:

Definition 2. Let (7,<7) be a base time line. Let G =
{gi | © € Z} be a set isomorphic to Z. Let’s call the elements
of G granules. A time granularity is a (non-necessarily
total) function G from G in the set of intervals over 7 such
that for all 4,j € Z with i < j

1. if G(g:) # 0 and G(g;) # 0, then for all ¢; € G(g;) and
for all t; € G(g;) t: <7 t;.



2. If G(g:) = 0, then G(g;) = 0.

Examples of granules are days, working days, weeks, mon-
ths, holidays, etc. According to Definition 2, two different
granules of a same time granularity do not overlap. The
first condition of Definition 2 induces from the ordering of
the time points (of the base time line) the common-sense
ordering on granules: e.g. the day “10/25/2004” is after the
day “10/24/2004”. The second condition of Definition 2 is
purely technical: it makes it possible to refer to the infinite
set Z also for finite sets of granules (e.g. someone’s exam
days during his/her years of study).

Definition 3. Let G be a time granularity and g;,g; € G
granules.
A time interval I = [g;,g;] over G, is a subset of G such
that g; < g; and gr € I iff gr € G and g; < gx < gj.
A time set S over ¢ is a finite sequence of pairwise disjoint
time intervals over G.
A duration D over G is a number (expressed as an unsigned
integer) of granules of G.

Thus, a duration can be informally understood as a time
interval over a granularity with a given length but with no
specific starting or ending point.

Subtypes are defined in CaTTS in terms of either in-
clusion or aggregation of time granularities. E.g. a type
“working-day” is an inclusion (in the common set-theoretic
sense) of the type “day” since the set of working days is
a subset of the set of days; the type “week” is an aggre-
gation (in constructive set-theory) of the type “day” since
each week can be defined as a time interval of days.

Definition 4. Let G and H be time granularities. G is
an aggregation subtype of H, denoted G <X H, if every
granule of G is an interval over H and every granule of H is
included in (exactly) one granule of G.

Definition 5. Let G and H be time granularities. G is an
inclusion subtype of H, denoted G < H , if G C H, i.e.
every granule of G is a granule of H.

The two subtype relations, inclusion subtype and aggre-
gation subtype, are corner stones of CaTTS that, to the
best of the knowledge of the authors, have not been pro-
posed elsewhere. As the examples given below show, they
are very useful in modeling calendars. Indeed, they reflect
widespread forms of common-sense reasoning with calendric
data.

Note that < U < is an order relation on time granularities.
< U < is defined as follows: G X U < Go iff G1 <X Go
or Gi < Ga. The following formalization of the notion of
“calendar” reflects the central role played by aggregation
and inclusion subtyping in CaTTS:

Definition 6. A calendar C = {G1,...G,} is a finite set
of time granularities such that there exists a G; € C' and for
all G; € C, i,5 € {l..n} and i # j G, is < U <-comparable
with G;.

The subsequently illustrated set of time granularities de-
fines a calendar; each of the time granularities is < U <-
comparable with the time granularity “second”.

~  month
=<

<
second —— day week

< working-day

millisecond

4. CATTS-DL: DEFINITION LANGUAGE

Recall that CaTTS’ definition language, CaTTS-DL, con-
sists of a type definition language, CaTTS-TDL, and a date
format definition language, CaTTS-FDL.

CaTTS-TDL provides a set of type constructors for declar-
ing time granularities as subtypes (of predefined or user-
defined) types in terms of predicates, called predicate sub-
types. A subtype in CaTTS specifies (in terms of a pred-
icate) a set, referred to as “predicate set”. The usual set-
theoretic operations (e.g. U) can be applied to predicate sets.
In CaTTS, calendars (cf. Definition 6) are themselves typed
by calendar signatures. This makes CaTTS calendar spec-
ifications reusable, maintainable, and easy to extend. In
addition, user-definable calendar functions can be specified
in CaTTS that parameterize calendars. Such functions pro-
vide a means to specify different calendar versions all having
the same calendar signature. CaTTS-FDL provides a means
to specify specific constants, i.e. the data items of predicate
subtypes defined in a CaTTS-TDL calendar definition.

4.1 Reference Time

Each CaTTS implementation has a single predefined (base)
type called reference.' reference is a time granularity
such as “second” or “hour”, chosen e.g. depending on the op-
erating system. All other (user-defined) types are expressed
directly or indirectly in terms of reference, using CaTTS’
aggregation and/or inclusion subtyping (cf. Section 3). If
reference is e.g. the time granularity “second”, a conve-
nient choice with the Unix operating system, then one can
specify (using CaTTS-DL) further coarser time granularities
such as “day”, “week”, and “year” as well as finer time gran-
ularities such as “millisecond”. The reference type makes
conversions among any other types defined in a CaTTS-DL
calendar specification (in terms of aggregation and/or inclu-
sion) possible.

In CaTTS’ prototype implementation, reference is the
time granularity “second” of Unix (UTC seconds with mid-
night at the onset of Thursday, January 1 of year 1970 (Gre-
gorian) as fixed point indexed by 1).

In CaTTS-DL, one defines a type finer than that of refe-
rence as follows:

type millisecond = refinement 1000 @ reference (1);2

The type (time granularity) millisecond is defined as a
thousandth refinement of a second (recall reference is the
time granularity “second”). The type millisecond is an-
chored at (denoted @) second 1 (denoted reference(1)),
since millisecond (1) is the first millisecond in the interval
of milliseconds specifying the first second (i.e. reference(1)).
Thus, in CaTTS types such as reference or millisecond
induces clear integer indices of its data items. This indexing
of data items turns out to be extremely useful in practice
(cf. below).

4.2 Predicate Subtypes

Infinite sets are logically encoded by predicates: For any
set A, the predicate p : A — B defines the set of those
elements of A that satisfy p. Such sets are called predi-
cate sets. In type theory, predicate sets are interpreted as

lreference is a base type, because it has no internal struc-
ture as far as the type system of CaTTS is concerned.

In this and the following examples, type identifiers start
with lower case letters.



predicate subtypes, particularly used to declare dependent
function types [11]. CaTTS uses predicate subtypes in a
different manner and not for theoretical, but instead prac-
tical purposes.

CaTTS uses predicate subtypes as a means to define cal-
endric types. E.g. one can describe the time granularity
“week” as the subset of those time intervals over the time
granularity “day” having a duration of 7 days and beginning
on Mondays. This can be directly expressed in CaTTS-DL
as follows:

type week = timepartition 7 day @ day(—2);

The type week is a time partition of days such that each data
item is an interval with duration “7 days”. The first week
(i.e. week(1)) is anchored at (denoted @) day(-2), i.e. the
first day of the interval of days aggregated to the data item
week(1) . Since day(1) is a Thursday (recall that CaTTS’
implements Unix time with Thursday, January 1, 1970 as
fixed point indexed by 1), day (-2) is a Monday. Any further
index can be computed relative to this anchor (cf. Figure 2).
Thus, the predicate subtype week: [day] — B specifies the
infinite set of those day time intervals satisfying the predi-
cate “week” as previously expressed in CaTTS-DL. The type
week is an aggregation subtype of the type day (cf. Defini-
tion 4), written week <:: day in CaTTS’ syntax, and read as
“week is an aggregation of day”. In CaTTS-DL, aggregation
subtypes are constructed by the timepartition constructor
(always defining partitions of the base time line), or by the
predicates “#<” (“restricted aggregation”) and “#>” (“re-
stricted partition”), set-based operations defined for CaTTS
due to predicative set aggregation (defining only a portion
of some partition). E.g. aggregating the type weekend-day
into the type week yielding the type weekend, an aggrega-
tion of weekend-day. The two set-based aggregation pred-
icates may also be used to define types having non-convex
data items like “working-week” (an aggregation of working
days, i.e. days that are neither weekend days nor holidays,
into weeks). Note that one might define aggregations hav-
ing data items of different durations involving often complex
conditions (e.g. Gregorian or Hebrew months), as well.

One can describe the time granularity “weekend-day” as
the subset of those granules of time granularity “day” that
are either Saturdays or Sundays. This can be directly ex-
pressed in CaTTS-DL as follows:

type saturday = select day(i) where i mod 7 == 3;
type sunday = select day(i) where i mod 7 == 4;
type weekend—day = saturday | sunday;

The type saturday is a selection of every third out of 7
days (recall that day(1) is a Thursday, and thus, day(3)
is a Saturday). Thus, the predicate subtype saturday:day
— B specifies the infinite set of those days satisfying the
predicate “saturday” as previously expressed in CaTTS-DL.
In the same manner, the type sunday is defined. Finally,
the type weekend-day satisfies either the predicate of type
saturday or (“|”) the predicate of type sunday. The types
saturday, sunday, and weekend-day are inclusion subtypes
of the type day (cf. Definition 5), written e.g. weekend-day
<: day in CaTTS’ syntax, and read as “weekend-day is an
inclusion of day”. In CaTTS-DL, inclusion subtypes are con-
structed by the select constructor by specifying a predicate
as a combination of any operation predefined in CaTTS (cf.
Appendix A for the complete syntax of CaTTS) following
the reserved word where, or by a set-based constructor: “|”

_0 1 2 weekend
0 | 1 | 2 week
i|0_ L& L weekend-day
-1 - 1 sunday
0 1 saturday
|_4|_3|_2|_1|0|1|2|3|4|5|6|7|8|9|10| day

Figure 2: Indexing of the types defined in Section 4 (day(1)
is Thursday, January 1, 1970).

(“or”), “&” (“and”), and “\” (“except”), in fact ordinary
set operations interpreted as predicate subtype constructors
in CaTTS-DL. As illustrated in Figure 2, the indexing of in-
clusion subtypes is successive. The indexing of any inclusion
subtype is however implicitly related to that of its inclusion
supertype, appropriately choosing the data item indexed by
0 relative to that one of the supertype.

Note that weekend days may alternatively be defined as a
group, i.e. a named collection of type definitions in CaTTS-
DL:

group weekend—day =
with select day(i) where i mod 7 == j
type saturday where j ==
type sunday where j ==
end

Having defined the group weekend_day, one can either refer-
ring to data items of the group weekend_day, or, more spe-
cific, to data items of one of the types (saturday, sunday)
defined within the group, explicitly defined belonging to a
less specific “kind”, i.e. a group of a CaTTS’ type.

Furthermore, CaTTS provides two polytypic constructors:
[7] (time intervals of 7) and | 7 | (durations of 7). The
former describes for any type 7 time intervals (cf. Defini-
tion 3) whose data items are drawn from 7. For example,
[day] is the type of time intervals of days. The later de-
scribes for any type T a duration (cf. Definition 3) whose
data items are drawn from 7. For example, | day | is the
type of durations of days. The polytypic constructors pro-
vide a natural way to obtain periodic events, e.g. the CS123-
lecture offered within the summer term 2004 (referred to as
ST04) (in CaTTS [X:CS123-lecture during ST04]) of type
[CS123-1lecture]. Note that periodic events are very fre-
quently considered in current research. The authors believe
that CaTTS offers a particularly convenient and intuitive
manner to specify periodic events. Further note that only
a minimal extension of CaTTS’s type system is required to
provide a polytypic constructor for time sets (cf. Definition
3).

4.3 Calendar as Type

The basic entities of CaTTS-DL calendar definitions (cf.
Definition 6) are calendars, calendar signatures, and calen-
dar functions.

4.3.1 Calendars

A calendar is a packaged, finite collection of CaTTS type
definitions and calendar specifications, assigning types to
type identifiers, groups to group identifiers, and calendars
to calendar identifiers, similar to ML structures [9] or XML
documents [13]. The types and calendars specified in a cal-
endar are delimited by the keywords cal and end. The fol-
lowing specification binds a calendar to the identifier Cal.
This calendar defines an environment mapping weekend-day,



week, and weekend to their respective group and type defi-
nitions.
calendar Cal =
cal
group weekend—day =
with select day(i) where i mod 7 == j
type saturday where j ==
type sunday where j ==
end
type week = timepartition 7 day @ day(—2);
type weekend = week #< weekend—day;
end

The identifiers in a calendar are qualified. For example, the
qualified identifier Cal.week refers to the component week
in the calendar definition Cal.

4.3.2 Calendar Signatures

Calendar signatures are a kind of “type” for a calendar
defined in CaTTS-DL, similar to ML [9] signatures or XML
Schema declarations [12]. Calendar signatures specify iden-
tifiers and abstract predicate subtypes in terms of inclusion
or aggregation supertypes for each of the components of a
calendar implementing the signature. The following specifi-
cation binds a calendar signature to the identifier SIG.

calendar type SIG =
sig
group weekend—day <: day;
type week <:: day;
type weekend <:: weekend_day;
end

This calendar signature describes those calendars having a
group weekend-day, where each type belonging to must be
an inclusion subtype of day and types week as aggrega-
tion subtype of day and weekend as aggregation subtype
of weekend-day. Since the calendar Cal introduced above
satisfies this calendar signature, it is said to match the cal-
endar signature SIG. Note that a defined calendar usually
matches more than one calendar signature, and vice versa,
a calendar signature may be implemented by more than one
calendar. Calendar signatures in CaTTS-DL may be used
to define views of calendars due to ascription, i.e. speci-
fying less components than implemented in any matching
calendar. The non-specified components are thus local to
its calendar specification.

4.3.3 Calendar Functions

Calendar functions are user-defined functions on calen-
dars using a syntax similar to function declarations in many
programming languages. A calendar function CF defining
Hebrew weekend days can be declared in CaTTS as follows:
cal_fun CF(C:SIG):SIG =

cal
group weekend—day =
with select C.day (i) where i
type friday where j == 2
type saturday where j == 3

end
end

The calendar function CF takes as argument any calendar C
matching the calendar signature SIG, and yields as result
a calendar also matching SIG. When applied to a suitable
calendar, the calendar function CF yields as result the calen-
dar whose group weekend-day is that of (Hebrew) weekend
days, i.e. Fridays and Saturdays. Furthermore, any type def-
inition in C depending on that of weekend-day is changed
respectively to the calendar function CF when applied to C.

calendar type STD =
sig
type second;

type minute <:: second;
type hour <:: minute;
type day <:: hour;
type week <:: day;
type month <:: day;
type year <:: month;
group day—of—week <: day;
type weekend—day <: day;
group holiday <: day;

end

Figure 3: Signature of a standard calendar in CaTTS-DL.

E.g. applying CF to the previously illustrated calendar defi-
nition Cal yields a “new” group weekend-day and the type
weekend is changed, as well. Since the calendar function
CF may be applied to any calendar matching the signature
SIG, the function is polymorph, thus define a parameterized
calendar.

44 CaTTS-FDL

With most applications, one would appreciate not to spec-
ify dates and times using indices of the data items of CaTTS
types like day(23) or second(-123), but instead date for-
mats like “5.10.2004”, “2004/10/05”, or “Tue Oct 5 16:39:36
CEST 2004”. CaTTS-FDL provides a means for defining
date formats.

A date format of CaTTS-FDL can be expressed by a
(none-recursive) regular grammar and a set of constraints
mapping placeholders to the actual (numeric or verbal) rep-
resentation of a date. The programmer, does not have to
explicitly refer to grammars, but instead straightforwardly
define a date format in CaTTS-FDL as follows:

format std—date: day =Y "-" M "-" D where
std—date within year(Y),
M == relative (month)std—date in year,
D == relative std—date in month;

This CaTTS-FDL format specification binds the identifier
std-date to a standard date format for data items of type
day. In the corresponding constraints, the name std-date
of the format is used as a data item of type day, where Y,
M, and D are interpreted as numbers (or indices) computed
w.r.t. the formulated constraints.

Formats are grouped into (format) catalogs specifying to
which calendar signature a set of formats can be applied.
These catalogs may be nested, applying to common scoping
rules.
catalog ISO: STD =

cat

(* mested catalog for exztended ISO formats x)
catalog Extended =

cat
format std—date:day =Y "-" M "-" D where
std—date within year(Y),
M == relative (month)std—date in year,
D == relative std—date in month;
end
end

As with calendars, identifiers defined within a catalog are
qualified, e.g. IS0.Extended.std-date is the full name of
the above format. Date formats specified in CaTTS-FDL
may be imported into a program in the language CaTTS-
CL, XQuery, or any other language using calendric data



calendar Gregorian:STD =

cal
import LeapSeconds;
type second = reference;
type minute = timepartition minute (i)
case
| i == 1051200 (%x1.1.1972x) —> 70 second
| hasLeapSec?(i) —> 61 second
| otherwise —> 60 second
end @ second(1);
type hour = timepartition 60 minute @ minute(1);

type day = timepartition 24 hour @ hour(1);
type week = timepartition 7 day @ day(—2);

type month = timepartition month(i)
31 day named january ,
case
| 1 mod (4x12) == 0 &&
(i mod (400x12) != 100 ||
i mod (400%12) != 100 ||
i mod (400%12) != 100) —> 29 day
| otherwise —> 28 day

end named february ,

31 day named march,

30 day named april ,

31 day named may,

30 day named june,

31 day named july ,

31 day named august,

30 day named september,

31 day named october ,

30 day named november,

31 day named december @ day (1);
type year = timepartition 12 month @ month(1);
group day—of—week =

with select day(i) where i mod 7 == j
type monday where j == 5
type tuesday where j == 6
type wednesday where j == 0
type thursday where j ==1
type friday where j == 2
type saturday where j == 3
type sunday where j == 4

end
type weekend—day = saturday | sunday;
group holiday = with select day(i) where

(relative i in M) == j
type all_saints where j == 2 for M = november
type christmas where j == 25 for M = december
end

end

Figure 4: The Gregorian calendar in CaTTS-DL.

typed after CaTTS-DL calendar specifications by CaTTS’
import mechanism for formats use_format.

4.5 Use Case: Specifying Calendars

To express and find solutions to real-life, Web, Seman-
tic Web, and Web Service related problems such as train
scheduling or making appointments, context-dependent se-
mantics considering both cultural and professional calendars
and time zones is necessary.

Consider the following scenario: A Munich-based business
man needs to schedule a phone conference with a colleague
in Tel Aviv. Besides the various constraints to schedule
the phone conference, the business men use different calen-
dars. Both use the Gregorian calendar to schedule every-
day times and dates, but shifted according to different time
zones. The Tel Aviv-based business man uses the Hebrew
calendar for holidays to be considered, but, for the same
reason, the Munich-based business man uses the Gregorian.

The CaTTS-DL calendar signature in Figure 3, assigned
to the identifier STD, describes standard calendar types and

groups matched by most calendars. second is a non-further
specified type identifier.

The calendar definition given in Figure 4 binds a calen-
dar to the identifier Gregorian such that this calendar must
match the calendar signature STD (denoted Gregorian:STD).
CaTTSs allows for importing external libraries using the re-
served word import. The calendar Gregorian imports a li-
brary LeapSeconds, containing, among other things, a boole-
an function hasLeapSec? over minutes. Leap second in-
sertion into UTC-time (recall that reference is the time
granularity of UTC-seconds) started in 1972 (Gregorian);
10 leap seconds have been inserted into the first minute of
the year 1972. In the present CaTTS-DL modeling, the in-
dex of this minute is directly referred to. The type identifier
second is assigned to the predefined base type reference.
The rules for the Gregorian leap month February are ex-
pressed by a suitable combination of operations predefined
in CaTTS. The predefined arithmetic function relative i
in M (used in the group holiday) selects specific data items
i of type day relatively located to data items of type M, a
placeholder for any defined type. Any further type defini-
tion is straightforward following the rules of the Gregorian
calendar [5].

The calendar definition given in Figure 5 binds a calen-
dar to the identifier Hebrew such that this calendar must
match the calendar signature STD (denoted Hebrew:STD).
The Hebrew day “23 Tevet 5730”7, a Wednesday (yom re-
vii) is the day corresponding to the Unix epoch (“1 Jan-
uary 1970” (Gregorian)). To implement an alignment of
Hebrew regaim® and halaqim® (Hebrew partitions of hours)
with CaTTS’ reference type a respective shift (denoted by
_ref) is defined. The type identifiers second and minute
are used to match the Hebrew calendar with the standard
signature STD®. Note that Hebrew weeks start on Sundays
(yom rishon), and that the first month in any Hebrew year
is Tishri. Since Hebrew leap year computations depend on
the Metonic cycle aligning 19 sun-based years to 235 lunar-
based months, the index 1 for Hebrew months is respec-
tively moved form “Tevet 57307 to “Nisan 5720”7 by re-
setting this month’s index (133) relatively to the index 1
(denoted "@133). To simplify the modeling of the Hebrew
calendar in CaTTS-DL, the library HebrewLeapYear, con-
taining the various functions (e.g. isLeapAdarRishon? and
isHebrewLeapYear?) used in the present calendar specifica-
tion is imported. Such functions may however directly spec-
ified within a CaTTS-DL calendar definition using a kind of
“macro”’. E.g. isLeapAdarRishon? (i.e. the last month in
a Hebrew year which depends on the Metonic cycle) can be
specified by the following two CaTTS-DL macros:

macro isLeapAdarRishonInCycle?(i) =
i== 36 || i== 73 || i == 098
[l 1 ==172 |] i == 209 || i ==

macro isLeapAdarRishon?(m) =
isLeapAdarRishonInCycle?((m mod 235) + 1);

All rules implement in the CaTTS-DL definition of the He-
brew calendar are those suggested in [5].
Note that only a few Gregorian and Hebrew holidays are

3Plural of raga

4Plural of heleq

SWhether such an alignment of the Hebrew calendar to the
STD calendar signature is appropriated or not, does not have
to be discussed here. The present example aims at showing
that it is possible and easy to express with CaTTS.



specified with the two present CaTTS-DL calendars. Fur-

ther can be similarly specified in CaTTS-DL. calendar Hebrew:STD —
Since reference is UTC-time and since UTC-time is ad- cal
justed to the time zone Greenwich Mean Time (GMT), the import HebrewLeapYear;
. . . type _ref = refinement 114 @ reference(—43199);
previously mentioned calendars Gregorian and Hebrew cor- type sccond — timepartition 5 _ref;
respond to this time zone. Any further calendar C' matching type rega = second;
also the calendar signature STD, but refer to other time zones type minute = timepartition 76 second;
b db defined lendar f . type heleq = minute;
can be expressed by a (user-defined) calen: lar U.Il.CthI’l, re- type hour — timepartition 1080 minute;
defining the definition of type day by choosing suitable an- type day = timepartition 24 hour;
chors for the considered time zones (cf. Figure 6). If the type Week}= timepartition 7 day}@.daY(—Q);
calendar function EET is applied to the calendar Gregorian type month = timepartition month (i)
N N . 30 day named nisan,
or Hebrew, then any (aggregation or inclusion) subtype of 29 day named iyyar ,
day is respectively changed. 30 day named sivan,
29 day named tammuz,
30 day named av,
. 29 day named elul ,
5. CATTS-CL: CONSTRAINT LANGUAGE 20 day named olul,
CaTTS-CL, CaTTS’ constraint language, is statically ty- CTSG YearDelay?(i) ) 50 d
s . newYearDelay?(1) == - > ay
ped after CaTTS—DL type deﬁn1t10n§. CaTTS-CL is a lan- named long—marheshvan
guage to declaratively express a wide range of temporal | otherwise —> 29 day named short—marheshvan
and calendric constraint problems. Such problems are then end named marheshvan,
7 : : case
solved by CaTTS—CL S constrgmt solver. Gn{en a CaTTS- | newYearDelay?(i) > 0 —> 30 day
DL specification of the Gregorian calendar (with types such named long—kislev
as “Easter Monday” or “holiday”) and the teaching calendar | otherwise —> 29 day named short—kislev
of a given university (with types such as “CS123-lecture”, end named kislev,
« » fer in CaTTS-CL ¢ 29 day named tevet ,
and “exam-week”), one can refer in Ca/ -CL programs to 30 day named shevat
“days that are neither holidays, nor days within an exami- case

isLeapAdarRishon?(i) —> 30 day

nation week”. One can further express constraints on such | )
named adar—rishon

days such as “strictly after Easter Monday 2004”, “before ‘

otherwise none

June 2004” and “not containing any CS123-lecture” (assum- end,
ing that the used date formats are specified in CaTTS-FDL). . 29 dgy nameg ada?*hShe“‘i @ddaY(}:Ql,) @ 133;

. . . . Ype adar = adar—rishon adar—shnenai;
This problem is expressed in CaTTS-CL as follows: type year — timepartition year (i)

. . case

\é/fday\hohdayd&& X.:v;x.am:week‘%ﬁg:’CSIQSTLezctL;(re&&gé& | isHebrewLeapYear?(i) —> 13 month

:easter —monday within "2004 (W within X) | otherwise ~> 12 month
W after Z && W before "2004-06" && !(W contain Y);6 end @ month(7) @ month(7);

group day—of—week =
The constraint variable W ranges over values of type day\holi- with select day(i) where i mod 7 == j
day, i.e. days that are not holidays (using CaTTS’ subtype :ype yom_r;ho,“ "}"lhere,J ::65
. . . ype yom—sheni where j ==

fzonstructor “\” (“except”)). X is a constraint variable rang- type yom—shelishi where j == 0
ing over values of type exam-week, Y of type cs123-1lecture, type yom—revii where j == 1

g yp yp
and Z of type easter-monday restricted to the year 2004. type yom—hamishi where j == 2

. « s . . v [t type yom—shishi where j == 3
The constraints “not within an examination week” (in CaTT- type yom—shabbat where j —= 4
S-CL ! (X within Y)), “strictly after Easter Monday” (in end
CaTTS-CL X after Z), “before June 2004” (in CaTTS- type Wﬁelf_e(;ld—day = i’lom—i‘hiSh(il | YOm—Shhabbat§
CL X before "2004-06"), and “not containing any CS123- gtzc;?;atio\,; L. I\V/}I)ltzzsga ect day(i) where
lecture” (in CaTTS-CL !(W contain Y)) are straightfor- type yom—kippur where j == 10 for M = tishri
wardly expressed as illustrated. The constraints of CaTTS- t)épe passover where j == 15 for M = nisan
en

CL are given in Appendix A.

CaTTS-CL provides function symbols for data items of
types defined in CaTTS-DL, value constructors for time in-
tervals and durations, arithmetic functions, and condition- Figure 5: The Hebrew calendar in CaTTS-DL.
als. CaTTS-CL’s constraint symbols are common equation
symbols, Allen’s 13 interval relations [1], the derived relation
“within” (denoting “starts” or “during” or “finishes”), and

end

(*CET: Central European Time, GMT + 1, Munichx*)

the symbol “” for type annotations. The complete syntax calendar-function CET(C:STD) : STD —

(of all CaTTS language fragments including CaTTS-DL) is cal

given in Appendix A. type day = timepartition 24 C.hour @ C.hour (2);
The constraint X:7 within v assigns to a variable X a fi- (iré%T: Eastern Buropean Time, GMT + 2, Tel Awvivx)

nite domain over values of type 7 (defined in CaTTS-DL) calendar_function EET(C:STDS . STD =

within the time period v, which must be either a data item cal ) o

or a time interval value. Note that the function symbols enctiype day = timepartition 24 C.hour @ C.hour (3);

provided with CaTTS-CL are essentially the same as those

°In this and the following examples, constraint variables Figure 6: Calendars in different time zones in CaTTS-DL.

start with capital letters.



provided with CaTTS-DL. Furthermore, the constraint sym-
bols provided with CaTTS-CL have the same names as the
predicate symbols provided with CaTTS-DL because type
defining predicates and constraints are both boolean func-
tions. However, there is an elementary difference between a
CaTTS-CL constraint and a CaTTS-DL predicate: A con-
straint specifies the properties and relationships among par-
tially unknown “objects”. All possible solutions satisfying
the constraint are computed by the constraint solver. In con-
trast, a predicate specifies the condition(s) to be satisfied by
the elements belonging to some predicate subtype. E.g. the
type defining predicate “holiday” specifies the infinite set of
all holidays, and the constraint “X:holiday” computes the
(infinite) set of all holidays. Thus, the values satisfying any
CaTTS-CL constraint are computed, whereas a predicate
only specifies the infinite set of values of some CaTTS-DL
predicate subtype without performing any computations.

A CaTTS-CL program is a finite collection of CaTTS-CL
constraints. Calendars defined in CaTTS-TDL are referred
to by the use_calendar construct, data formats defined in
CaTTS-FDL are referred to by the use_format construct,
and external libraries are referred to by the import con-
struct. The constraints specified in a CaTTS-CL program
are delimited by the reserved words prog and end.

5.1 UseCase(Continued): Multi-Calendar Ap
pointment Scheduling

Turning attention back to the two business men schedul-
ing a phone conference (cf. Section 4.5), they specify the
necessary constraints in a CaTTS-DL program (cf. Figure
7). The day, the phone conference might take place should
be neither a holiday nor weekend-day, neither in Munich nor
in Tel Aviv (denoted by the variable ConfDay of the respec-
tive type). The conference itself (denoted by the variable
Conf) is an interval of hours with a maximal duration of 2
hours, and it should be between 8 a.m. and 6 p.m. during
any ConfDay considering both time zones involved in this
scenario. Additionally, the Tel Aviv-based business man ex-
cludes any time on Mondays before 2 p.m. The possibilities
computed by CaTTS’ constraint solver should be returned
according to the two different time zones involved.

6. STATIC TYPE CHECKING AND CON-
STRAINT REASONING SUMMARIZED

This section briefly summarizes the characteristics of CaT-
TS’ language processors. A static type checker to ensure the
behavior and semantics of calendric data and constraints,
and a constraint solver to reason with such data.

6.1 Static Type Checker

In programming languages such as ML [9] static type
checking is used as a “lightweight formal method” (i.e. merely
syntactically tractable) for program analyses ensuring cor-
rect behavior of programs and/or systems w.r.t. some spec-
ification. CaTTS, however, uses static type checking for
semantic restrictions of inherent ambiguous and/or impre-
cise calendric data and constraints ensuring correct inter-
pretation of CaTTS-CL programs w.r.t. some CaTTS-DL
calendar specification.

For space reasons, the typing and subtyping relations of
CaTTS’ static type checker cannot be presented in this arti-
cle. First experimental results with a prototype implemen-

tation of CaTTS’ type checker point to a good efficiency.
Further investigations concerning efficiency as well as sound-
ness and completeness results are undergo.

6.2 Constraint Solver

CaTTS’ constraint solver essentially works on arbitrary fi-
nite domains with type annotations after calendars defined
in CaTTS-DL. It departs from constraint systems over fi-
nite domains [6] due to (i) typed constraint variables, (ii)
constraint variables that may range either over single val-
ues or over intervals of values; thus, reasoning over (possi-
bly periodic) intervals, and (iii) in addition to conjunctions,
disjunctions, and negations of constraints. The constraint
solver refers to and relies on the type predicates generated
from a calendar definition in CaTTS-DL. This makes search
space restrictions possible, and furthermore, obtains the se-
mantics of calendric data and constraints introduced with
CaTTS-DL type definitions.

7. RELATED WORK

CaTTS complements data type definition languages and
data modeling and reasoning methods for the Semantic such
as XML Schema [12], RDF [15], and OWL [14]: XML Schema
provides a considerably large set of predefined time and date
data types dedicated to the Gregorian calendar whereas
CaTTS enables user-defined data types dedicated to any
calendar. RDF and OWL are designed for generic Semantic
Web applications. In contrast CaTTS provides with meth-
ods specific to particular application domains, that of cal-
endars and time.

CaTTS departs from time ontologies such as the KIF time
ontology [8], the DAML time ontology [4], and time in OWL-
S [10] in many aspects.

CaTTS considerably simplifies the modeling of specifici-
ties of cultural calendars (such as leap years, sun-based cy-
cles like Gregorian years, or lunar-based cycles like Hebrew
months) as well as the modeling of professional calendars of-
ten involving “gaps” in time (e.g. “working-day”), “gapped”
data items (e.g. data items of type “working-week”), and
periodic events (e.g. “CS123-lecture”) due to predicate sub-
types and polytypic constructors.

The well-known advantages of statically typed languages
such as error detecting, language safety, efficiency, abstrac-
tion, and documentation whereas the two latter obtain par-
ticular interest due to overloaded semantics of calendric data
apply to CaTTS, as well. Beyond this, CaTTS’ static type
checker provides both meta-type checking of predicate sub-
type definitions in CaTTS-DL and type checking of con-
straints in CaTTS-CL, obtaining the semantics of different
time granularities even for reasoning with their granules.

CaTTS comes along with a constraint solver dedicated
to calendar definitions in CaTTS-DL; this dedication makes
considerable search space restrictions, hence gains in effi-
ciency, possible.

While (time) ontologies follow the (automated reason-
ing) approach of “axiomatic reasoning”, CaTTS is based
on a (specific) form of “theory reasoning”, an approach
well-known through paramodulation. Like paramodulation
ensures efficient processing of equality in resolution theo-
rem proving, CaTTS provides the user with convenient con-
structs for calendric types and efficient processing of data
and constraints over those types.

CaTTS inherently differs from specification languages for



program TelConference
prog
use_calendar unqualified Gregorian;
use_calendar Hebrew, CET(C), EET(C);
use_format unqualified ISO.Extended;

ConfDay:day\(holiday & weekend—day & Hebrew. holiday & Hebrew.weekend—day) within "2004-10" &&

Conf:[hour] during ConfDay &&

duration_of (Conf) <= 2 hour &&

relative W:CET(Gregorian ). Conf in CET(Gregorian).day >= 8 &&

relative W:CET(Gregorian ). Conf in CET(Gregorian).day <= 18) &&

(relative W:EET( Gregorian ). Conf in EET(Gregorian).(day\monday) >= 8 ||
relative U:EET(Gregorian).Conf in EET(Gregorian).monday >= 14) &&

relative W:EET( Gregorian ). Conf in EET(Gregorian).day <= 18)

return Conf:[CET(Gregorian).hour] && Conf:[EET(Gregorian). hour]

end

Figure 7: A scheduling problem in CaTTS-CL.

events and temporal expressions in natural language text
such as TimeML [7]. TimeML is a language for annotating
temporal information in text corpora whereas CaTTS is de-
signed as a statically typed language specialized in calendar
and time modeling and reasoning, addressed to Semantic
Web applications and Web Services.

8. CONCLUSIONS

This article has introduced CaTTS, consisting of
e CaTTS-DL, a definition language, itself consisting of

— CaTTS-TDL, a type definition language and
— CaTTS-FDL, a date format definition language

e CaTTS-CL, a constraint language typed by CaTTS-
DL definitions.

CaTTS’ predicate subtype constructors allow for defining
arbitrary time granularities as types in CaTTS-DL. The two
subtype relations aggregation subtype of and inclusion sub-
type of provide means for conversions between those types
during constraint reasoning with calendric data of those
types, particularly in CaTTS-CL. CaTTS’ polytypic con-
structors provide a convenient and intuitive manner to spec-
ify periodic events. Interpreting calendars as types and their
parameterization ensures maintenance and reuse of calen-
dars, where the “type” of a calendar provides a summary of
that calendar.

CaTTS facilitates the modeling and efficient processing
of calendar and time data in Web and Semantic Web appli-
cations and Web Services, especially compared to ontology-
based modeling and reasoning.
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APPENDIX
A. SYNTAX OF CATTS

A.1 Identifiers
t € TyVar
¢ € Calld
s € CalSigld
f € CalFunld
p € Progld

type identifiers

calendar identifiers

calendar signature identifiers
calendar function identifiers
program identifiers

For each class of identifiers X marked “long” there is a
class longX of long identifiers; if x ranges over X then longx
ranges over longX. The syntax of the long identifiers is given
by the following:



longx ::=
b
Cl. ... .Cp.X

long identifiers:
identifier

qualified identifier n > 1

The long identifiers constitute a link between declarations

and calendars.

A.2 Grammar

CaTTS grammar, including the syntactic forms for both
language formalisms CaTTS-DL and CaTTS-CL is given in

a BNF-like notation ({...)denote optionals).

e ::= erpressions:
d data items
X constraint variables
n ty durations, n € IN
[1] empty intervals
[e..e] endpoint intervals
e upto e duration intervals
e downto e duration intervals
[el constraint intervals
binOp e e binary operations
unOp e unary operations
case e — e (| e — @) conditionals
ce constraints
ce ::= constraint expressions:
e:ty (within e) type annotations
ce iRel ce interval relations
ce aRel ce arithmetic relations
lce negations
ce && ce conjunctions
ce || ce disjunctions
binOp ::= shift forward | shift backward |
extend | shorten | relative to | + |
— | relative in | * | \ | mod | div |
max | min | avg
unOp ::=  to_duration | begin | end
iRel ::=  equals | before | after | starts |
started_by | finishes | finished by |
during | contains | meets | met_by |
overlaps | overlapped by, within
aRel ::= == |<=|<|>|>=|!=
ty ::= types:
longt type variables
reference reference type
refinement n Q@ e refinements, n € IN
timepartition ty e{,e)@ e aggregations
select ty where e{e) inclusions
[ty durations
[ty] time intervals
ty & ty{& ty) conjunctions
ty | ty{| ty> disjunctions
ty \ ty excepts
ty #< ty coarser-restrictions
ty #> ty finer-restrictions
dcl ::= declarations:
type t = ty types
group t = wspec groups
dcl;dcl sequentials
wspec ::= with specifications:
with ty (type t
where e;e for ti=to)
fundcl ::= fun declarations:
cal_fun funbind generative
empty
fundcl;fundcl sequential
funbind ::= fun binding:

f(c:s):s’ = cale

caldcl ::=

calbind ::=

cale ::=

sigdcl ::=

sigbind ::=

sige ::

spec ::=

progdcl ::=

progbind ::=

proge ::=

catdcl ::=

catbind ::=

cate ::=

dcl
calendar calbind

caldcl;caldcl
c{(:sige))= cale
cal caldcl end

longc
f(cale)

calendar declarations:
declarations

calendars

empty

sequentials

calendar binding:

calendar expressions:
generative
identifiers
function applications

s declarations:

calendar type sigbind generative
empty
sigdcl;sigdcl sequentials
s bindings:
s = sige
S erpressions:
sig spec end generative
s identifiers
specifications:
type t <i: ty aggregations
type t <: ty inclusions
group t <: ty groups
calendar c:sige calendars
spec;spec sequentials
p declarations:
ce constraints
use_calendar{unqualified) use calendars,
longcy ...longcnp; n>1
import{unqualified) tmports,
1liby ...lib,; n>1
use_format{unqualified) use formats,
cate; ...caten; n>1
program progbind generative
empty
progdcl;progdcl sequentials
p bindings:
p proge
D exrpresstons:
prog progdcl end declarations
P identifiers

catalog catbind

format fid:ty = d where e

catdcl;catdcl
cd(:s)= cate

cat catdcl end
cd

cate.cd
catalog cd

cat declarations:
generative
formats

empty
sequentials

cat bindings:

cat expressions:
generative
identifiers

qual identifiers
catalogs



