
Adaptive Hypermedia Made Simple Using
HTML/XML Style Sheet Selectors

François Bry and Michael Kraus

Institute for Computer Science, University of Munich
http://www.pms.informatik.uni-muenchen.de/

Abstract. A simple extension is proposed for enhancing HTML and
XML with adaptation. It consists in using the path selectors of style
sheet languages such as CSS and XSLT for expressing content and nav-
igation adaptation. The needed extensions to a path selector language
are minimal, a few additional constructs suffice. The processor of the
language can be kept almost unchanged, no new algorithms are needed.
Furthermore, it is proposed to use XML for expressing user model data
like browsing history, browsing environment (such as device, time, etc.),
and application data (such as user performances on exercises).

1 Introduction

In existing systems, extending HTML and XML with simple adaptive hyper-
media functionalities is done using a combination of cookies, ie client-side user
identification, server-side scripting languages like PHP [6], and URIs. This has
several drawbacks. Information about the user has to be stored and processed
on the server. Due to the nature of the Web’s HTTP protocol, this information
is limited as compared to the information (possibly) available on the client side:
For example, it is not possible to track navigation using the back and forward
buttons, navigation in different windows, or navigation on more than one server.
This prevents implementing non-trivial adaptive hypermedia systems.

In contrast, the approach outlined in this paper does not suffer from the
above-mentioned drawbacks, as it works on the client side. In common adaptive
hypermedia systems, the structure of the information, the information itself, and
the way of information acquisition together form a user model [2]. This paper
does not propose a specific user model, but a framework relying upon HTML and
XML that allows a simple implementation of user models. The main advantage
of this framework is to make adaptive hypermedia techniques available in the
Web context at low cost, ie with minimal changes of the existing standards.

This framework is described in more detail in [3]. It has been proposed to
the W3C Device Independence Working Group [4].



2 Browsing Context: A Data Structure for expressing
User Models

HTML and XML have no means to express a user model. Therefore, a data
structure called browsing context is proposed [3], which allows a user model to
be stored by the browser, ie on the client side, to be accessed through style
sheets, and to be updated through Web applications using scripting languages
like Javascript [5]. These features make the data structure “browsing context”
convenient for an adaptive presentation of Web pages.

A browsing context consists of three components that can be distinguished
according to data acquisition: browsing history, browsing environment and ap-
plication data. “Browsing history” data are informations about the browsing
actions performed by the user in the past such as visiting Web pages, traversing
hyperlinks, opening and closing windows, etc. This information is automati-
cally generated by the browser and it is updated each time the user performs a
browsing action. “Browsing environment” data are informations about the de-
vice (hardware), browser (software), location, time, language, etc. Like browsing
history data, this information is automatically generated and updated by the
browser. “Application data” are informations specific to the Web application
being browsed by the user. In the case of an electronic tutor system, this can be
the user performances on exercises, like the numbers of correct answers.

Using style sheets and scripting languages in conjunction with a “browsing
context” offers the possibility to easily implement an adaptive hypermedia sys-
tem cf. [3]. For accessing the “browsing context” with style sheets and scripting
languages in a convenient manner, it is preferable to store it in XML format, eg
as proposed in [3]. Web browsers store an internal representation of the docu-
ment currently being displayed, eg as a DOM [1] tree. This document is referred
to in the following as naked document because it does not contain any browsing
context information. In a similar way as this naked document is stored by the
browser, a browsing context document [3] can also be stored by the browser.
Both the “naked document” and the “browsing context document” can be con-
sidered as the two parts of one (virtual) context enriched document stored within
the browser. The “context enriched document” takes over the role of the orig-
inal “naked document” within the browser, ie style sheets are applied to the
“context enriched document” instead of the “naked document”, scripting lan-
guages have access to the DOM tree of the “context enriched document” instead
of the DOM tree of the “naked document”, etc. Thus, the “context enriched
document” is a virtual document combining a “browsing context” (using which
adaptation is expressed) with a standard HTML or XML document. Note that
the materialization of this virtual document is not needed.

3 Implementing Adaptation using Style Sheet Selectors

A simple extension to style sheet selectors makes it simple to implement adaptive
hypermedia functionalities with HTML and XML. The path expression of a style



sheet selector is not to be matched against the original “naked document” tree,
but against the new context enriched document tree.

Typical Web style sheet languages like CSS and XSLT have constructs of two
kinds: style rules and selectors. Style rules define certain presentation parameters
for elements in the document tree (like fonts, colors and margins), and transfor-
mations of the document tree (like insertion and sorting of elements). Selectors
are path expressions that determine which style rule is applied to which element
in the document tree. Matching a path expression of a style sheet selector not
against the original “naked document” tree, but against the context enriched
document tree makes it possible to build path expressions that depend on the
content and structure of both, the “naked document” and the “browsing con-
text document”. Note that if the path expression of a selector contains no parts
referring to a browsing context, the semantics of a style rule remains unchanged.
Examples are given in [3].

4 Possible Extensions

Updating Application Data using Scripting Languages. Using style sheet selectors
to express content and navigation adaption is not sufficient for modeling certain
complex aspects of adaptive hypermedia systems. Still missing is the possibility
to store data in the “browsing context”, which then could be used by style
sheets as a source of adaptation. Scripting languages like Javascript can be used
to achieve this. In a similar way as Javascript code contained in Web pages can
change the (“naked”) document tree, Javascript code contained in Web pages
can change the content of a “browsing context”’s application data.

Modeling Locations. There are several different notions of location. (1) Loca-
tions can be informations about the country or region where the user is, like
Germany or France. This information is available in desktop computer systems
and does not change during a browsing session. (2) Locations can be informa-
tions about the geographical position of the user, expressed, eg as longitude and
latitude. This information is available in mobile devices like cellular phones or
PDAs with special positioning equipment, eg a GPS device. Geographical loca-
tion information can change during a browsing session. (3) Locations can also
be informations about virtual locations like home, car, office, meeting, etc. Infor-
mations about virtual locations can change during a browsing session. “Virtual
locations” are represented neither in current computer devices, nor within cur-
rent Web standards. All of these notions can be represented simultaneously as
browsing environment data in a “browsing context”.

5 Discussion and Concluding Remarks

The approach outlined here has both, advantages and limitations. First, the ap-
proach is quite simple. It introduces a wide range of adaptation features into
existing HTML and XML standards at the cost of very limited extensions to



these standards. The extensions to these standards are as follows: (1) Infor-
mation like browsing history and browsing environment data, most of which
is already stored by conventional browsers, is to be stored as a standardized
“browsing context” in an internal XML representation like DOM. (2) The style
sheet processor(s), eg those of CSS or XSLT, match the selector part of a style
rule not against the original “naked document”, but against the (virtual) “con-
text enriched document” (consisting of the “naked document” enriched with a
browsing context). The style sheet processor must recognize those selector com-
ponents referring to the “naked document” and those referring to the browsing
context. This is conveniently achieved using namespaces.

Apart from these, no further changes are needed, especially, no new algo-
rithms are needed. Only the processing of style sheet rules is extended, the
style sheet languages remain otherwise unchanged (because of the use of names-
paces cf. [3] section 3). This ensures upward compatibility with already existing
style sheets. Also, style sheets that make use of “browsing context” selectors are
downwards compatible with non-browsing context enabled browsers. With such
browsers the data can be accessed, only the adaptation features are missing.
Upwards and downwards compatibilities are essential for extensions to existing
Web standards. Thus, the approach proposed in this paper is a conservative
extension of the already existing and well-established Web standards.

The approach outlined in this paper is not specific to CSS or XSLT. It relies
only on path selectors, which play a central role in Web standards. The same
approach can easily be applied to other or future style sheet languages or to
other Web standards like XML query languages, as long as they build on path
selectors. Note also that this approach is stable against the changes from XPath
1.0 to XPath 2.0, which have introduced a considerably more complex type
system, a set of relational operators, and (certain kinds of) variables.

References

1. V. Apparao et al. Document Object Model (DOM) Level 1 Specification Version
1.0. W3C Recommendation, 1998. http://www.w3.org/TR/REC-DOM-Level-1 .

2. P. Brusilovsky. Methods and Techniques of Adaptive Hypermedia. User Modeling
and User-Adapted Interaction, 6(2-3):87–129, 1996.
http://www.contrib.andrew.cmu.edu/ plb/UMUAI.ps .

3. F. Bry and M. Kraus. Adaptive Hypermedia Made Simple Using HTML/XML Style
Sheet Selectors. Technical report, Inst. for Computer Science, University of Munich,
2002. Full version of this paper.
http://www.pms.informatik.uni-muenchen.de/publikationen/#PMS-FB-2002-1 .

4. F. Bry and M. Kraus. Style Sheets for Context Adaptation. W3C Workshop on
Delivery Context, 2002.
http://www.pms.informatik.uni-muenchen.de/ publikationen/#PMS-FB-2002-3 .

5. Standard ECMA-262. ECMAScript Language Specification, 1999. ftp://ftp.ecma.
ch/ecma-st/Ecma-262.pdf .

6. PHP - Hypertext Preprocessor. http://www.php.net/ .


