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Abstract

In this report we give an outline how proof-theoretic notions can
be useful for questions related to software maintenance.

1 Introduction

This paper is concerned with the following question:

Let a program P and a formal system F be given such that we
can prove a certain property ϕ(P ) in F . Now we change P into
a new program P ′. Is there any possibility to use information of
the proof of ϕ(P ) for a proof of ϕ(P ′)?

We give an outline how proof-theoretic notions can help to deal with this
questions.

One crucial notion is the notion of use in a proof-theoretic setting. It
allows us to control explicitly the parts of a program which are necessary or
sufficient for a certain property. We give suggestions for formal definitions
of such notions depending on the underlying calculus.

The definitions are illustrated by some (elementary) examples which
showing our approach at work. Then we give a brief overview about formal
frameworks for the different computer languages. The paper is finished by
a discussion of limitations, applications and related work.

2 Formal analysis of computer programs

In theoretical computer science there is a standard procedure for the formal
analysis of programs. A programming language S is associated with a formal
framework F . By use of a translation T we can interpret programs of S in
the formal framework F .

Usually F has to contain a fixed part A which describes the computa-
tional behavior of S in general. Then the interpretation T (P ) of a concrete
program P of S is added to A and we prove — or disprove — certain prop-
erties, like termination or correctness, in A ∪ T (P ).
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Given a (possible infinite) set of axioms A, on one hand we can look at
all formula ϕ which are derivable from A, i.e. the deductive closure of A,
the set DC(A) := {ϕ | A ` ϕ}. On the other hand, we can consider the set
of logical consequences of A, i.e. the set of formulae which hold in all models
of A: LC(A) := {ϕ | A |= ϕ} := {ϕ | M |= A ⇒ M |= ϕ}. If we consider first
order theories only, the usual completeness result states that both sets are
equal: DC(A) = LC(A). (Here, we have sketched the standard picture only.
There exists a lot of special accounts to particular programming languages
using non-standard derivability notions, like non-monotonic ones, or many
valued models.)

For this reason, the semantics of a program P is often identified with
the theory DC(A ∪ T (P )) or LC(A ∪ T (P )) associated with it. Let us call
this view the view of programs-as-theories.

But in this view, we give up a lot of structure (or information) which
was provided in the calculation of DC(A ∪ T (P )) or LC(A ∪ T (P )). The
easiest example is the fact that a formula ϕ can have several proofs in the
axiom system A ∪ T (P ), but, obviously, ϕ is contained only once in the set
DC(A∪T (P )). It is our goal to make use of such additional structure when
we study software maintenance.

It is quite obvious that there will be changes of a program which does
not affect the proven properties. For instance, one can remove “irrelevant
parts” or replace a part of the program by an “equivalent” one. We will
use the additional structure provided by proofs to make “irrelevancy” and
“equivalency” explicit. The main concept therefore is the notion of use. If
we have

A ∪ T (P ) ` ϕ

we can ask which axioms of the set A ∪ T (P ) have been really used in
the proof of ϕ. As mentioned above, there may exist several proofs of ϕ.
Therefore, we have to take the concrete proofs of ϕ into our consideration.
But for a given proof B of ϕ the question which axioms have been used
can be defined in a precise way. In the next section we will discuss some
possibilities of such definitions.

With a given notion of use, we can deal with software maintenance. Let
us give more detailed view on the formal treatment of programs. First,
we have programming language S and assume that there is an adequate
framework F in which the computational behavior of S is axiomatized by
a set of axioms A. Now consider a program P of S. Let C1, . . . , Cn be
the clauses of P , i.e. the shortest phrases of P which can be handled
seperately by a formal framework. For any translation T which translates
the program clauses Ci into formulae T (Ci) of F we have A ∪ T (P ) =
A ∪ T (C1) ∪ . . . ∪ T (Cn) as associated axiom system. (In a more rigid
treatment we would have to deal with multisets since there could be different
clauses Ci and Cj which result in the same axiom T (Ci) = T (Cj). To keep
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the presentation simple we do not do this. However, there are well-known
formal frameworks dealing with multisets, for instance substructural logics
or linear logic, [SHD93, Gir87]. The concepts defined in this paper can be
easily worked out for these frameworks, too.)

Let ϕ(P ) be a property which is provable in A∪T (P ). When we change
P into P ′ by replacing the clause Ci by the clause C ′i, we can ask whether
ϕ(P ′) still holds in A ∪ T (P ′). But, if T (Ci) was not used in a certain
proof of ϕ(P ), it follows that we can prove ϕ(P ′) by the very same proof
in A ∪ T (P ′). The underlying notions for this argument will be defined
precisely in the following section.

We will finish this section by addressing an interesting point in the com-
parison of the proof-theoretic and model-theoretic view. Assuming com-
pleteness, the proof-theoretic derivability and the model-theoretic validity
are equivalent: A |= ϕ ⇔ A ` ϕ. However, behind this equivalence there
is an important duality : On the model-theoretic side we prove a universal
statement : “For all models M it holds . . . ” while we have an existential
statement on the proof-theoretic side: “There is a proof B of . . . ”. On the
other hand, for the rejection of a property we have an existential statement
in the model-theoretic framework: “There is a (counter-) model M such that
. . . ” while we have on the proof-theoretic side a negated existential state-
ment which is equivalent with an universal one: “There is no proof B of
. . . ”.

In general, it is often easier to deal with a single object than with a class
of objects. Here, that means, for a (positive) property ϕ it is easier to deal
with a witness proof B of ϕ than with a class of models. If you look at the
example above, the proof which does not use T (Ci) is an object which can
be immediately transfered in the context of the program P ′. However, the
relation between the models of A ∪ T (P ) and those of A ∪ T (P ′) could be
arbitrarily complicated. (Of course, this does not mean that it has to be
easier to find a proof then to determine a class of models. Also the proof, as
an object, could be much more complex than the description of the models.
But with a given proof we can often deal easier, in particular, with respect
to the question of used formulae.)

In contrast, if we like to disprove a property, it is, in general, easier
to deal with counter-models than to prove an unprovability statement. Of
course, if we have syntactical completeness, i. e. A 6` ϕ implies A ` ¬ϕ, the
proof-theoretic account has again some advantages. However, in general, we
cannot expect syntactical completeness. Moreover, if we use it, it corrupts
our notion of use of an axiom. This problem is addressed below in the
section about limitations.
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3 Proof-theoretic notions

In the general situation we have a given axiom system A containing a par-
ticular axiom α and we know that ϕ is provable from A: A ` ϕ. Now we
change A to A′ by replacing α by α′. The question is whether ϕ is derivable
from A′, too. And, if so, whether we can use some information from the
proof in A or whether we have to prove it from the scratch. For the second
part we can ask the following three more detailed questions:

1. Was α used in a given proof B of ϕ in A?

2. Was α necessary to prove ϕ in A?

3. Is α provable in A′?

If the answer of the third question is positive, we can obviously transform
the proof of ϕ in A into a proof of ϕ in A′ by replacing the axiom α — if it
occurs in the proof — by its proof in A.

For the first question we have to give a formal explanation of notion of
use. This will be discussed in the following. However, assuming that we
have a notion of use we can already give a precise notion of necessary :

Definition 1 Let an axiom system A be given. We call an axiom α of A
necessary for ϕ, if

1. There is a proof of ϕ in A: A ` ϕ.

2. Every proof of ϕ in A uses α.

The first condition is needed to avoid pathological cases. In fact, (here)
we are not interested in necessity for unprovable formulae. But the second
condition should capture our informal intuition of necessity in the case of
provable formulae.

For the definition of a notion of use we give three suggestions depending
on the underlying calculus.

Definition 2 Let B be a proof in a Hilbert-style calculus. Then we say that

α is used in the proof B

if there is a single line containing ` A in B. Formally, we write usedH(A,B).

Definition 3 Let B be a proof in a natural deduction calculus. Then we
say that

α is used in the proof B

if α is an open leaf of B. Formally, we write usedN (A,B).
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We could also discuss the more liberal notion where α could be a closed
leaf, too. Since we will restrict ourselves to axioms α in the following, the
given definition is sufficient for our purpose.

Definition 4 Let B be a proof in a sequent calculus. Then we say that

α is used in the proof B

if α is a main formula of a rule applied in B. Formally, we write usedS(A,B).

It is easy to observe that these three notions are essentially equivalent, if
we restrict ourselves to axioms α. But this fact would be quite complicated
to state as a formal theorem. However, a given proof which uses the axiom
α, can be transformed in a proof of the “same” end-formula in one of the
other calculi which uses α, too.

Here, we do not give a (philosphical) discussion of the adequacy of this
definitions but we appeal to the intuitiveness. In the following section we
give some examples how these notions can applied to answer the questions
(1) – (3).

4 Examples

Our approach is very general and should be applicable for nearly all pro-
gramming languages. All we need is for a given programming language S a
formal framework F and a translation T which allows to translate programs
of S in axioms of F .

Such frameworks exist for essential all higher computer languages (in
fact, Smalltalk seems to be an exception). There are even different ones
for a particular programming language which compete which each other
with respect to complexity, expressivity and also practice handling. They
can even differ in their intention, focusing on the denotational or operational
semantics. But these aspects do not affect our approach. It works for
theories axiomatizing the denotational semantics in the same way like for
the operational semantics. However, often the operational semantics is closer
related to a proof-theoretic view while the denotational one is related to a
model-theoretic view, cf. e.g. [Mos90]. At the end of this section we give a
brief discussion of formal frameworks given in the literature.

For the concrete examples, a programming language with a logical back-
ground is easier to handle. For this reason, we work with Prolog. More-
over, since we would like to give an illustration of our proof-theoretic no-
tions only, we restrict ourselves to the (almost trivial) case of propositional
Prolog programs. But this case is sufficient to give a picture of the de-
fined notion and to show the essential features without need of a complex
background theory.

5



The propositional Prolog programs are build in the well-known way.
We have formal symbols a, b, . . . , for propositional variables. If we use
a, b, . . . as metavariables for propositional variables, a propositional Prolog

program consists of a list of clauses

a :- b1, . . . , bn.

where n ∈ IN . In the case n = 0 we say that a is a fact, otherwise the
clauses are called rules.

As formal framework F we choose a standard Hilbert calculus for propo-
sitional logic, in particular, we have a set A of axioms which allows to derive
all tautologies.

Assuming we have an enumeration of the propositional variables in F
such that each formal symbol a of our programming language is associated
uniquely with one propositional variable. Therefore, we can identify both
kinds of variables. Now, T is a function which translates a rule

a :- b1, . . . , bn

in the axiom
b1 ∧ . . . ∧ bn → a.

A fact a is interpreted by the axiom a.

Example 5 Let P1 be the program consisting of the following three clauses:

b :- a.
a.
c.

The set of logical consequence of P1 is the deductive closure starting from
a, b, c: LC(P1) = DC({a, b, c}).

In Prolog we could ask for the goal b:

?- b.

We get the expected answer Yes, since b ∈ LC(P1). On the proof-theoretic
side we have T (P1) = {a→ b, a, c} and we get the following proof of b:

` a
` a→ b
` b

If we choose definition 2 for the notion of use, it follows obviously that
a was used in this proof, but not c. It is even trivial to realize that the
given proof is essentially the only one of b. (Of course, in a Hilbert-style
calculus we get infinitely many other proofs by weakening this proof by
adding additional lines containing derivable formulae and their derivations.
However, there is no proof which does not contain — use — the two given
lines). Thus, a is even necessary for b in P1.

This information will be used when we consider changes of P1.
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Example 6 Let P2 be the program resulting from P1 by retracting c:

b :- a.
a.

Obviously b is an element of LC(P2). Note that we can conclude this without
a new calculation of LC(P2) using still the proof of b given above. The reason
is just that c was not used in this proof.

On the other hand, the retraction of a will change the derivability of b:

Example 7 Let P3 be the program resulting from P1 by retracting a:

b :- a.
c.

b is no longer in LC(P3), but this follows already from the fact that a was
necessary for b. Of course, this kind of argument works only, as long as
we retract something. When we add new clauses, there could be a new
possibility to derive b.

Now let us consider the following program:

Example 8 Let P4 be the program consisting of the following four clauses:

b :- a.
a.
c.
b :- c.

If we compare this program with P1 it turns out that the set of logic conse-
quences is the same: LC(P4) = LC(P1) = DC({a, b, c}). But the associated
axiom system is different: T (P4) = {a → b, a, b, c → b}. It is exactly this
difference which is crucial for the analysis of software maintenance. Like
for P1 we can ask whether b follows from P4, which is obviously the case.
But on the proof-theoretic side this time we have two (essentially different)
proofs:

` a
` a→ b
` b

` c
` c→ b
` b

Again we can look at the consequence of the retraction of a:

Example 9 Let P5 be the program resulting from P4 by retracting a:

b :- a.
c.
b :- c.
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Now, b still follows. But this fact can, by now means, be deduced from
LC(P4) alone, since this set is equal to LC(P1). And for P1 the retraction of
a affects the derivability of b. But looking at T (P4) and, in particular, to
the proofs of b we get that b is derivable. The derivability already follows
from the fact that a was not necessary for b, since there is a proof of b which
does not use a.

In a last example let us change P1 by replacing a by a : −c:

Example 10 Let P6 be the program resulting from P1 by the replacement
of a by a : −c:

b :- a.
a :- c.
c.

In this case, the knowledge that a was necessary for b cannot be used directly.
In particular, not in the way that the retraction of a disables the derivation
of b. In fact, the addition of a : −c saves the derivability of b. To see this,
we do not need to calculate LC(P6) as a whole. It is enough to show that the
necessary axiom a which was retracted can be derived in the new context.
This follows from the derivation:

` c
` c→ a
` a

Thus, example 10 serves as an example for a positive answer of (3).

5 Formal frameworks

We will discuss briefly formal frameworks for the different programming
languages. In all these frameworks we can directly work with our notion of
use and necessity.

As a general reference serves the second volume of the Handbook of The-
oretical Computer Science [vL90]. As generally known, the pioneer formal
approach to programming language was given by Hoare [Hoa69], cf. [Cou90]
which contains an impressive list of more than 400 references.

For imperative languages frameworks of dynamic logic became popular,
because it allows us to express the change of variables in a more natural
way, [KT90, Har84]. These logics have a standard axiomatization and we
can transfer our definitions without problems. But note that the dynamic
of this logic deals with the program flow not with changes of a program.

From a logical point of view, declarative programming languages are of
special interest. In particular, there exist several special logical frameworks
to deal with such programming languages. For functional programming
languages, like Scheme, LISP, or ML which are based on the λ calculus,
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cf. e.g. [Bar90], we refer as an example to Feferman’s theories of explicit
mathematics, [Fef91, Fef92, HN88, Stä97, Stä98].

In logic programming which is based on resolution, cf. [Apt90], there
are interesting proof-theoretic approaches by Hallnäs and Schroeder-Heister
[HSH90], Jäger and Stärk [JS98], or Elbl [Elb99].

The functional core of arbitrary programming languages is discussed
from a type theoretic point of view by Mitchell, [Mit90].

At the moment, the programming language Java is extremely popular.
The development of formal systems to deal with it is still ongoing. As a
first reference serves the collection edited by Alves-Foss, [AF99]. A recent
approach can be found in the forthcoming book of Börger, Schmid, Schulte,
and Stärk [BSSS0x].

6 Limitations

Our main task was to show how proof-theoretic notions can help to deal with
questions arising from software maintenance. In this section we discuss some
limitations of our approach. The main one is the requirement of locality. If
the derivability of a formula depends on the system as a whole, our approach
does not really help.

This is the case, if we think of non monotonic systems. In such a system
the consequences of a change of a program is much harder to control. In logic
programming we face this problem if we work with closed world assumption
or negation as failure.

More generally, every form of metareasoning will affect our approach:
The use of a formula is not only definable on the basis of a given proof,
but it could be “used” in a meta argument. A (trivial) consequence of this
observation is that we are not allowed to deal with derived rules in the
derivations considered. Or we would have to store all formulae which are
used in the derivation of the derived rule.

Moreover, as mentioned above, the use of syntactical completeness to
derive a negated property from the underivability of the positive one is also
a very problematic argument, since it remains unclear which formulae are
used in the (meta-)proof of the underivability.

7 Applications

The defined notions are very general and they should be applicable in arbi-
trary contexts as long as we have an appropriate formal framework. How-
ever, for many computer programs the calculation and the bookkeeping of
used formulae would be probably too space and time consuming. Never-
theless, beside the conceptual clarification given by our approach, there are
several areas where it should be applicable directly.
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First, we have to mention databases and database update, [Kan90]. In
database theory, proof-theoretic accounts are well established. In particu-
lar, deductive databases could be seen as an implementation of the proof-
theoretic view of databases. To control the consequences of an update, our
defined notion of use is obviously relevant.

Another area where our notions are useful is object-oriented program-
ming. In its pure form it is based on the idea that an object is a black-box
for the programmer who is using it. That means, changes of the implemen-
tations should not affect the bigger program which is using the object. In
fact, an object should be determined by its specification only. In practice, a
programmer has no real chance to check whether and how the specification
is fulfilled. In particular, he cannot check whether changes in the implemen-
tation of the object will really not affect the bigger program. Again, our
approach can help to control such changes.

As a last, but maybe most important topic we mention proof carrying
code. This very new field arises from problems caused by internet program-
ming. If a browser is allowed to download programs from an other server, it
has to ensure that this program can not do nasty things on the local com-
puter. For instance, the use of memory has to be restricted to a defined area
which the program is not allowed to leave. For example, the so-called byte
code verifier should do this for Java applets. It is well-known that, in gen-
eral, proof search is much more “expensive” than proof checking. Therefore,
the idea is to send the proof of the correctness of a Java program together
with the program through the net. However, the whole proof could be al-
ready too big. So it is a question of balance which parts of the proof should
be packed in the program in order to get an optimal relation between the
size of the transferred code and the time for the local verification. To study
this kind of questions the analysis of used and necessary parts of proofs is
clearly highly relevant.

8 Related work

There exist a lot of related work to our approach, both from the conceptual
as well as from the practical point of view.

The splitting of the axioms describing a program in a fixed part for
the programming language and a so-to-say variable part for a concrete pro-
gram can be model-theoretically handled by use of modal logic. There, the
fixed axioms would be modeled by necessary axioms. But with exception of
database theory, cf. [Lip79, Lip81], we are not aware of a modal approach to
programming languages which uses this framework for software maintenance
or the other possible applications mentioned above.

The view of programs-as-deductive systems introduced by Hallnäs and
Schroeder-Heister [HSH90, SH91], and also adopted by Jäger and Stärk
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[Jäg94, JS98, Stä91, Stä94], for the analysis of logic programming starts
with a proof-theoretic perspective, too. Mainly, it emphasizes the usefulness
and importance of rules in the modeling of extensions of logic programming.

As a somehow complementary approach we can consider the approach
of proofs as programs. Here, we extract programs from proofs of the de-
sired specification. Thus, the verification of an extracted program comes
for free. As an example for an implementation of this approach we refer to
Schwichtenberg’s system Minlog, [Sch92, BBS+98, BSS0x]. There we have
a strong correspondence between the used proof strategies and the result-
ing programs. In particular, a change of the proof can result in a different
program and the extraction procedure gives some kind of control. One key
example for this is the use of an induction on the proof side which results
in a recursion on the algorithmic side.

Within this framework the idea of pruning realizes some aspects of our
aims, [Goa80]. Let us assume we have extracted a program from a given
proof which uses case distinctions. New information could result in a re-
duction of the possible cases. By using this information systematically, one
can prune the distinctions and ending up with a better, i.e. more efficient,
program.

Finally, there is already a discussion of the proof-theoretic notions, in-
troduced here, in a logical and in a linguistic context, [Kah0x, Kah99].
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