LMU

INSTITUT FUR INFORMATIK

Ludwig——

Lehr- und Forschungseinheit fiir Maximilians—
Programmier- und Modellierungssprachen Universitit___
Oettingenstrae 67, D-80538 Miinchen Miinchen

INTERDIP — An Interactive Constraint Based
Nurse Scheduler

Slim Abdennadher, Hans Schlenker

appeared in The First International Conference and Ezhibition on The Practical Applica-
tion of Constraint Technologies and Logic Programming, PACLP99, London, 1999
http://www.pms.informatik.uni-muenchen.de/publikationen

Forschungsbericht/Research Report PMS-FB-1999-2, January 1999

INTERDIP*~ An Interactive Constraint Based
Nurse Scheduler

Slim Abdennadher
Computer Science Institute, University of Munich
Oettingenstrafle 67, 80538 Miinchen, Germany

Slim.Abdennadher@informatik.uni-muenchen.de

Hans Schlenkerf
Technical University of Berlin
Franklinstrafle 28/29, 10587 Berlin, Germany

hans@cs.tu-berlin.de

http://www.pms.informatik.uni-muenchen.de/“interdip

Abstract

In every hospital a duty roster for the nursing staff of each ward
must be created each month. The roster has to take into account several
requirements such as minimal allocation of a station, legal regulations
and wishes of the personnel. This planning is very complex and is
still done manually. INTERDIP is an advanced industrial prototype
that supports semi-automatic creation of such rosters. Using constraint
based programming, INTERDIP imitates certain aspects of manual
planning. With INTERDIP a roster can be created interactively within
some minutes instead of by hand some hours. Additionally, it mostly
produces better results. INTERDIP was developed in collaboration
with Siemens Nixdorf. It was presented at the Systems’98 Computer
exhibition in Munich and several companies have inquired to market
our system.

1 Introduction

Many real-life problems lead to combinatorial search, computationally a very
intensive task. Unfortunately, no general method exists for solving this kind
of problems efficiently. The automatic generation of duty rosters for hospital
wards falls under this class of problems.

*INTERDIP is an acronym for the German “Interaktiver Dienstplaner”.
tThis work was partially sponsored by Siemens Nixdorf Informationssysteme AG

Since the manual solution of the nurse scheduling problem usually re-
quires several hours of work, a lot of research has been done to reduce the
amount of time needed in the roster development. The most popular tech-
nique is based on mathematical programming [War76, MPR76]. The main
disadvantage of this approach is the difficulty of incorporating application-
specific constraints into the problem formulation. Other methods include
goal programming [AR81, MS84] and heuristic models [SWB79, ITH91].

Recently, Constraint Logic Programming [Van91, JM94, FA97, MS98]
(CLP) has become a promising approach for solving scheduling problems.
CLP combines the declarativity of logic programming with the efficiency of
constraint solving. The nurse scheduling problem can be elegantly formalized
as a constraint satisfaction problem and implemented by means of special-
ized constraint solving techniques that are available in CLP languages.

In this paper, the generation of duty rosters for hospitals is tackled us-
ing the CLP framework. The System is called INTERDIP and has been
successfully tested on a real ward at the “Klinikum Innenstadt” hospital
in Munich [AS97]. INTERDIP has been implemented in collaboration with
Siemens-Nixdorf-Informationssysteme AG using IF/Prolog [Sie96b] which
includes a constraint package [Sie96a] based on CHIP [DVS*88]. This pack-
age includes, among others linear equations, constraints over finite domains
and boolean constraints.

The nurse scheduling problem consists in assigning a working shift to
each nurse on each day of a planning period (usually one month), whereby
several requirements must be considered, such as minimal allocation of a
ward, legal regulations and wishes of the personnel. Usually not all spec-
ified requirements can be fulfilled. The nurse scheduling problem can be
modelled as a partial constraint satisfaction problem [FW92]. It requires
the processing of hard and soft constraints to cope with. Hard constraints
are conditions that must be satisfied, soft constraints may be violated, but
should be satisfied as far as possible.

Several approaches have been proposed to deal with soft constraints:
Hierarchical constraint logic programming (HCLP) [BFBW92] supports a
hierarchical organiziaton of constraints, where a constraint on some level
is more important than any set of constraints from lower levels. To avoid
the so called inter-hierarchy comparison in HCLP, the soft constraints are
encoded in a hierarchical constraint satisfaction problem (HCSP) [MT95,
Mey96]. The Conplan/SIEDAplan [Mey97] considers the representation of
nurse scheduling as a HCSP, where legal regulations are hard constraints
and wishes of nurses usually have the lowest priority level. The result is also
not necessarily of a reasonable quality in respect to the nurse’s wishes.

However, in practice nurses’ wishes should be considered in order to
support the working climate. Furthermore, some wishes of nurses are some-
times more important than some legal regulations. To deal with these re-
quirements, INTERDIP provides a solution technique based on a variant

of branch-and-bound search instead of chronological backtracking. This ap-
proach starts with a solution and requires the next solution to be better.
Quality is measured by a suitable cost function. The cost function depends
on the set of satisfied soft constraints.

To improve on the theoretical complexity of the problem, our system is
based on an imitation of the human way of solving the problem: A roster
is generated with INTERDIP through several phases. Additionally, several
days in the roster are assigned simultaneously through user defined patterns.
A pattern describes a preferred sequence of working days.

With INTERDIP, a user who is to some extent familiar with nurse
scheduling can interactively generate a roster within minutes. In practical
use, we expect the system to

e easily and fast generate a correct schedule, i.e. all hard constraints
hold

e be better accepted by the user than fully automated systems since the
user is still involved in the scheduling process

e generate better solutions than a fully automated system and in most
cases even better than hand made plans and therefore

e be acceptable to the staff affected by the schedule, because the solu-
tions respect the wishes of the scheduled persons as well as possible.

The paper is organized as follows. The next section introduces the nurse
scheduling problem. Then we show how the problem can be modelled as
a partial constraint satisfaction problem. In Section 4 and Section 5 we
describe the implementation and the user interface. Finally, we conclude
with an evaluation of our tool and directions for future work.

2 Description of the problem

In a hospital, a new duty roster must be generated for each ward monthly.
A hospital ward is an organizational unit that has to fulfil some concrete
tasks, and has both rooms and personnel, the nurses, at its disposal. Usually,
the wards of a hospital are completely distinct: each has its own rooms
and its own personnel. Therefore all rosters of a hospital can be scheduled
separately. We consider in the following the scheduling problem for one ward.

A roster of one month is an assignment of the personnel of the ward
to the shifts for all the days of the month. A shift is a working unit: in a
common working model, each day has the units morning shift (e.g. 06:00 to
15:00), evening shift (14:00 to 23:00), and night shift (22:00 to 07:00) and
possibly others. To each shift of every day, personnel has to be assigned.

For the generation of a roster, different kinds of constraints must be
taken into account:

o Legal regulations, e.g. the maximum working time of a person per day
or week, or time off in lieu, or maternity leave. In Germany for example
the statutory monthly core working hours for a hospital with a 37.5
hour week is about 160 hours depending on the month. So, with an
average shift length of 8 hours, each nurse has to work on average 20
shifts. Another law says that between two (working-) shifts, each nurse
has to have a break of at least 11 hours (“11 hours rule”). If a nurse
works one day in the night shift, she must therefore not be assigned
the morning or evening shift the next day. Also a morning shift must
not follow an evening shift.

e Organizational rules are those that apply specifically to one particular
hospital, a part of a hospital or even only one ward. They are given by
the respective management. Those are mainly the number and kind
of the shifts and — within statutory limits — the minimum personnel
allocation of each ward. In the following we consider a model with
three shifts: morning, evening and night shift. To morning shift and
evening shift at least three nurses must be assigned, and the night shift
requires at least two nurses.

e Personnel data define the individual frame for each person. These
are mainly the contractually established monthly core working time,
pending vacation and accrued hours of overtime. If, for example, a
nurse has 16 hours overtime, she might be scheduled two shifts less
than average.

e Finally, wishes are requirements given by the personnel. These are
mostly wishes to have some days off, for example at weekends, holidays,
birthdays, or for a vacation period.

Often, there is no duty roster that fulfills all the constraints. Therefore
we distinguish two kinds of constraints. Hard constraints must always be sat-
isfied, soft constraints may be violated. Roughly speaking, legal regulations,
organizational rules and personnel data determine hard constraints, wishes
may be hard or soft constraints. So for example the vacation scheduling
might be done for a longer term (some months) apart from the actual roster
planning. Then a wish for one day of vacation would be a hard constraint,
because it was planned externally. Other wishes are mostly soft constraints.
Often the nurses have the opportunity to classify their wishes into some
“priority levels”. If possible, the wishes in one of those levels will then be
regarded as hard constraints.

A roster is correct, iff all hard constraints hold. The quality of a roster
results from the number of the fulfilled soft constraints and their priorities.

3 Modeling the problem as PCSP

A constraint satisfaction problem (CSP) is a pair (V,C), where V is a finite
set of variables, each associated with a finite domain, and C is a finite set of
constraints. A solution of a CSP maps each variable to a value of its domain
such that all the constraints are satisfied. A partial constraint satisfaction
problem (PCSP) [FW92] is a triple (V, C,w), where (V,C) is a CSP and w
maps constraints to weights. A constraint’s weight expresses the importance
of its fulfillment, allowing to distinguish hard constraints, which must not
be violated, from soft constraints, which should not be violated, but may be
violated in case this is unavoidable. Hard constraints have an infinite weight.
The finite weights of soft constraints allow for the specification of priorities
among constraints. A solution of a PCSP maps each variable to a value of
its domain such that all hard constraints are satisfied and the total weight
of the violated soft constraints is minimal.

In the representation of nurse scheduling as a PCSP, there is a constraint
variable for each nurse on each day. The domains of the variables consist of
possible shifts (also comprising vacations, recuperation of a worked pub-
lic holiday, special leaves, maternity protection, unpaid leave etc.), so they
usually consist of 10 values. [WH95, HW96] proposed a reduction of vari-
able domains, based on elimination of interchangeable values introduced by
Freuder [Fre91]. The values of the above mentioned free shifts, e.g. vaca-
tions, can be reduced to only one value and each variable takes its values
now in {0, 1,2,3}. For a nurse ¢ and a day j a variable V;; may have one of
the following values:

e Vij = 0: The nurse i is off-duty the day j.
e V;j = 1: The nurse 7 is assigned to the “morning” shift on the day j.
e Vij = 2: The nurse 7 is assigned to the “evening” shift on the day j.

e V;; = 3: The nurse i is assigned to the “night” shift on the day j.

Reducing the variable domains from 10 values to 4 considerably improves
the efficiency of the solution research. Figure 1 shows a complete schedule
for 10 nurses and 14 days. Each row comprises the shifts of a certain nurse.
The columns contain the shifts performed on a certain day. So, each square
of the chart specifies for each nurse the working days and shifts, and days
off. E.g. on the 4th day the second nurse Hilde is scheduled in shift 1, i.e.
morning shift.

Now we describe how to express the most important requirements of our
application in terms of IF /Prolog-Constraints [Sie96b]. In the following, we
use a Prolog-like notation with meta-variables. We denote the total number
of nurses to be scheduled by s, the total number of days by ¢ and a variable

File ‘'wishes FRanges Patterns Options Debugger Phases
o8 9 10 11 12 313 14
z

up]

-
KarinG |_|_
Hilde [[1

-
.

CEEEEEEERE

=

2

o
3
o)
Norbert'?l? |1_
Eddas |1 [2 EH
Edda [3 [[=4

tma [o oo s o e e

Legend:; *° free (shifty 1" morning shift, 2" evening shift '3’ night
shift

.
BEEEREEEE

EEEREEREEE
EEEEEEECTE
EEEEEENEE
EEEEEEEEE
EEEEECERE
EEEEEEEEE
EEEEEREE

EEEEEEEE
CEEEEEEEE

Figure 1: A nurse schedule for 10 nurses over a period of 14 days

by Vij, where i denotes the number of the nurse or the row in the roster,
respectively, and j denotes the number of the day, i.e. the column in the ros-
ter. With this notation, we can write down all the variables of this modeling
in a list: [V11,V12,...,Vst].

One requirement for a correct roster is the minimum personal allocation,
i.e. the minimal number of nurses, the ward must be allocated each shift.
Actually, the allocation is limited downward and upward. Let Minl be the
lower and Max1 be the upper allocation limit for the morning shift and Min2,
Max2, Min3 and Max3 the lower and upper limits for the evening and night
shifts, respectively. Therefore a correct roster must not have less than Min1
and more than Max1 times the ’1’ in each column and not less than Min2
and not more than Max2 the ’2’ and so on. So we have to state for each j
(1<j<t)andeach k (k € {1,2,3}) the following constraint:

cardinality(Mink,Maxk,[V1j = k,V25 = k,...,Vsj = k]).

The constraint cardinality(LowerLimit ,UpperLimit,ConditionList)
is satisfied if at least LowerLimit and at most UpperLimit conditions in the
ConditionList are satisfied.

Another requirement a schedule has to fulfil is the compliance of the
monthly core working hours of each nurse. This means that there is a lower
bound and an upper bound of shifts, each nurse is to be assigned in the
schedule period. This is the number of all the morning, evening and night

shifts. This can be expressed simpler by the number of free shifts. Let for
each nurse ¢ (1 < 7 < s) the lower bound for the working shifts be given
by Min: and the upper bound by Maxi. Then we can formulate the working
hours requirement using the cardinality constraint:

cardinality(f{-Maxs,t-Minz, [Vil = O,V:2 = 0,...,Vit = 0]).

The “11 hours rule” implies that a nurse must not work a morning shift
(the day) after an evening shift and may work (the day) after a night shift
only a night shift. We can express the “11 hours rule” by the following
expression: If Vij is assigned a specific value, the assignment of Vi(j+1) must
fulfill a certain condition. This can be expressed directly by the domain if
constraint. We state for each 7 (1 <1i < s) and for each j (1 <j <t):

domain if (Vij = 2, Vi(j +1) \= 1) and
domain if(Vij = 3, Vi(j +1) in [0,3]).

The constraint domain if (Condition, ThenGoal) is used to call a goal
conditionally. If the arithmetic constraint Condition is satisfied, ThenGoal
is called. If the arithmetic constraint is not satisfiable, true is called. The
execution of the domain_if constraint is delayed as long as the satisfiability
of Condition has not been determined.

Free shifts, provided they can be considered hard wishes, lead to imme-
diate variable assignments. A wish (e.g. vacation) of nurse 7 at day j can
then be stated as: Vij = 0.

Soft wishes, like all other soft conditions, can not be stated directly as
(IF /Prolog-)constraints, since our constraint solver can only handle hard
constraints. We only can use them for optimizing correct rosters. This will
be explained in Section 4.4.

4 Planning in INTERDIP

The modeling just described, while being simple and straightforward, is
unfortunately very costly: The search space is huge, i.e. 45°° for 20 nurses
and a period of one month. Therefore we developed a method to prune the
search tree which was inspired by the usual manual planning.

4.1 Manual planning

Because of the huge search space a roster is usually generated by hand in two
phases. In the first phase we have all liberties for assigning the cells of the
roster. Therefore here we do the most complicated assignment (which is tied
to most of the conditions): the allocation of the free days or shifts. Those
are bound to a lot of constraints: they determine how many shifts a nurse
has to work during the scheduled period, how many nurses over all shifts

the ward is assigned each day, and not least most of the wishes are to be
considered here: the wishes for free shifts (e.g. vacations). Closely connected
with the free shifts are the night shifts: the “11 hour rule” enforces for the
assignment of shifts to a nurse, that after a night shift there may follow only
a night shift or a free shift (free day).

Therefore, when manually scheduling, the free and the night shifts are
allocated in the first phase. In the second phase, the morning and the evening
shifts are distributed among the not yet allocated cells of the roster.

The obvious advantage of the scheduling in two phases over the schedul-
ing in one phase is the reduction of complexity: in each phase there have to
be considered fewer constraints and, above all, fewer assignments!.

4.2 Phasewise plan generation

In 1993, [vdB93] presented a partial automatic solution to the nurse schedul-
ing problem that used two very different phases. It flexibly generated good
rosters but did not handle night shifts. INTERDIP uses more than two
phases which are performed in the same manner by one constraint solver.

We wanted to reduce the search space even further than [vdB93] did.
The idea is to furthermore decompose the problem. We use three phases
instead of two:

1st Phase Distribution of the free shifts.
2nd Phase Distribution of the night shifts.

3rd Phase Distribution of the morning and the evening shifts.

With this modeling, in each phase for every cell of the roster, only the
minimal decision between two possibilities has to be made. This reduces the
search space. We will see how we obtain a complete roster after the three
phases.

In each phase, every variable is assigned a value out of the boolean
domain {0,1}. Depending on the phase, the values 0 and 1 have different
meanings. If a variable in the first phase is assigned the value one, this
means that the roster gets a free shift in the appropriate cell. The cells whose
variables are bound to 0 remain undecided. The second phase only treats
the undecided cells: if a variable gets the value 1, the cell is assigned a night
shift. The rest remains undecided. In the third phase each still not decided
cell is filled with either morning or evening shift, depending on whether the
variable was assigned a 1 or a 0, respectively (see Figure 2, the meaning of

!The assignment of the first phase is normally not changed within the second unless it
is then impossible to get a solution and a change in the free and night shifts will probably
enable one. The extent of those changes can be neglected: we never observed more than
10 changes.

the bold numbers is just as in Figure 1.). A complete roster results from all
three phases.

0 3 1
= = 2
| Phase 1 | Phase 2 | Phase 3 |

Figure 2: Allocation of the cells in three phases.

4.3 Assignment patterns

Because of the incomplete constraint propagation methods used for schedul-
ing problems, the application programmer often has to explicitly use a la-
beling phase in which a backtracking search blindly tries different values for
the variables. Since labeling is expensive, the programmer needs to employ
techniques for reducing the search space. There is a variety of techniques to
do this. For our application we add domain information about presumably
good solutions by introducing patterns. A pattern describes a preferred se-
quence of working days. Coherent cells of the roster are allocated along user
defined patterns.

As shown above, the variables are declared in each phase to range over
the values 0 and 1 and the appropriate shifts are registered into the ros-
ter. Patterns are then meaningful combinations of roster entries, whereby a
combination stands for successive days. A large number of these patterns is
known. For example, we consider meaningful the combination of five days
work and two days free. The appropriate pattern for the first phase, in which
the working days are determined, is then: (7, 7, ?, 7, 7, 0, 0). If we assume
that it is better to work on three successive days in the same shift than
in different ones, we formulate for the second phase and thus for the night
shifts: (3,3,3). Each phase has its own set of patterns. The patterns of a
phase have an order in which they are selected: first, the ones which result
in a good solution, since the nurses are accustomed to this pattern, and at
the end trivial patterns which are necessary to generate solutions, if they ex-
ist. For filling the roster, the given patterns are translated into appropriate
variable assignments which are then tried in each row from left to right.

The patterns can be considered as requirements of minor priority (soft
constraints) as well as probable parts of solutions. Schedules that comply
with the given patterns are explored first. Applying this specialized labeling
method reorganizes the search space.

Additionally, each pattern is assigned a cost value so that for example
a nurse whose wishes could not be fully fulfilled, more likely gets “better”
work patterns assigned.

4.4 Optimal rosters

A roster that satisfies all hard constraints is considered feasible but this does
not necessarily mean that it is sufficiently good to be used by a hospital ward.

The concept of an optimal roster is hard to define. Generally, roster
quality is a subjective matter and its definition changes from problem to
problem. We apply the usual measure which is common to all applications
in the field of scheduling. It is given in terms of the number and the priority
of soft constraints that are violated.

A popular approach consists in using a branch and bound search instead
of chronological backtracking. Branch and bound starts out from a solution
and requires the next solution to be better. Quality is measured by a suit-
able cost function. The cost function depends on the set of satisfied soft
constraints. With this approach, however, soft constraints are only part of
the cost function but play no role in selecting variables and values. In our
multiphase method, branch and bound search is performed three times to
improve the roster generated so far.

Costs arise separately for each nurse and the algorithm tries to minimize
the maximum of these?. So, INTERDIP tries to achieve that no nurse gets
a much worse allocation (e.g. no wishes satisfied) than the others.

5 Using the system interactively

For a nurse scheduling system to be complete, a flexible user interface should
be provided, so that the specific requirements of the problem can be stated
easily. INTERDIP provides such an interface.

The INTERDIP user interface has been developed using the Tcl/Tk
extension of IF /Prolog. Figure 1 shows a snapshot of the top-level graphical
user interface to our nurse scheduling program with a generated roster.

The interface allows the user to define the system parameters as pre-
ferred. All parameters like minimal and maximal allocation of the ward for
each phase, wishes or patterns can be given graphically or in a spreadsheet.

Figure 3 exemplary shows the allocation boundaries for the nurses for
shift one: the number of shifts each of them is to be assigned over all. Every
nurse except two may work nine or ten shifts. Ina, a part-time-worker, may
be assigned four shifts at least and six shifts at most and Norbert may only
be assigned seven or eight shifts because he has work overtime.

2This means, we have a separate cost function for each of the nurses and the maximum
value of all the functions is minimized.

10

set cloze I

Karing
Hilde
Cerda
Cerd
Hubert
Anna
Morbert
Eddas
Eddab

Ina

Range per nurse in Phase 1: number of working shifts

Figure 3: Allocation boundaries for the nurses in the first phase.

The wishes are given in three categories: imperative, important and less
important wishes. We call them red, black and white wishes, respectively?.
The white wishes are to some extent standard wishes, like not to work on
weekends. Red wishes (like vacation) are later treated as hard constraints
and all the others as soft constraints. A single wish always relates to exactly
one nurse and one day.

Usually the generation of a roster runs as follows. After the user has
specified all the conditions he will trigger the phases. A phase starts with
generating the constraints and testing their consistency. Then, according to
the above method, an optimal solution is computed. After a phase is finished,
the next one is started initialized with the best result of the preceding phase,
and so on. This is the automatic generation.

It may happen that there exists not even one roster that complies with
all the given hard constraints. Then the problem is called over-constrained.
INTERDIP may detect this while generating the IF /Prolog constraints and
then gives the user hints which of the conditions led to the inconsistency.
However, there are kinds of contradictions that are not automatically de-
tected. Therefore we built a debugger into INTERDIP.

Being an interactive tool, INTERDIP lets the user take part in the gener-
ation in different ways. Firstly the user usually has some freedom in specify-
ing the problem conditions. He can directly influence the planning by giving
some red wishes which directly lead to variable bindings. But the user can

3This naming goes back to how the wishes were actually formulated in the hospital
where we tested INTERDIP: They were filled into a plan using red and black pencils.

11

also interfere with a concrete process of allocation: He can use the debugger
to break the computation manually or to set breakpoints. At the breakpoint
(a cell of the roster), he is given all the possible patterns out of which he can
choose one. The computation then continues with the selected allocation. In
the single-step-mode the computation is stopped after each single allocation.
Additionally the user can undo allocations already made.

With the debugger, the user can manually allocate parts of the roster
in order to improve automatically presented solutions on the one hand and,
in case the generator did not find a solution at all, enable one on the other
hand.

In addition, the user can manually alter a completely generated roster
and let it check by INTERDIP. The system then tries to state all the con-
straints for the given variable assignments, and if one fails, it gives the user
hints about the contradictions.

6 Conclusion and Further Works

In this paper, the nurse scheduling problem is discussed and a specific sys-
tem, INTERDIP, is presented, that assists a human planner in scheduling
the nurse working shifts for a hospital ward.

It was possible to build this planning system for nurse scheduling within
a few man months using a given commercial constraint solver, IF/Prolog
from Siemens Nixdorf. The CLP code is just about 4000 lines with more
than half of it for user interface. INTERDIP illustrates the important po-
tentials of constraint logic programming for the implementation of real-life
applications.

To prune the search space of our problem, we used the following tech-
niques:

e A nurse schedule is generated in three phases.

o We reduced variable domains based on elimination of interchangeable
values.

e We added additional domain information about good solutions by in-
troducing assignment patterns. A pattern describes the preferred se-
quence of working days for a certain nurse.

INTERDIP was presented at the Systems’98 Computer exhibition in
Munich and several companies are interested to market it. INTERDIP is
currently tested at the “Klinikum Innenstadt” hospital in Munich. Typ-
ically, for 20 nurses and a period of one month, INTERDIP generates a
satisfying (not optimal) schedule within a few minutes. The schedules gen-
erated by INTERDIP are comparable to those manually generated by a well

12

experienced head nurse, sometimes even better than those. Of course this
can not be guaranteed for every possible problem instance since, in gen-
eral, the scheduling problem is NP-complete. Our expectations are in so far
fulfilled that

e correct and satisfying rosters can be generated within short time and

e the potential users of our system are satisfied with the results

As it happens with every real-world system, there is much space for im-
provements in INTERDIP. One important task of the CLP approach to solv-
ing constraints over finite domains is the ordering in which the variables are
selected and the ordering in which the values are assigned to each variable.
Different orderings significantly affect the efficiency of the search strate-
gies. We are currently developing intelligent labeling strategies as quoted by
Tsang [Tsa93].

Furthermore, we plan to add additional problem-specific constraints, e.g.
every Monday one of the nurses Carla, Dora or Eva must be assigned to a
day shift. This can easily be taken into account due to the ease of modeling
in constraint logic programming.

Finally, a more complex adaptation that could be considered would be
the construction of a nurse schedule that satisfies some constraints and op-
timization criteria, but does not start from scratch. If some partial nurse
schedule already exists, the system should try to satisfy any new require-
ments effecting as few changes to the existing schedule as possible. This is
crucial, in case some nurses fall ill.

Acknowledgments

We would like to thank Felix Cornelius, Norbert Eisinger and Thom
Fruhwirth for useful comments on a preliminary version of this paper.

References

[AR81] J. L. Arthur and A. Ravindran. A multiple objective nurse
scheduling model. In AITE Transactions, volume 13, 1981.

[AS97] S. Abdennadher and H. Schlenker. Interdip — Ein Interak-
tiver Constraint-basierter Dienstplaner fiir Krankenstationen. In
F. Bry, B. Freitag, and D. Seipel, editors, 12th Workshop on
Logic Programming WLP’97, September 1997.

[BFBW92] A. Borning, B. N. Freeman-Benson, and M. Wilson. Constraint
hierarchies. Lisp and Symbolic Computation, 5(3):223-270, 1992.

13

[DVS*88] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf,

[FA97]

[Fre91]

[FW92]

[HW96]

[THO1]

[TMO4]

[Mey96]

[Mey97]

[MPR76]

[MS84]

and F. Berthier. The Constraint Logic Programming Language
CHIP. Technical Report TR-LP-37, ECRC, Munich, Germany,
May 1988.

T. Frihwirth and S. Abdennadher. Constraint- Programmierung:
Grundlagen und Anwendungen. Springer-Verlag, September
1997.

E. C. Freuder. Eliminating interchangeable values in constraint
satisfaction problems. In AAAI-91 — Proceedings of the 9th na-
tional conference on artificial intelligence, pages 227-233, 1991.

E. C. Freuder and R. J. Wallace. Partial constraint satisfaction.
Artificial Intelligence, 58(1-3):21-70, 1992.

K. Heus and G. Weil. Constraint programming a nurse schedul-
ing application. In PACT 96 — Proceedings of the Second Inter-
national Conference on the Practical Application of Constraint
Technology, pages 115-127. The Practical Application Company,
1996.

M. W. Isken and W. M. Hancock. A heuristic approach to nurse
scheduling in hospital units with non-stationary, urgent demand,
and a fixed staff size. Journal of the Society for Health Systems,
2(2), 1991.

J. Jaffar and M. J. Maher. Constraint logic programming: A
survey. Journal of Logic Programming, 20:503-581, 1994.

H. Meyer auf’m Hofe. Representation of requirements through
preference orderings of soft constraints. Technical report, DFKI
Kaiserslautern, Feb. 1996.

H. Meyer auf’'m Hofe. ConPlan/SIEDAplan: Personnel assign-
ment as a problem of hierarchical constraint satisfaction. In
PACTI97 — Proceedings of the Third International Conference
on the Practical Application of Constraint Technology, 1997.

H. E. Miller, W. P. Pierskalla, and G. J. Rath. Nurse schedul-
ing using mathematical programming. In Operations Research,
volume 24, 1976.

A. A. Musa and U. Saxena. Scheduling nurses using goal-
programming techniques. In AITE Transactions, volume 16,
1984.

14

[MS98]

[MT95]

[Sie96a]

[Sie96b)

[SWBT79]

[Tsa93]

[Van91]

[vdB93]

[War76]

[WH95]

K. Marriott and P. Stuckey. Programming with Constraints: An
Introduction. The MIT Press, 1998.

H. Meyer auf’m Hofe and B. Tschaitschian. PCSPs with hierar-
chical constraint orderings in real world scheduling applications.
In Notes on the CP’95 Workshop on QOuer-Constrained Systems,
pages 69-76, Cassis, France, 1995.

Siemens Nixdorf Informationssysteme AG. IF/Prolog Constraint
Problem Solver, 1996.

Siemens Nixdorf Informationssysteme AG. IF/Prolog Users
Guide, 1996.

L. D. Smith, A. Wiggins, and D. Bird. Post-implementation
experience with computer-assisted nurse scheduling in a large

hospital. In Information Systems and Operational Research, vol-
ume 17, 1979.

E. Tsang. Foundations of Constraint Satisfaction. Academic
Press, 1993.

P. Van Hentenryck. Constraint logic programming. The Knowl-
edge Engineering Review, 6:151-194, 1991.

B. van den Bosch. Implementation of a clp library and an ap-
plication in nurse scheduling. Master’s thesis, Katholieke Uni-
versiteit Leuven, Belgium, 1993.

D. M. Warner. Scheduling nursing personnel according to nurs-
ing preference: A mathematical programming approach. In Op-
erations Research, volume 24, 1976.

G. Weil and K. Heus. Eliminating interchangeable values in the

nurse scheduling problem formulated as a constraint satisfaction
problem. In CONSTRAINT’95, 1995.

15

