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Abstract. Constraint Handling Rules (CHR) is a high-level language
for writing constraint solvers either from scratch or by modifying exist-
ing solvers. An important property of any constraint solver is confluence:
The result of a computation should be independent from the order in
which constraints arrive and in which rules are applied. In previous work
[Abd97], a sufficient and necessary condition for the confluence of ter-
minating CHR programs was given by adapting and extending results
about conditional term rewriting systems. In this paper we investigate
so-called completion methods that make a non-confluent CHR program
confluent by adding new rules. As it turns out, completion can also ex-
hibit inconsistency of a CHR, program. Moreover, as shown in this paper,
completion can be used to define new constraints in terms of already ex-
isting constraints and to derive constraint solvers for them.

1 Introduction

Constraint Handling Rules (CHR) is our proposal to allow more flexibility and
application-oriented customization of constraint systems. CHR is a declarative
language extension especially designed for writing user-defined constraints. CHR
is essentially a committed-choice language consisting of multi-headed guarded
rules that rewrite constraints into simpler ones until they are solved. CHR de-
fines both simplification of and propagation over user-defined constraints. Sim-
plification replaces constraints by simpler constraints while preserving logical
equivalence. Propagation adds new constraints, which are logically redundant
but may cause further simplification.

As a special-purpose language for constraints, CHR aims to fulfill the promise
of user-defined constraints as described in [ACM]: “For the theoretician meta-
theorems can be proved and analysis techniques invented once and for all; for the
implementor different constructs (backward and forward chaining, suspension,
compiler optimization, debugging) can be implemented once and for all; for
the user only one set of ideas need to be understood, though with rich (albeit
disciplined) variations (constraint systems).”

We have already shown in previous work [Abd97] that analysis techniques are
available for an important property of any constraint solver, namely confluence:
The result of a computation should be independent from the order in which
constraints arrive and in which rules are applied. For confluence of terminating



CHR programs we were able to give a sufficient and necessary condition by
adapting and extending work done in conditional term rewriting systems.

In this paper we investigate so-called completion methods as known from term
rewriting systems [KB70]. Completion is the process of adding rules to a non-
confluent set of rules until it becomes confluent. Once again, we have to adapt
and extend the results from term rewriting systems to be applicable for CHR.
As it turns out, our completion method for CHR can also exhibit inconsistency
of the logical meaning of a CHR program.

A practical application of our completion method lies in software development.
Completion can be used to define new constraints in terms of already existing
ones and to derive constraint solvers for them. Furthermore, completion can be
used as a method to provide generic answers given as a set of rules. In this way,
completion helps the CHR programmer to extend, modify and specialize existing
solvers instead of having to write them from scratch.

This paper is organized as follows. In Section 2 we define the CHR language and
summarize previous confluence results. Section 3 presents our completion method
for CHR, including a fair algorithm, a correctness theorem and a theorem relating
completion and consistency. In Section 4 we give more examples for the use of
our completion method. Finally, we conclude with a summary and directions for
future work.

2 Preliminaries

In this section we give an overview of syntax and semantics as well as confluence
results for constraint handling rules. More detailed presentations can be found in
[Abd97,Abd98]. We assume some familiarity with (concurrent) constraint (logic)
programming [FHK*92,Sar93,JM94,MS98].

2.1 Syntax of CHR

A constraint is a first order atom. We use two disjoint kinds of predicate symbols
for two different classes of constraints: One kind for built-in constraints and one
kind for user-defined constraints. Built-in constraints are those handled by a
predefined constraint solver that already exists as a certified black-box solver.
User-defined constraints are those defined by a CHR program.

A CHR program is a finite set of rules. There are two basic kinds of rules.

A simplification rule is of the form

Rulename Q@ H < C | B.
A propagation rule is of the form
Rulename @ H = C | B,

where Rulename is a unique identifier of a rule, the head H is a non-empty
conjunction of user-defined constraints, the guard C is a conjunction of built-
in constraints and the body B is a conjunction of built-in and user-defined



constraints. Conjunctions of constraints as in the body are called goals. A guard
“true” is usually omitted together with the vertical bar.

2.2 Declarative Semantics of CHR

The logical meaning of a simplification rule is a logical equivalence provided the
guard holds

Vz (C — (H + 3g B)).

The logical meaning of a propagation rule is an implication provided the guard
holds

Vi (C' — (H — 3§ B)),

where Z is the list of variables occuring in H or in C' and g are the variables
occuring in B only.

The logical meaning P of a CHR program P is the conjunction of the logical
meanings of its rules united with a (consistent) constraint theory CT that defines
the built-in constraints. We require C'T to define the predicate = as syntactic
equality.

2.3 Operational Semantics of CHR

The operational semantics of CHR is given by a transition system.
A state is a triple
<G, CU, Cg >,

where G is a conjunction of user-defined and built-in constraints called goal store.
Cy is a conjunction of user-defined constraints. Cp is a conjunction of built-in
constraints. Cy and Cp are called user-defined and built-in (constraint) stores,
respectively. An empty goal or user-defined store is represented by T. The built-
in store cannot be empty. In its simplest form it is the built-in constraint true
or false.

Given a CHR program P we define the transition relation — by introducing four
kinds of computation steps (Figure 1). —* denotes the reflexive and transitive
closure of —. In the figure, all meta-variables stand for conjunctions of con-
straints. An equation c¢(t1,...,t,)=d(s1,...,8,) of two constraints stands for
t1=s1 A...At,=s, if ¢ and d are the same predicate symbol and for false other-
wise. An equation (py A...Ap,)=(q1 A-..Aqn) stands for py=q; A ... A pr=gn
if n = m and for false otherwise. Note that conjuncts can be permuted since
conjunction is associative and commutative.!

In the Solve computation step, the built-in solver normalizes the constraint
store C'g with a new constraint C. To normalize the constraint store means to

! We will, however, for technical reasons, consider conjunctions not to be idempotent, if
required one should define idempotence by a simplification rule of the form CAC < C
for each constraint C.



Solve
C' is a built-in constraint
CTECsANC + Cp
<CAG,Cy,Cs>r <G,Cy,Cr>

Introduce
H is a user-defined constraint

<HAG,Cy,Cg>w— <G,HACy,Cp>

Simplify
(RQ H < C | B) is a fresh variant of a rule in P with the variables Z
CT = Cp — 3z(H=H' AC)
<G,H' ANCy,Cs>+ <GAB,Cy,C ANH=H' ACp>

Propagate
(RQ H = C | B) is a fresh variant of a rule in P with the variables T
CT =Cp — 3z(H=H' AC)
<G,H' ANCy,Ce>— <GAB,H ANCy,CANH=H' ACp>

Fig. 1. Computation Steps

produce a new constraint store Cy that is (according to the constraint theory
CT) logically equivalent to the conjunction of the new constraint C' and the old
constraint store Cpg.

Introduce transports a user-defined constraint H from the goal store into the
user-defined constraint store. There it can be handled with other user-defined
constraints by applying rules.

To Simplify user-defined constraints H' means to remove them from the user-
defined store and to add the body B of a fresh variant of a simplification rule
(R@ H & C'| B) to the goal store and the equation H=H' and the guard C to
the built-in store, provided H' matches the head H and the resulting guard C is
implied by the built-in constraint store Cp. Note that “matching” means that
it is only allowed to instantiate variables of H but not variables of H’. In the
logical notation this is achieved by existentially quantifying only over the fresh
variables Z of the rule to be applied in the condition.

The Propagate transition is similar to the Simplify transition, but retains
the user-defined constraints H' in the user-defined store. Trivial nontermination
caused by applying the same propagation rule again and again is avoided by ap-
plying a propagation rule at most once to the same constraints. A more complex
operational semantics that addresses this issue can be found in [Abd97].

An initial state for a goal G is of the form <G, T,true>. A final state is ei-
ther of the form <G,Cy, false> (such a state is called failed) or of the form
<T,Cy,Cp> with no computation step possible anymore and Cg not false
(such a state is called successful).



A computation of a goal G is a sequence Sp, S1,... of states with S; — Si41
beginning with the initial state for G and ending in a final state or diverging.

Ezample 1. We define a user-defined constraint for a (partial) order < that can
handle variable arguments.

rl1 @ X <X & true.
r2eX<YAY<IXe& X=Y.
r3eX<YAYLZ=ZX<KZ.
r4 X < YAXLZY&SXLY.

The CHR program implements reflexivity (r1), antisymmetry (r2), transitivity
(r3) and idempotence (r4) in a straightforward way. The reflexivity rule r1
states that X<X is logically true. The antisymmetry rule r2 means that if we find
X<Y as well as Y<X in the current store, we can replace them by the logically
equivalent X=Y. The transitivity rule r3 propagates constraints. It states that
the conjunction of X<Y and Y<Z implies X<Z. Operationally, we add the logical
consequence X<Z as a redundant constraint. The idempotence rule r4 absorbs
multiple occurrences of the same constraint.
Redundancy from propagation rules is useful, as the following computation shows
(constraints which are considered in the current computation step are under-
lined):

<A<BACLAABKLC,T,true>
H;ntroduce <T7 ﬁ A u AB S C7 true>
HPropagate <C < B,A <BAC<AAB<<C, true>
—Introduce <1, A<BAC<AAB<SCAC<B, true>
—Simplity <B=C,A<BAC<A,true>
—Solve <T,A<BACZLAB=C>
—Simpliy <A=B,T,B=C>
—>Solve <T,T,A:B/\B= Cc>

2.4 Confluence

The confluence property of a program guarantees that any computation starting
from an arbitrary initial state, i.e. any possible order of rule applications, results
in the same final state. Due to space limitations, we can just give an overview on
confluence where some definitions are just informal. Detailed confluence results
for CHR can be found in [Abd97,Abd98,AFM96]. The papers adopt and extend
the terminology and techniques of conditional term rewriting systems [DOS88]
about confluence. The extensions enable handling of global knowledge (the built-
in constraint store), local variables and propagation rules.

We require that states are normalized so that they can be compared syntactically
in a meaningful way. Basically, we require that the built-in constraints are in a
(unique) normal form, where all syntactical equalities are made explicit and are
propagated to all components of the state. The normalization also has to make
all failed states syntactically identical.



Definition 1. A CHR program is called confluent if for all states 5,571, Sa:
If S —* S and S —* S then S; and S, are joinable. Two states S; and S
are called joinable if there exists a state T such that S; —* T and Sy —* T.

To analyze confluence of a given CHR program we cannot check joinability
starting from any given ancestor state .S, because in general there are infinitely
many such states. However one can construct a finite number of “minimal”
states where more than one rule is applicable (and thus more than one transition
possible) based on the following observations: First, adding constraints to the
components of the state cannot inhibit the application of a rule as long as the
built-in constraint store remains consistent (monotonicity property). Second,
joinability can only be destroyed if one rule inhibits the application of another
rule. Only the removal of constraints can affect the applicability of another rule,
in case the removed constraint is needed by the other rule.

By monotonicity, we can restrict ourselves to ancestor states that consist of the
head and guards of two rules. To possibly destroy joinability, at least one rule
must be a simplification rule and the two rules must overlap, i.e. have at least
one head atom in common in the ancestor state. This is achieved by equating
head atoms in the state.

Definition 2. Given a simplification rule R; and an arbitrary (not necessarily
different) rule R», whose variables have been renamed apart. Let G; denote the
guard (i = 1,2). Let Hf and H; be a partition of the head of the rule R; into
two conjunctions, where Hf is nonempty. Then a critical ancestor state S of Ry
and Ry is

<T,H{ANHy NHy,(H{ = H)) NGy ANG2>,

provided (Hf = HS) A G1 A G5 is consistent in CT.

The application of R; and Ra, respectively, to S leads to two states that form
the so-called critical pair.

Definition 3. Let S be a critical ancestor state of Ry and Ry. If S — S; using
rule Ry and S — Sy using rule R, then the tuple (S1,S2) is the critical pair of
R; and R,. A critical pair (S, S2) is joinable, if S1 and S, are joinable.

Ezample 2. Consider the program for < of Example 1. The following critical
pair stems from the critical ancestor state? <T,X < YAY < XAY < Z, true> of
r2 and r3:

(S1,852) == (<X=Y,Y< Z,true>, <X < Z,X<YAY<ZAY <X, true>)

is joinable. A computation beginning with S; proceeds as follows:
<X=Y,Y<LZ, true>

—Solve <1, X< Z,X=Y>

A computation beginning with S results in the same final state:

2 With variables from different rules already identified to have an overlap; for
readability.



<X<ZX<YAY<ZAY<X true>
> Introduce <T7X S Z N ﬁ ANY S ZA ﬁ7 true>
HSimplify <H7 X S ZANY S Z,true>
—*Solve <T7u A uax =Y>
HSimplify <T7X S Z,X=Y>

Definition 4. A CHR program is called terminating, if there are no infinite
computations.

For most existing CHR programs it is straightforward to prove termination using
simple well-founded orderings. Otherwise it is impossible without relying on
implementational details [Frii98].

The following theorem from [Abd97] gives a decidable, sufficient and necessary
criterion for confluence of a terminating program:

Theorem 1. A terminating CHR program is confluent iff all its critical pairs
are joinable.

3 Completion

The idea of completion as developed for term rewriting systems (TRS) is to de-
rive a rule from a non-joinable critical pair that would allow a transition from one
of the critical states into the other one, thus re-introducing confluence [KB70].
In analogy to completion algorithms for TRS [BD86], our algorithm for CHR
maintains a set C' of critical pairs and a set P of rules. These sets are manip-
ulated by four inference rules (Figure 2). Terminology is taken from TRS. We
write (C, P) — (C', P') to indicate that the pair (C', P') can be obtained from
(C, P) by an application of an inference rule.

The rule CP-Deduction permits to add critical pairs to C. CP-Orientation re-
moves a critical pair from C' and adds new rules to P, provided the critical
pair can be oriented with respect to the termination ordering >>. In contrast to
completion methods for TRS, we need - as examplified below - more than one
rule to make a critical pair joinable. With the inference rules CP-Deletion and
CP-Simplification, C can be simplified. The rule CP-Deletion removes a joinable
critical pair. The rule CP-Simplification replaces state in a critical pair by its
successor state.

Different versions of completion differ in which critical pair they “orient” first
and in how they keep track of critical pairs that still need to be processed. A
version of completion is fair if it does not avoid processing any critical pair
infinitely often. One simple fair version of completion is to use the following
strategy:

1. Set i := 0 and begin with the set of the rules Py := P and their non-joinable
critical pairs Cjp.
2. If C; = 0, stop successfully with P! = P;.



CP-Deduction:
(C,P)
(S1,S2) is a critical pair of P
(CU{(51,82)}, P)

CP-Orientation:
(CU{(51,52)}, P)
R = orient (S1, S2)
(C,PUR)

CP-Deletion:
(CU{(S1,52)},P)
S1 and S» are joinable
(C,P)

CP-Simplification:
(CU{(51,52)}, P)
S1— S’l
(CUA(SE, 5201 P)

(CU{(51,52)}, P)
So — S’z
(CU{(S1,8)}P)

Fig. 2. Inference rules of completion

3. Let Ci be CU{(Sla SZ)} Then (CU{(Sla SQ)}af)Z) '_>*C’P75impliﬁcation (CU
{(T1,T2)}, P;), such that Ty and T are final states. If R = orients (T1,T»),
then P;,; := P; U R. Otherwise abort unsuccessfully.

4. Form all critical pairs between a rule of R and all rules of P;;; by the
inference rule CP-Deduction. To produce C;;1, add these critical pairs to
C; and then remove all (in P;11) joinable critical pairs by the inference rule
CP-Deletion.

5. Set ¢ : =i+ 1 and go to 2.

With this strategy, we need to define orients, only for final states. For the case
Cy1 # T and Cyy > Cys (the case Cya # T and Cys > Cyy is analogous) we
obtain

om'ent>>(<"|', Cy1,Cpr1>,<T,Cya, CBQ>) =

{Cu1 < Cp1 | Cu2 ACh2, Cy2 = Cg2 | Cp1} if Cya # T
{CU1<:>CB1 |CB2} if Cya = T and CT'=031H032

Note that propagation rules whose bodies consist only of true can be eliminated.

Example 3. Let P be a CHR program that represents a fragment of the Boolean
constraint solver [Frii95] defining the logical connectives and and imp. The con-
straint and(X,Y,Z) stands for X A Y < Z and imp(X,Y) for X — Y.3

3 In the solver imp is used as an ordering relation which explains the binary notation
in contrast to the ternary and.



andl @ and(X,X,Z) < X=Z.
and2 @ and(X,Y,X) & imp(X,Y).
and3 @ and(X,Y,Z) A and(X,Y,Z1) < and(X,Y,Z) A Z=Z1.

impl @ imp(X,Y) A imp(Y,X) & X=Y.
We choose the following termination ordering:

C1 > (s iff Cs is a conjunct of Cy or
(1 is an atom for and and C5 is an atom for imp.

The completion procedure results in the following sequence; critical pairs which
are considered in the current inference step are underlined.

P,= P
Co = {(<imp(X,X), T,true>,<X =X, T, true>),

<X = Z,and(X,Y,X), true>, <imp(X,Y), and(X, Y, Z), true>),
<X =Z,and(X,Y,Z), true>, <imp(X,Y),and(X,Y, Z), true>)}

~~ A~

P = PU{r1Qimp(X,X) & true}
C; = {(<X=2,and(X,Y,X), true>, <imp(X,Y),and(X, Y, Z), true>),
(<X = Z,and(X,Y,Z), true>, <imp(X,Y),and(X, Y, Z), true>)}

P, = P U{r2Qimp(X,Y)Aand(X,Y,Z) & imp(X,Y) AX = Z}
Co = {(<X=XAimp(X,Y), T,true>, <imp(X,Y), imp(X,Y), true>)}

P;= P, U{r3Qimp(X,Y) A imp(X,Y) < imp(X,Y)}
Cs3= 0

Let c.p. stand for critical pair from now on. The first, underlined c.p. of Cy comes
from equating the heads of rules and1 and and2. This c.p. becomes joinable after
adding rule r1 in the second step. The second c.p. of Cy comes from equating the
head of rule and2 with the first head constraint of and3. It becomes joinable after
adding rule r2 in the third step. The third c.p. of Cy comes from equating the
head of and2 with the second head constraint of and3. This c.p. is also deleted
in the third step due to r2. A non-joinable c.p. is added in the third step, which
comes from equating the head of and2 and the second head constraint of r2. For
the sake of simplicity we dropped all new propagation rules generated by orient,
since they were trivial, i.e. their bodies consisted only of true.

The result of the completion procedure is P’ = Ps:

% rules andl, and2, and3, impl together with
rl @ imp(X,X) < true.

r2 @ imp(X,Y) A and(X,Y,Z) < imp(X,Y) A X=Z.
r3 @ imp(X,Y) A imp(X,Y) < imp(X,Y).



The new rules derived by completion reveal some interesting properties of imp,
e.g. rl states that “X implies X” is always true. P’ is terminating (see Theorem 2
for correctness) and all its critical pairs are joinable, therefore P’ is confluent.

The following example shows that in general it is not sufficient to insert only
simplification rules as in completion for TRS, in order to join a non-joinable
critical pair.

Ezample 4. Let P be the following CHR program, where p, q and r are user-
defined constraints and >, < are built-in constraints.

r1 @ pX,Y) & X > Y A qX,Y).
r2 @ p(X,Y) & X< YA &Y.

P is not confluent, since the c¢.p. stemming from r1 and r2
(<a(X,Y)AX > Y, T,true>, <r(X,Y) AX <Y, T, true>)
is non-joinable. The corresponding final states are
<T,q(X,Y),X>Y> <T,r(X,Y),X < Y>.

Let r(X,Y) > q(X,Y). Then the completion procedure inserts the following
rules:

r3 e rX,Y) & X
r4d @ q(X,Y) = X

<Yl qX,Y) AX>Y.
>Y | X< Y.
The following computations show that it is necessary to insert the propagation

rule to P to join the c.p. above:

<q(X,Y)AX>Y,T,true>
—Solve <q(X, Y), T,X>Y>
—Introduce <T, q(X, Y), X Z Y>
'_)Propagate <X S Y, q(X, Y),X Z Y>
—Solve <T,q(X,Y),X =Y>

Without the application of the propagation rule the final state of the computa-
tion above would be <T,q(X,Y),X > Y>, which is not identical to the final state
of the following computation:

<r(X,Y)AX <Y, T,true>
—Solve <r(X,Y), T,X<Y>
—Introduce <T, r(X, Y), X S Y>
Fsimplity  <d(XY)AX>Y, T,X<Y>
—Solve <q(X, Y), T,X=Y>
Introduce <1, q(X, Y), X=Y>
— Propagate <X<Y, q(X, Y), X=Y>
—Solve <T,q(X,Y),X =Y>



As is the case for TRS our completion procedure cannot be always successful.
We distinguish three cases:

1. The algorithm stops successfully and returns a program P’.
2. The algorithm aborts unsuccessfully, if a critical pair cannot be transformed
into rules for one of three reasons:
— The program remains terminating if new rules are added but the termi-
nation ordering is too weak to detect this.
— The program loses termination if new rules are added.
— The critical pair consists exclusively of built-in constraints.
3. The algorithm does not terminate, because new rules produce new critical
pairs, which require again new rules, and so on.

In the next section we will show that when the algorithm stops successfully, the
returned program P’ is confluent and terminating.

3.1 Correctness of the Completion Algorithm

We now show that the completion procedure applied to a CHR program results
in an equivalent program. For the proof to go through, every rule has to satisfy
a range-restriction condition: Every variable in the body or the guard appears
also in the head. In practice, in almost all solvers, rules with local variables
(variables that occur on the right-hand side of a rule only) can be rewritten to
be range-restricted. One introduces interpreted function symbols for the local
variables and extends the equality theory in C'T" accordingly.

Some definitions are necessary before we go further.

Definition 5. Let P; and P, be CHR programs and let CT be the appropriate
constraint theory. P, and P, are equivalent, if their logical meanings P; and P,
are equivalent:

CT|='P1(—>'P2

Definition 6. Let S be a state <G's, Cy, Cp>, which appears in a computation
of G. The logical meaning of S is the formula

dz GS/\CU/\CB,

where Z are the (local) variables appearing in S and not in G. A computable
constraint of G is the logical meaning of a state which appears in a computation
of G.

Lemma 1. Let P be a CHR program and G be a goal. Then for all computable
constraints C; and Cy of G the following holds:

PUCT IZ A4 (Cl(—)CQ)

Proof. See in [Abd98].



Theorem 2. Let P be a range-restricted CHR program respecting a termina-
tion ordering > and C' be the set of the non-joinable critical pairs of P. If, for
inputs Cy = C, Py = P and >, the completion procedure generates a successful
derivation of the form (Cy, Py) — ... —> (0, P’), then P’ is terminating with
respect to >, confluent and equivalent to P.

Proof. (Can be omitted from the final version for space reasons).

— P'is terminating. P is terminating, i.e. all rules of Py respect the termination
ordering >. For any ¢ with P;;; = P; U R the rules of R respect also the
termination ordering. Therefore for any i, P; is terminating.

— P'is confluent. Since P’ is terminating, it suffices to show that all its critical
pairs are joinable. Let (S,S2) be a critical pair of Ry and R,, where Ry
is generated at a time point ¢ and Ry at a time point j with 5 > ¢. Then
(S1,S52) € C;. Since the completion method is fair, this c.p. will be deleted
at a time point k where k > j. (S1,S2) is joinable in Ppyq. Therefore it is
also joinable in P’.

— P'" and P are equivalent. We have to show that P; and P;;1 are equivalent
for any 4. Let (S1,S2) be a critical pair in C;. T; and T are the final states
of the computations beginning with S; and Ss, respectively. T, is of the
form <T,Cyn,Cpn>, where n = 1,2. Then P;;; = P; U R. We now show
that P; U CT | F, where F € R and R is the logical meaning of R. We
distinguish two cases:

e R = {CUn<:>CBn | Cum A CVBma Cum = CBm | CBn}: where n =
Ilm=2orn=2,m=1.
Since (S1,S2) is a c.p. of a critical ancestor state S, then according to
Lemma 1 the following holds:

P;UCT ': V(HCZ’(CUn A CBn) L4 ng(CUm A CBm));

where Z and g are the lists of variables appearing in T} and 75, respec-
tively, and not in S. Since P is range-restricted,  and ¢ are empty. Then
the following holds:

P;UCT EV((Cun A Cir) ¢ (Cum A Csm)).- (1)

From equation (1) we can easily show that P;U CT = V((Cyn ACByn) &
(CUm A CBm A CBn)) holds. Therefore P; U CT IZ V(CBn — (CUn <~
(CUm A CBm))) holds.
From equation (1) we deduce P; U CT = V((Cum A Cem) — (CBm A
CBn)) Therefore P; U CT ': V(CBm — (CUm — CBn) holds.

e R={Cuyn < Cpn | Csm}. This is a special case of the one above. O

3.2 Consistency

Another property of completion is that it can exhibit inconsistency of the pro-
gram to complete.



Definition 7. A constraint theory CT is called complete, if for every constraint
¢ either CT |=Vc or CT |= V—c holds.

Theorem 3. Let P be a CHR program and CT a complete theory. If the com-
pletion procedure aborts unsuccessfully, because the corresponding final states
of a critical pair consist only of differing built-in constraints, then the logical
meaning of P is inconsistent.

Proof. Let Cgy,Cps be the built-in constraints of the final states. According to
Lemma 1, the following holds

PUCT VY (32,0p1 & 37:0po),

where T1,Z2 are the local variables of the final states.

We prove the claim by contradiction. Assume that P is consistent. Then PUCT is
consistent. Therefore CT |=V (3%1Cp1 ¢ 3Z2Cp2) holds, since CT is complete.
Then according to the normalization function C'g; and Cpgs have a unique form.
This contradicts the prerequisite that the states are different. O

Example 5. Let P be the following CHR program trying to implement the con-
straint maximum(X,Y,Z), which holds, if Z is the maximum of X and Y, and where
< and = are built-in constraints. Note that there is a typo in the body of the
second rule, since Y should have been Z.

rl @ maximum(X,Y,Z) &X <Y | Z = Y.
r2 @ maximum(X,Y,2) &Y < X | Y = X.

The c.p.
(KZ=Y, T,X<YAYLSX>, <Y =X T,X<YAY L X>)

stemming from r1 and r2 is not joinable. The states of the c.p. consist only of
built-in constraints. Thus the completion procedure aborts unsuccessfully.
The logical meaning of this CHR program is the theory

VX,Y,Z X <Y = (maximum(X,Y,Z) & Z = Y))
V X,Y,Z (Y < X - (maximum(X,Y,Z) < Y = X))

together with an appropriate constraint theory describing < as an order relation
and = as syntactic equality. The logical meaning P of this program is not a con-
sistent theory. This can be exemplified by the atomic formula maximum(1, 1, 0),
which is logically equivalent to 0=1 (and therefore false) using the first formula.
Using the second formula, however maximum(1,1,0) is logically equivalent to
1=1 (and therefore true). This results in P U CT = false<>true.

4 More Uses of Completion

The following example shows that the completion method can be used - to some
extent — to specialize constraints.



Ezxample 6. We define the constraint < as a special case of <. If we extend the
CHR program for < of Example 1 by the simplification rule

r5eX<Y&X#AY| X<V,

then the resulting program loses confluence. Using the following termination
ordering

C1 > Cy iff Uy is a conjunct of C; or C1 is X < Yand Cr is X < Y,
the completion procedure inserts the following rules:

6 X <YAY<X & X #Y| false.
TOX<YAX<Y & X#Y | X<Y.

r6 comes from a c.p. of r2 and r5,

(KX=Y, T,X#Y>, <X< Y, Y <X, X#Y>).
r7 comes from a c.p. of r4 and r5,

(KT, X<Y,X#Y>, <X<Y,Y<X,X#Y>).

r6 obviously defines the asymmetry of < and r7 idempotence. Irreflexivity of <
could not be derived, since the definition of < by rule r5 already presupposes
that X#Y. But if we add the rule

r8 X < YAY X & false.
then the completion procedure inserts the following simplification rule
r9 0 X <X <& false.

expressing the irreflexivity of < (because of the c.p. of r1 and r8)

(<X < X, T,true>,<false, T,true>).

The following example shows that the completion method can also derive defi-
nitions of recursively defined constraints.

Ezample 7. Let P be the following CHR program

rl @ append([],L,L) & true.
r2 Q@ append([X|L1],Y,[X|L2]) < append(L1,Y,L2).

defining the well-known ternary append predicate for lists as a simple constraint,
which holds if its third argument is a concatenation of the first and the second
argument. P is confluent since there are no critical pairs. When we add the rule

r3 @ append(L1,[],L3) < new(L1,L3).

to P, confluence is destroyed. Using the completion procedure one can generate
a constraint solver for new:



r4 @ new([],[]) & true. % joins c.p. of rl and r3
r5 @ new([A|B],[AIC]) & new(B,C). % joins c.p. of r2 and r3

Our completion procedure has uncovered that append (L1, [1,L3) holds exactly
if L1 and L2 are the same list, as tested by the generated, recursive constraint
new.

The next example shows how completion can be used as a method to provide
generic answers, even if a constraint cannot further be simplified. This retains
some of the power of logic languages like Prolog, where several answers can be
given, while avoiding infinitely many answers. Qur approach is similar to the
ones that related Prolog and TRS computation methods [DJ84,BH92].

Ezample 8. A CHR formulation of the classical Prolog predicate member as a
user-defined constraint is (# is built-in):

rl @ member(X,[]) & false.
r2 @ member (X, [X|_]) & true.
r3 @ member (X, [H|T]) & X # H | member(X,T).

Using CHR, the goal member (X,[1,2,3]) delays. However Prolog generates
three solutions X=1, X=2 and X=3. If we add

r4 @ member(X,[1,2,3]) & answer(X).

to P, then the resulting program is non-confluent. If we apply the completion
procedure, we get the same solutions as generated by Prolog (Figure 3). These
solutions are represented by the following rules:

al @ answer(l) < true.
a2 @ answer(2) < true.
a3 @ answer(3) < true.
a4 @ answer(X) & X # 1 A X #2 A X # 3 | false.

The rules a1,a2 and a3 correspond to the answers of the Prolog program, while
the last rule a4 makes explicit the closed world assumption underlying Clark’s
completion semantics of Prolog.

Example 9. If we apply the completion method to the CHR program for append
of Example 7 (r1 and r2) with the rule

r3 @ append(X, [b|Y],[a,b,c|Z]) < answer(X,Y,Z).

we obtain the following rules

al @ answer([al,[c|Z],Z) & true.
a2 @ answer([a,b,c],Y,[blY]) & true.
a3 @ answer([a,b,c,HIL],Y,[H|L2]) < answer([a,b,c|L],Y,L2).



r4@member(4, [1, 2, 3]) < answer(A)

r4t/ l/ r4+13

al@answer(1) & true r5@member(4, [2, 3]) < A # 1|answer(4)

’5+j2/ l/r5+r3

a2@answer(2) < true  r6Qmember(A,[3]) < A # 1 A A # 2|ansver(4)

rs";ﬂ// | r6+x3

a3@answer(3) & true a4@answer(A) < A # 1AA#2A\A#3|false

Fig. 3. The answer rules generated for Example 8

al corresponds to the first answer X = [a], Y = [c|Z] of the corresponding
Prolog program with the query append(X,[b|Y],[a,b,cl|Z]); and a2 to the
second answer X = [a,b,c], Z = [b|Y]. Rule a3 represents the infinitely many
answers of Prolog (leading to non-termination on backtracking) of the form

X = [a,b,c,X1,X2,...,Xn], Z = [X1,X2,...,Xn,b]|Y]

in a finite form.

5 Conclusion

We introduced a completion method for Constraint Handling Rules (CHR).
Completion methods make a non-confluent CHR program confluent by adding
new rules. We have shown that our proposed completion procedure is correct and
can exhibit inconsistency of a CHR program. We also gave various examples to
show that completion can be used as a method to provide generic answers and
to define new (recursive) constraints from existing ones and to derive constraint
solvers for them. In this way, we have shown that completion helps the CHR
programmer to extend, modify and specialize existing solvers instead of having
to write them from scratch.

Partial evaluation is a particular program transformation for specializing pro-
grams. One interesting direction for future work is to investigate the relationship
of completion to partial evaluation.
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