INSTITUT FUR INFORMATIK v LMU

Lehr- und Forschungseinheit fiir Maximilians—
Programmier- und Modellierungssprachen Universitit
Oettingenstrae 67, D-80538 Miinchen Miinchen

SIC: An Interactive Tool
for the Design of Integrity Constraints
(System Description)

Francois Bry, Norbert Eisinger, Heribert Schiitz, Sunna Torge

in EDBT’98, Valencia, Demo Session Proceedings
http://www.pms.informatik.uni-muenchen.de/publikationen
Forschungsbericht /Research Report PMS-FB-1997-18, Dezember 1997

SIC: An Interactive Tool for the Design of Integrity Constraints
(System Description)

Francois Bry Norbert Eisinger

1 Introduction

Integrity constraints are declarative expressions
that serve to distinguish valid database states,
corresponding to possible (so-called legal) states
of the real world, from invalid ones [6, 1, 8]. A
valid database state is one that satisfies all in-
tegrity constraints. An important database de-
sign issue is that of “constraint satisfiability”,
i.e., whether the integrity constraints can be sa-
tisfied by some database states at all. Cons-
traint satisfiability is important, since integrity
constraints are in general designed before the
database is populated, i.e., before any database
state exists. If the integrity constraints are in-
consistent or if they are not “finitely satisfiable”,
i.e., if they cannot be satisfied by some finite da-
tabase states, then they must be considered as
incorrectly designed. Note that constraint satis-
fiability is not the same as constraint satisfac-
tion.

SIC is an interactive prototype to assist in
the design of finitely Satisfiable Integrity Con-
straints. SIC combines two systems, a reasoning
component and an interactive visual interface.
The reasoning component is a model generator
called FINFIMO [3] which extends the model ge-
nerator SATCHMO [11, 4] originally developed
for this application [2].

2 Model Generation with SATCHMO

Consider a company database with
two relations employee(emp_name) and
assigned(emp.name,projname) and two

integrity constraints stipulating that (1) every
employee be assigned to at least one project,
and (2) there must be at least one employee:
VE (employee(E) — 3P assigned(E,P))
JF employee(E)
SATCHMO operates on the Skolemized form
VE (employee(E) — assigned(E,p(E)))
employee(eg)

1Ludwig-Maximilians-Universitst Minchen, Institut
fiir Informatik, Oettingenstr. 67, D-80538 Miinchen,
Germany, {bry,eisinger,hschuetz,torge}
Q@informatik.uni-muenchen.de,
http://www.pms.informatik.uni-muenchen.de/

Heribert Schiitz Sunna Torge!

of these constraints (with a Skolem function
p and Skolem constant ey for the existentially
quantified variables) and generates the model
(i-e., the legal database state) {employee(eg),
assigned(eg, p(eo))}, thus proving that the in-
tegrity constraints above are in fact satisfiable.

3 Finite Model Generation

Now consider the additional relation
project(projmname) and the constraint that
to every project at least one employee must be
assigned. Furthermore we have the referential
integrity constraints that every employee and
project mentioned in the assigned relation
must be listed in the employee or project
relation, respectively:

VP (project(P) — 3JE assigned(E, P))
VE VP (assigned(E, P) — employee(E))
VE VP (assigned(E, P) — project(P))

The Skolemized form of these constraints is

VP (project(P) — assigned(e(P),P))
VE VP (assigned(E, P) — employee(E))
VE VP (assigned(E, P) — project(P))

Applied to the five Skolemized constraints,
SATCHMO does not terminate and generates an
infinite model:

{employee(eq), assigned(eq, p(eo)),
project(p(en)), assigned(e(p(eo)), p(eo)),
employee(e(p(eo))),
assigned(e(p(eo)), pe(p(€o)))),
project(p(e(p(ea)))), ---}-

This problem typically arises with cyclic re-
ferential integrity constraints. A first improve-
ment of FINFIMO over SATCHMO is that it does
not require integrity constraints to be expres-
sed in the rather unnatural Skolemized form and
that it can construct finite models in such cases.

Another important class of integrity cons-
traints is the class of functional dependencies.
For example, no more than one salary should
be assigned to an employee:

VEVSVS' (salary(E, S) A salary(E, S")
- §=9)

Here a model generator should not generate
its own interpretation of the equality predicate,
but must adhere to a predefined interpretation.
FINFIMO, unlike SATCHMO, is capable of this.

4 The Reasoning Component: FINFIMO

SIC’s reasoning component consists of the mo-
del generator FINFIMO. Applied to a set of inte-
grity constraints, FINFIMO systematically tries
to build models of this set. If no models can
be found, i.e., if the set of integrity constraints
is inconsistent, FINFIMO reports failure in fi-
nite time. If the set of integrity constraints
admits some finite models, FINFIMO can gene-
rate each minimal finite model in finite time.
(A model is minimal if no database entries can
be removed without violating an integrity cons-
traint.) If, however, all possible models of the
integrity constraints are infinite, FINFIMO will
undertake the construction of one such model —
and, of course, never terminate. Displaying the
tentative models under construction appears to
give sufficient hints for database designers to re-
cognize ill-designed integrity constraints whose
models are all infinite.

Thus, FINFIMO gives rise to detect both the
(undesirable) inconsistent sets of integrity cons-
traints as well as the (desirable) finitely satis-
fiable sets of integrity constraints, i.e., FINFIMO
is sound and complete for both finite minimal
models and refutation [3]. FINFIMO of course
does not detect the (undesirable) sets of inte-
grity constraints that admit only infinite mo-
dels: this property is not semi-decidable.

FiNFIMO is implemented in Prolog.

5 The Visualisation Component: SNARKS

The interactive visualisation component
SNARKS [9] allows both to visualize and to
control the expansion of the tentative models
constructed by model generators. SNARKS is
generic in the sense that it can be used for the
development and debugging of model genera-
tors, for designing declarative specifications, for
comparing inference engines, or for illustrating
the model generation process. SIC makes use
of this last facility.

FinFiMO-like model generators operate on
declarative specifications in a forward reasoning
manner and process disjunctions by introducing
ramifications into the derivations. The resul-
ting derivations have the form of trees whose
nodes are sets of formulae. SNARKS offers a wide

range of operations for the interactive construc-
tion, modification, display, rearrangement, and
presentation of such a tree. There are means to
analyse the dependencies between derived for-
mulae by highlighting automatically formulae
that contribute to the derivation of a selected
one, and, conversely, formulae that were derived
using the selected one. One of the uses of this
feature is to identify the reasons for contradic-
tions in cases where expected models cannot be
derived. Another debugging feature allows the
interactive modification of tentative models at
any point during the model generation process.
Thus it is possible to anticipate the effects of
corrections of the integrity constraints without
reperforming the model generation process from
scratch. This helps to fix former design decisi-
ons with undesirable consequences.

SNARKS consists of a Java front end for the
graphics and a Prolog back end for the reaso-
ning tasks. SIC can be called from any WWW
browser supporting Java.

6 Perspectives

The reasoning component could be improved by
enhancing the model generator FINFIMO into
a generator of minimal models only [4]. Even
though the class of integrity constraints that
FINFIMO can cope with has the expressive power
of first-order predicate logic without function
symbols (except for constants), it is necessary
to adapt the prototype SIC to a more conve-
nient specification language, e.g., to an object-
oriented language such as F-logic [10], Chi-
mera [5] or DEL [7].

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foun-
dations of Databases. Addison-Wesley,
1995.

[2] F. Bry, H. Decker, and R. Manthey. A
uniform approach to constraint satisfaction
and constraint satisfiability in deductive
databases. In Proc. Int. Conf. Extending
Data Base Technology (EDBT), pages 488—
505, Venice, Italy, March 1988. Springer
LNCS 303.

[3] F. Bry and S. Torge. Model generation for
applications — a tableaux method complete
for finite satisfiability. Research report
PMS-FB-1997-15, Institut fiir Informatik,

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Ludwig-Maximilians-Universitdt Miinchen,
1997.

F. Bry and A. Yahya. Minimal model gene-
ration with positive unit hyper-resolution
tableaux. In 5th Workshop on Theorem
Proving with Analytic Tableaur and Rela-
ted Methods, pages 143-159. Springer LNAI
1071, 1996.

S. Ceri and R. Manthey. Chimera: A model
and language for active dood systems. In
Proceedings of the 2nd East-West Database
Workshop, Workshops in Computing, pa-
ges 3—-16, Klagenfurt, Austria, 1993. Sprin-
ger, 1995.

C. Date. An Introduction to Database Sy-
stems. Addison-Wesley, sixth edition, 1995.

O. Friesen, G. Gauthier-Villars, A. Lefeb-
vre, and L. Vieille. Applications of deduc-
tive object-oriented databases using del. In
Workshop on Programming with Logic Da-
tabases, ILPS, pages 1-22, 1993.

S. Jajodia, W. List, G. McGregor, and
L. Strous, editors. Integrity and Internal
Control in Information Systems — Volume
1: Increasing the confidence in information
systems — IFIP TC-11 WG11.5 First Wor-
king Conference on Integrity and Internal
Control in Information Systems, Zirich,
Switzerland, 4-5 December 1997. Chapman
& Hall.

M. Kettner and N. Eisinger. The tableau
browser SNARKS (system description). In
14th Int. Conf. on Automated Deduction
(CADE), pages 408-411. Springer LNAI
1249, 1997.

M. Kifer, G. Lausen, and J. Wu. Logical
foundations of object-oriented and frame-
based languages. JACM, 1995.

R. Manthey and F. Bry. SATCHMO: A
theorem prover implemented in Prolog. In
9th Int. Conf. on Automated Deduction
(CADE), pages 415-434. Springer LNCS
310, 1988.

