Multidimensional Clustering of MOOC offers

Applying unsupervised learning algorithms FCM and SOM to text descriptions

Kai-Henning Wilker
02.06.2016
Motivation

• Goal: improving of learning & teaching at university
• MOOC = Massive Open Online Course
• MOOCs could be helpful for introduction / review
• Problems:
 – Vast amount of different MOOC offers
 – What search-keywords should be used?
Vision

- Vision: build MOOC recommendation system for students
- Find recommendations using clusters
- Cluster analysis = Grouping objects that are „similar“

Multidimensional clustering of MOOC offers – Applying unsupervised learning algorithms FCM and SOM to text descriptions

- Clustering only the MOOC text descriptions of English-language MOOCs
- Aim: determining the best clustering method for this task
- Crawling MOOC offers → other project
Project plan

• Goals:
 – Find suitable document representation
 – Detect clusters in reference data set using FCM and SOM
 – Evaluate the quality of the clusters

• Rough timetable:
 – May: research and preliminary look into implementations
 – June: implementing the algorithms and evaluation framework
 – July: evaluating the clusters and documenting the project
Document representation

- Documents (= MOOC descriptions) have to be represented as vectors
- *Bag of words*:
 - Each dimension represents one word
 - Word occurrences are counted
 - Normalization by TF-IDF
- Problem: dimension too large
- Possible solutions:
 - Latent Semantic Indexing (LSI)
 - Locality Preserving Indexing (LPI)
Clustering

- Many different clustering algorithms available
- Examining *Fuzzy C-Means* and *Self Organisation Maps*
- Both are unsupervised learning algorithms
Fuzzy C-Means

- Derivative of k-Means using fuzzy sets
- Documents can belong to more than one cluster → advantage, since MOOCs can have different topics
- Rough description:
 - Initialize C cluster centers
 - Repeat:
 - Compute weights of cluster membership for each document
 - Compute new cluster centers
Self Organisation Maps

- SOM is a type of Artificial Neural Network
- Idea: warp a two-dimensional grid onto the set of vectors
Challenges

• Which document representation is the most suitable for each algorithm?

• Determining the values of different parameters which affect the algorithms
 – Number of clusters
 – Fuzzyness parameter
 – Termination criterion

• Labelling the clusters
Evaluation

- External evaluation: let human experts evaluate the quality of the clusters

- Assign validation documents to already existing clusters → compare the results of the algorithms with the classification created by humans

- Additionally, build a simple MOOC search engine using the reference dataset

- Display different clusters with documents relevant to the search query

- Users give feedback whether the clusters are coherent or not
Technical Details

- Manual creation of a test database using MongoDB
- Python as programming language
- Gensim framework for vector representations
- TensorFlow framework for clustering algorithms