Multidimensional Clustering of Massiv Open Online Course (MOOC) offers

Applying unsupervised learning algorithms FCM and SOM to MOOC textual descriptions

Bachelor thesis – final presentation

Kai-Henning Wilker
08.12.2016
Agenda

- Introduction / goals
- MOOC clustering application
- Clustering process
- Evaluation
- Conclusions & future work
Goals

- Vision: build MOOC recommendation system for students
- Making recommendations using clusters
- Goal: cluster analysis of MOOC textual descriptions with Fuzzy C-Means (FCM) and Self-organizing Maps (SOM)
- Questions:
 - Can valid clusters be found?
 - Which clustering algorithm performs better?
 - What are the best meta-parameters for the algorithms?
 - What is the best vector representation of the documents?
 - How to evaluate a cluster's quality?
Agenda

- Introduction / goals
- MOOC clustering application
- Clustering process
- Evaluation
- Conclusions & future work
System integration
Cluster analysis process

1. Calculate TF-IDF vectors
2. Which dimensionality reduction?
 - Calculate LSI vectors
 - Calculate LPI vectors
3. Which clustering algorithm?
 - Cluster analysis with FCM
 - Cluster analysis with SOM
4. Calculate evaluation indices
5. Save results in database
Agenda

- Introduction / goals
- MOOC clustering application
- Clustering process
- Evaluation
- Conclusions & future work
Vector representation

- Consider the MOOC textual descriptions as „bag of words“ (→ each dimension represents one term) [~22,000 dimensions]
- Normalization by TF-IDF
- Reduce number of dimensions of the vectors with
 - *Latent Semantic Indexing* (LSI) or
 - *Locality Preserving Indexing* (LPI)
 [~10 dimensions]

- Insights:
 - General term blacklist needs to be extended (e.g. filter terms like *Illinois State University* or capstone)
 - No clear winner between LSI and LPI
Clustering algorithms

- Fuzzy C-Means (FCM)
 - Derivative of \textit{k-Means} using fuzzy sets
 - Cluster centers are initialized randomly and are improved iteratively by calculating a weighted mean of each cluster

- Challenges with FCM
 - Results of FCM highly depend on the initialization
 - Solution: run FCM multiple times, return best result
 - Even after dimension reduction: \textit{concentration of norm phenomenon}

- Meta-parameters:
 - \(c \) - Number of clusters
 - \(m \) - „fuzzyness“ parameter
Clustering algorithms

- Self-organizing Maps (SOM)
 - SOM is a type of artificial neural network
 - Map = two-dimensional grid of neurons
 - Each neuron holds a weight vector that represents its position in the input data vector space (→ with dimension higher than two!)
 - Self-organization:
 - Input vectors are propagated through the map
 - For each vector, the nearest neuron is determined (the \textit{winning} neuron)
 - The weights of the winning neuron and the winning neuron's neighbours (on the map) are adjusted
Clustersing algorithms

- Insights on SOM
 - SOM is less dependent on initialization than FCM
 - SOM performs generally better than FCM
- Meta-parameters of SOM
 - $N \times M$ – map dimensions (corresponds to number of clusters)
 - α – initial learning parameter
 - δ – initial neighbourhood radius
Agenda

- Introduction / goals
- MOOC clustering application
- Clustering process
- Evaluation
- Conclusions & future work
Internal Evaluation

- Internal evaluation: calculate "validity index“ using only the input vectors and the found clusters
- No external information is used
- The validity index computes a real number, which represents the quality of a clustering
- Aim of internal evaluation: tweak meta-parameters
- Method: compute clusterings for all values of the meta-parameter within a suitable range
 → the clustering with the best index value is selected
 → this determines the value of the meta-parameter
- Validity indices might be biased against one algorithm
 → one should *not* use internal validity indices to compare two clustering algorithms
Internal evaluation: Validity Indices

- Defining „good“ clusters is to some extent subjective → There are many different validity indices available
- Validity indices measure the compactness and separation of clusters
- One exemplary index: Dunn index

\[
Dunn(C_1, \ldots, C_k) := \frac{\min_{1 \leq i < j \leq k} \text{distance}(C_i, C_j)}{\max_{1 \leq i \leq k} \text{diameter}(C_i)}
\]

\[
\text{diameter}(C_i) := \max_{x, y \in C_i} \|x - y\|
\]

\[
\text{distance}(C_i, C_j) := \min_{x \in C_i, y \in C_j} \|x - y\|
\]
Exemplary results

LPI reduction – how many dimensions?

FCM with \(c=64, m=1.5 \)
Exemplary results

How many clusters?

FCM with $m=1.5$ using 10-dimensional LPI vectors

Number of clusters

not helpful
External Evaluation

- Use additional, external information
- Create clusters manually as „golden standard“ (in the following, these clusters are called classes)
- Compare clusterings with the manually created one
- **Purity:**
 - Assign each cluster to the class, which is most frequent in the cluster
 - Count the number of correctly assigned input vectors
- **Downside:**
 - „Golden standard“ created by only one single person → very subjective
 - This method is hardly applicable for fuzzy clustering
Agenda

- Introduction / goals
- MOOC clustering application
- Clustering process
- Evaluation
- Conclusions & future work
Conclusions

- SOM performed generally better than FCM on our data.
- Even with small m, FCM was too fuzzy (e.g. one MOOC belongs to too many clusters).
- FCM has problems with vectors of higher dimension.
- SOM worked better with vectors of higher dimension.
- Internal evaluation has strong limits.
 - Evaluation indices sometimes contradict each other.
 - Which index is suitable? → hard to decide.
- External evaluation needs more feedback by different users (→ see future work).
Future Work

- Use more data (syllabus, category)
- Smarter initialization for FCM
- Other distance functions except Euclidean, different vector representations
- How do the clusters change over time?
- Utilize user feedback:
 - Create ranking *within* each cluster
 - Semi-supervised clustering: improve clusters using the user feedback
 - Use the feedback for external evaluation
SOM – Further Details

1. **Find winning neuron** Let j' be the neuron whose weight vector is closest to the input vector (using Euclidean distance):

 $$j' := \arg \min_j \| x - w_j(t) \|$$

2. **Update all weight vectors** using the following formula:

 $$w_j(t + 1) := w_j(t) + \alpha(t) \cdot \eta_{j,j'}(t) \cdot [x - w_j(t)]$$

 where $\alpha(t)$ is the learning rate and $\eta_{j,j'}(t)$ the neighbourhood function.
SOM – Further Details

\[\eta_{j,j'}(t) := \exp \left(-\frac{\|c_j - c_{j'}\|}{2 \cdot \sigma(t)^2} \right) \]