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Abstract

This thesis investigates querying the Web and the Semantic Web. It proposes a new rule-
based query language calledXcerpt. Xcerpt differs from other query languages in that it uses
patterns instead of paths for the selection of data, and in that it supports both rule chaining
and recursion. Rule chaining serves for structuring large queries, as well as for designing
complex query programs (e.g. involving queries to the Semantic Web), and for modelling
inference rules. Query patterns may contain special constructs like partial subqueries, optional
subqueries, or negated subqueries that account for the particularly flexible structure of data on
the Web.

Furthermore, this thesis introduces the syntax of the language Xcerpt, which is illustrated
on a large collection of use cases both from the conventionalWeb and the Semantic Web.
In addition, a declarative semantics in form of a Tarski-style model theory is described, and
an algorithm is proposed that performs a backward chaining evaluation of Xcerpt programs.
This algorithm has also been implemented (partly) in a prototypical runtime system. A salient
aspect of this algorithm is the specification of a non-standard unification algorithm called
simulation unificationthat supports the new query constructs described above. This unification
is symmetric in the sense that variables in both terms can be bound. On the other hand it is in
contrast to standard unification assymmetric in the sense that the unification determines that
the one term is a subterm of the other term.

Zusammenfassung

Diese Arbeit untersucht das Anfragen des Webs und des Semantischen Webs. Sie stellt
eine neue regel-basierte Anfragesprache namens Xcerpt vor. Xcerpt unterscheidet sich von an-
deren Anfragesprachen insofern, als dass es zur Selektion von Daten sog. Pattern (,,Muster”)
verwendet und sowohl Regelschliessen als auch Rekursion unterstützt, was sowohl zur Struk-
turierung größerer Anfragen als auch zur Erstellung komplexer Anfrageprogramme, und zur
Modellierung von Inferenzregeln dient. Anfrage-Pattern können spezielle Konstrukte, wie
partielle Teilanfragen, optionale Teilanfragen, oder negierte Teilanfragen, enthalten, die der
besonders flexiblen Struktur von Daten im Web genügen.

In dieser Arbeit wird weiterhin die Syntax von Xcerpt eingeführt, und mit Hilfe mehrerer
Anwendungsszenarien sowohl aus dem konventionellen als auch aus dem semantischen Web
erläutert. Ausserdem wird eine deklarative Semantik im Stil von Tarski’s Modelltheorie
beschrieben und ein Algorithmus vorgeschlagen, der eine r¨uckwärtsschliessende Auswer-
tung von Xcerpt durchführt und in einem prototypischen Laufzeitsystem implementiert wurde.
Wesentlicher Bestandteil des Rückwärtsschliessens istdie Spezifikation eines nicht-standard
Unifikations-Algorithmus, der die oben genannten speziellen Xcerpt-Konstrukte berück-
sichtigt. Diese Unifikation ist symmetrisch in dem Sinne, dass sie Variablen in beiden
angeglichenen (,,unifizierten”) Termen binden kann. Andererseits ist sie im Gegensatz zur
Standardunifikation assymmetrisch in dem Sinne, dass der dadurch geleistete Angleich den
einen Term als ,,Teilterm” des anderen erkennt.
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CHAPTER

ONE

Introduction

1.1 Motivation

Data on the Web

The advent of the Internet, and in particular of the World Wide Web (in the rest of this thesis usually
referred to as “the Web”), has resulted in the availability of huge amounts of data that are accessible by
anyone. However, such data – being represented in documentswritten in the language HTML (Hypertext
Markup Language) – is mostly aimed at presentation in a user agent (thebrowser) and not meant for further
automatic treatment, like information extraction, combination or other further calculation. For example,
a Web shop might represent a list of products in an HTML table that contains one column for prices, but
the user agent is merely capable of displaying this table ande.g. cannot automatically add the value added
tax to prices, since it has no means to differentiate betweenthe price and e.g. the article number. Such
documents are thus mostlylayout oriented.

TheWorld Wide Web Consortium(W3C)1 recognised this deficiency and in 1996 initiated the devel-
opment of theExtensible Markup Language(XML). XML allows authors to define custom, application-
specific markup languages (cf. Section 2.2) that may be used for structuring documents according to their
contentrather than according to theirlayout. For example, the Web shop mentioned above might represent
its article list using custom markup that clearly distinguishes between prices, article numbers and article
names. Layout is added to such documents by using externalstylesheetsthat the browser can use to arrange
content properly.

XML is currently not only used for representing documents inthe traditional sense (i.e. documents
containing mostly text), but also as a means for exchanging and storing arbitrary data, such as data stored
in a relational or object oriented database. In particular,it is nowadays the data exchange format of choice
in application areas such as electronic commerce, molecular biology and astronomy, and is used as the
basis for many Web applications. Interestingly, however, XML is much less restrictive than traditional
database formats regarding the structure and schema of the data. Therefore, XML data is often also called
semistructured(cf. Chapter 2).

In order to retrieve information from structured documents, the Web needs query languages (cf. [73]).
A Web query language needs to consider properties that are peculiar to the representation and querying of
data on the Web. In particular, it needs to be able to deal withpartial information, multiple sources that are
not managed by a central administration, and changing data structures, and it has to be simple enough to be
used by a wide range of users that are not experts in programming, but want to formulate simple queries.
Querying and transformation of XML data has received much attention, and the W3C proposalsXQuery
[113] andXSLT(both described in Section 3.3) have become de facto standards for this purpose, although
they are often criticised – among other things – for their complexity.

1http://www.w3.org
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1.1. MOTIVATION

The Semantic Web

In addition to the development of XML, a major endeavour in Web research is the so-calledSemantic Web,
a term coined by W3C founder Tim Berners-Lee in aScientific Americanarticle[19] describing the future
of the Web. The Semantic Web aims at enriching data (that is e.g. represented in XML) by meta-data
and (meta-)data processing that allows Web based systems totake advantage of “intelligent” reasoning
capabilities.

fiction

classic modern

history

books

Folket i Birka

mediaeval

Figure 1.1: A categorisation of books as it might
occur in a Semantic Web ontology

Such meta-data is currently mainly represented in
ontologies(e.g. using the languagesOWL and RDF
[118, 119], orTopic Maps[85]) that describe hierarchies
of concepts, and relations between them. For example, a
Semantic Web application for a book store could assign
categories to books as shown in Figure 1.1. A customer
interested inhistoryandfictionmight also get offers for
books that are in the subcategoriesclassic, mediævaland
modern(like the bookFolket i Birka2 in the Figure), al-
though these books are not directly contained in the cat-
egoryhistory, because the data processing system has
access to the ontology and can thus infer the fact that a
book about mediæval times is a historic book.

Obviously, Semantic Web processing also needs
query languages, but although most Semantic Web formalismsare based on XML (e.g.OWL or RDF
[118, 119]), current XML query languages likeXQueryandXSLTare not well suited for the task, as they
lack reasoning capabilities. Instead, there are several proposals for specific Semantic Web query and rea-
soning languages (e.g.OWL-QLor RQL). However, all current proposals are special purpose languages that
only implement a specific form of reasoning, e.g. that of a certain description logic likeSHIQ [58, 59],
and are only capable of querying data in specific formats likeOWLor RDF.

Xcerpt

The language Xcerpt introduced in this thesis is a declarative, rule-based query language for Web data (in
particular XML) that is based on concepts from logic programming [71, 103]. It differs from conventional
XML query languages in several aspects (cf.Design Principlesbelow). Xcerpt aims at being simple to
use for a wide range of users while being powerful enough to build complex query programs. For this
reason, it is developed based on many practical applications, while at the same time providing a solid
formal semantics that allows the implementation of different runtime systems.

In contrast to conventional XML query languages, Xcerpt provides means to reason with Semantic
Web data similar to those of other rule-based or logic programming languages (e.g. Prolog). In contrast
to special purpose Semantic Web query languages, Xcerpt is capable of querying any kind of Web data
(combining meta-data with data), and has been conceived to allow to implement a wide range of different
reasoning mechanisms as needed.

The goal of this thesis is to introduce the language Xcerpt asa query language for the conventional and
the Semantic Web, and provide a formal semantics that it is suitable for the implementation of a runtime
system. A major contribution of this work is the specification of a non-standard unification algorithm
calledsimulation unificationthat is well-suited for querying Web data, because it allowsto use less rigid
structures and supports incomplete query specifications. This unification is symmetric in the sense that is
capable of binding variables occurring in both of the unifiedstructures; on the other hand it is – in contrast
to the standard unification specified by Robinson [91] – asymmetric in that it tries to find the one structure
as a substructure of the other instead of trying to make them equal.

As part of this thesis, a prototypical runtime system has been developed that partly implements Xcerpt
based on the formal semantics presented here.

2English translation (from Swedish): “The people of Birka”
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1.2 Outline of this Thesis

This thesis is structured into three parts consisting of tenchapters, and an appendix consisting of four
chapters:

• The first part (calledIntroduction and Motivation) introduces into the area of Web query languages.
Chapter 1 is this introduction. Chapter 2 describes data representation formats for the Web, in par-
ticular XML and semistructured data. Chapter 3 concludes the first part and describes requirements
and proposals for Web query languages.

• The second part (calledThe Language Xcerpt) gives a detailed description of the language Xcerpt.
Chapter 4 begins with the syntax and an informal descriptionof the semantics. Chapter 5 provides
an extensive list of different use cases for Xcerpt. Chapter6 describes syntactic restrictions imposed
on Xcerpt programs. In the formal semantics, Xcerpt programs are assumed to conform to these
restrictions. Chapter 7 proposes a declarative semantics for Xcerpt in the form of a Tarski style
model theory, and Chapter 8 provides a complementary backward chaining operational semantics.
In particular, the operational semantics describes the simulation unification algorithm.

• The third part (calledConclusion) describes perspectives for further work on Xcerpt (in Chapter 9)
and concludes this thesis (in Chapter 10).

• The appendix contains supplemental material. Most importantly, it contains a description of the
prototypical runtime system implemented as part of this thesis (Appendix A) and some of the more
extensive proofs of theorems in Chapters 7 and 8 (Appendix B). Also, this part contains an index, a
list of examples, the bibliography, and a resume of the author.

1.3 Design Principles of Xcerpt

The following major design principles have guided the design of the language Xcerpt, and to some extent
also differentiate Xcerpt from other query languages that have been proposed for the conventional Web,
the Semantic Web, and for querying databases.

1.3.1 Referential Transparency and Answer Closedness

Referential Transparency

Referential transparency means that all occurrences of an expression have the same meaning (within a
certain scope of definition). This is an important property of declarative languages, as it eases understand-
ing of programs and thus allows for an easier development, maintenance, and optimisation. Referential
transparency is usually found in purely functional languages and in logic programming languages (like
Haskell, SML, or Prolog), but not in imperative languages (like Java or C), whose notion of state inherently
conflicts with referential transparency. In particular, the XML query languages XQuery and XSLT are not
fully referentially transparent due to their notion ofcontext nodes.

Answer Closedness

The propertyanswer closednessexpresses that every answer can itself be used as a query. In aquery
language, this means in particular that any subquery can (syntactically) be replaced by an answer to this
subquery, yielding a new, valid query. Usually, logic programming languages are answer closed (e.g.,
occurrences of variables can be replaced by their bindings), but languages using a different syntax for
querying than for the data are not (e.g. SQL or XQuery). Answer closedness is desirable, as it eases
understanding of programs for developers by ensuring similar syntaxes for both data and query.

Sebastian Schaffert 5
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1.3.2 Answers as Arbitrary XML Data

XML is the lingua francaof data interchange on the Web. As a consequence, answers should be expressible
as every possible XML application. This includes both text without markup and text with freely chosen
markup and structure. This requirement is obvious and widely accepted for conventional Web query lan-
guages. Semantic Web query languages, too, should be capable of delivering answers in every possible
XML application so as to make it possible, e.g. to mediate between RDF and XTM data or to translate
RDF data from one RDF syntax into another RDF format.

1.3.3 Pattern-Based Queries

The Navigational Approach

XML documents describe tree or rooted graph structures. Current XML query languages like XQuery or
XSLT [113, 106] use anavigationalor path-basedapproach to select data items in such tree structures,
i.e. a selection is specified in terms of a path expression (usually expressed in the language XPath [108])
consisting of a sequence of location steps that specify how to reach the node that contains the desired data
in a stepwise manner3. For instance, consider a (well-formed) XML document containing the data of an
address book. Such a document could look as follows:

<address-book>
<person>

<name>
<first>Mickey</first>
<last>Mouse</last>

</name>
<phone>19281118</phone>
<email>mickey@mouse.org</email>

</person>
<person>

<name>
<first>Donald</first>
<last>Duck</last>

</name>
<email>donald@duck.com</email>

</person>
</address-book>

Constructs like<address-book> are so-calledopening tagsof an element, and constructs like
</address-book> are so-calledclosing tagsof an element. Anelementis the part of the document be-
tween, and including, an opening tag and a fitting closing tag(e.g.<email>mickey@mouse.org</email>
is an element). Theelement labelis the label used in the opening and closing tags of the element defini-
tion. Everything (i.e. both text and other elements) enclosed by the opening and closing tag of an element
is called theelement content, if this again includes elements, those are calledchild elementsof the ele-
ment. Child elements of the sameparentare calledsiblings. In the example above, the element with label
address-book contains two child elements with labelperson , each of which contains child elements with
labelsname andemail . As with every well-formed term structure, it is easy to see that the nesting of such
elements describes a tree structure.

For retrieving the phone number of the person with first name “Mickey” and last name “Mouse” using
a navigational query language, one has to construct a path expression that navigates this tree structure by
first looking at the element with labeladdress-book , then moving to each child element labelledperson
in turn and from there into thename, first andlast elements to ensure that the person is in fact “Mickey
Mouse”, then back again to select the content of the sibling element labelledphone . In XPath, this selection
can thus be expressed as follows:

3XQuery, XSLT and XPath are introduced in much more detail in Chapter 3
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/child::address-book/child::person/child::name[chil d::first="Mickey" and
child::last="Mouse"]/following-sibling::phone

Navigation paths enclosed in[ ] are so-calledqualifiersthat are used as conditions for selecting elements,
i.e. in the example above, they are used to select only suchname elements that have a child with label
first and content “Mickey” and a child with labellast and content “Mouse”.

Arguably, such a path navigation is often straightforward for simple queries, but can be awkward for
everything that goes beyond that, as longer queries become difficult to comprehend and the structure of the
queried data is lost. Furthermore, the navigational approach only allows to select one data item at a time.
For example, it is not possible to select both the phone number and the email address in a single query.
Instead, several queries have to be performed and the results composed afterwards.

Another problem is that it is possible to use many different path expressions to select the same data
items. The path expression used above retrieves the same data as the following XPath expression (which
differs in that it selects the phone number as child of theperson element instead of as sibling of thename
element):

/child::address-book/child::person[child::name/chil d::first="Mickey" and
child::name/child::last="Mouse"]/child::phone

Note that if a person entry contained twoname children instead of only one, the two XPath expressions
would in fact differ, because the second expression could select thefirst element of the firstnameelement,
and thelast element of the secondname element, whereas the first XPath expression requires both tobe
children of the samename element.

In addition, XPath also supports backward navigation stepsthat allow to specify navigations that move
upwards in the tree. A third XPath expression using backwardnavigation steps (parent::* ) that retrieves
the same data as the previous two is for example:

/child::address-book/child::person/child::name[chil d::first="Mickey" and
child::last="Mouse"]/parent::*/child::phone

Note that backward navigation steps require to also keep in memory such nodes that have already been
visited and thus can be problematic with respect to efficiency. Moreover, patterns with backward steps are
often difficult for a programmer to understand and/or correctly specify.

Obviously, this multitude of different path expressions for the same query also contributes to queries
being difficult to comprehend.

The Positional Approach

In contrast, in apositionalor pattern-basedapproach a query pattern is like aform that gives anexampleof
the data that is to be selected, like the forms of the languageQBE [127] or query atoms in logic program-
ming. So as to retrieve data items, a query pattern can furthermore be augmented by zero or more variables.
In a pseudo XML notation, the query for the phone number of “Mickey Mouse” could be expressed in a
pattern as follows (variables are, as in XQuery, indicated by a leading$):

<address-book>
<person>

<name>
<first>Mickey</first>
<last>Mouse</last>

</name>
<phone>$PHONE</phone>

</person>
</address-book>

Note how the query pattern very closely resembles the queried data. As a query pattern may contain
more than one variable, also selecting the email address is atrivial task:

Sebastian Schaffert 7
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<address-book>
<person>

<name>
<first>Mickey</first>
<last>Mouse</last>

</name>
<phone>$PHONE</phone>
<email>$EMAIL</email>

</person>
</address-book>

Arguably, such a pattern-based approach to querying has several advantages compared to the path-based
approach discussed above:

1. Query patterns resemble the data very closely and are thuseasy to grasp.

2. Query patterns provide only a limited set of possibilities to select the same data items.

3. The higher level of abstraction of query patterns leaves more room for automatic optimisations.

4. In query patterns, several data items can be selected in a single query (using one variable for each
item).

Interestingly, a navigational language that only allows forward axes is very similar to a query pattern (with
only a single variable). The article [81] shows that any XPath expression containing backward navigation
steps can be transformed into an expression containing onlyforward navigation steps. Thus, query patterns
are at least as expressive as path selections.

One of the goals of this thesis is to show that a pattern-basedapproach to querying Web data is feasible
and may result in simpler, more declarative queries. Pattern-based queries for querying Web data have
first been proposed in the languages UnQL [31] and XML-QL [45], but those languages have never gained
much acceptance. Xcerpt, presented in this thesis, builds upon these approaches and improves them in
many aspects.

Comparison with Relational Database Query Languages

Note that query languages for relational database systems usually also use a path-based approach (based
on thetuple calculus[41, 42]). Suppose the address book used above is given as a table (or relation) in a
relational database as follows:

addressbook first last phone email

Mickey Mouse 19281118 mickey@mouse.org
Donald Duck NULL donald@duck.com

An SQL expression selecting the phone number of Mickey Mousewould look as follows (in a verbose
notation that adds the relation name to all selections, so asto resemble the XML example above more
closely):

SELECT addressbook.phone
FROM addressbook
WHERE addressbook.first=’Mickey’ and addressbook.last= ’Mouse’

In relational database systems, the path-based approach (expressed in thetuple calculus) is however
very similar to the pattern-based approach (expressed in the domain calculus), because the flat, relational
tuples (in the first normal form) do not leave much room for navigation steps. A transformation from path-
based into pattern-based queries and vice versa is possibleand has been shown byEdgar Codd[41, 42]. In
Datalog (cf. for example [101]), which is very close to the domain calculus, the query above is expressed
as follows using atomic formulas (from first order logic) as query patterns:

8 Sebastian Schaffert
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phone(P) :- addressbook(’Mickey’,’Mouse’,P,_) .

If one goes beyond such simple structures, like XML documents or non-first normal form tuples, the
difference becomes increasingly apparent (like in the XML examples above).

In relational databases, a language that employs a positional approach is the languageQBE[127] (query
by example), which is the foundation of the easy-to-use database user interface MS Access. In QBE, a query
for the phone number of Mickey Mouse can be specified by givinga query pattern of the following form:

addressbook first last phone email

Mickey Mouse P._email

The email address is bound to the variable_email and printed by the commandP. . Note the similarity of
this QBE query pattern and of the first order logic or Datalog formula.

Comparison with the Object Query Language OQL

Object oriented database systems are capable of representing tree and graph shaped data very similar to
the trees and graphs represented by XML (but requiring a muchmore rigid structure). The most prominent
language for object oriented database systems isOQL [5] (theObject Query Language). Being influenced
by SQL, OQL also uses path-based selections of values in the data tree. In OQL, the query for the phone
number of the person with first name “Mickey” and last name “Mouse” is specified as follows (note the
close resemblance with the XPath selection):

SELECT p.phone
FROM AddressBook a, a.person p
WHERE p.name.first = ’Mickey’ AND p.name.last = ’Mouse’

1.3.4 Incomplete Specification of Query Patterns

Although query patterns resemble terms or atoms in logic programming, they have to take into account
properties that are peculiar to Web data and queries to the Web4. The most significant difference is that
Web data (as represented in HTML or its generalisation XML) has a much more flexible schema compared
to data in logic programming or relational databases, even to the extent that much of the schema might be
unknown or irrelevant to a query author.

Consider for example an address list published on a Web page.Although this data might conform to a
certain schema (like HTML), the actual structure of the document is still largely unknown, because schemas
for data on the Web allow much flexibility (like arbitrary repetition of substructures, optional substructures
or alternative substructures). For instance, the address list might contain presentational markup and an
introductory text, but a query for the phone number of “Mickey Mouse” should be equally valid if it does
not, since these parts are irrelevant to the query.

The “rigid” query patterns of logic programming are not feasible for such queries: authors of a query
would need to consider the complete and exact structure of the document and provide at least wildcards for
data that is irrelevant to the query, i.e. they still have tocareabout somethingirrelevantor unknown.

For a pattern-based Web query language, it is thus desirableto be able to specifyincomplete query
patterns. Incompleteness has several facets:

1. Incompleteness inbreadth5 allows to omit wildcards for neighbouring nodes in the data tree. E.g.
in a query for the phone number in an address book, it is not necessary to provide wildcards for all
email addresses that might also be part of the address book entry.

2. Incompleteness indepthallows to select data items that are located at arbitrary, unknown depth and
skip all structure in between. E.g. when querying address entries in a Web page that are located in a
table somewhere in an HTML element, it is possible to just skip all intermediate structure between
the root node of the data tree and the table containing the entries.

4Chapter 2 discusses in more detail how data is represented onthe Web
5Breadthanddepthrefer to the tree or rooted graph induced by an XML document. This graph is further discussed in Section

2.5.
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3. Incompleteness with respect toorder allows to specify neighbouring nodes in a different order than
the one in that they occur in the data tree. E.g. when selecting the phone number and email of an
address book entry, it is irrelevant whether the email address occurs before or after the phone number.

4. Incompleteness with respect tooptional elementsallows to query for certain substructures if they
exist, but still let the query succeed if they do not exist. Inthe address book, this may be used to
select the phone number if it exists, but still retrieve the name, regardless whether or not it does.

A further goal of this thesis is to discuss extensions to the (elementary) query patterns of logic program-
ming, i.e. the atomic formulas of first order logics, that aresuitable to querying conventional and Semantic
Web data featuring various facets of incompleteness.

1.3.5 Rules

Deduction Rules

The language Xcerpt described in this thesis usesdeduction rules(or short“rules” ) to structure query pro-
grams. A deduction rule is simply anif . . . then . . .statement. If the condition (a query pattern) is satisfied,
then the consequence (a result or construction pattern) is assumed to hold. Usually, the construction pattern
uses data selected in the query pattern. Thus, a deduction rule is similar to aVIEW in relational database
systems.

For instance, a rule may be used to express thatif the query for the email address of “Mickey Mouse”
succeedsthenthere exists a row in an HTML table listing this address:

if

<address-book>
<person>

<name>
<first>Mickey</first>
<last>Mouse</last>

</name>
<email>$EMAIL</email>

</person>
</address-book>

then

<tr>
<td>Mickey Mouse</td>
<td>$EMAIL</td>

</tr>

The condition part of a rule (introduced byif ) is often referred to in the following as thebodyor query part
of a rule, whereas the consequence (introduced bythen) is often referred to as theheador construct part
of a rule.

Arguably, rules are declarative, rather easy to understandand provide a high level of abstraction. They
are thus well suited for both, novice users who only casuallywrite queries, and experienced programmers
who want to write complex query programs.

Rule Chaining

Since a rule defines itself new data of the same kind as the queried data (similar toVIEWS in relational
database systems), it is also possible to query this new databy other rules. This process is often referred
to asrule chaining. Rule chaining can serve to conceptually structure larger programs into parts that are
easier to manage. Such structuring is advantageous for both, the human user (as programs can be grasped
and maintained more easily), and the machine (as code can possibly be reused and does not need to be
processed more than once during parsing). In a sense, rule chaining can thus be compared to function or
subroutine calls in programming languages.

Furthermore, rule chaining is necessary to performdeduction, i.e. to specify how non-existing data is
derived from existing data. Deduction rules thus allow to give intensional semantics to data, very much
like rules in logic programming, and might be well-suited for Semantic Web applications.
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Recursion

Querying Web data often requires more expressive power thanis usually found in query languages, e.g. for
complex restructuring of tree or graph structured data [4],or to define infinite data sets [101]. To provide
this expressive power, it is sometimes desirable to allowrule recursion, i.e. a rule may query not only
the results of other rule applications but also the results of a previous application of itself. An interesting
application for recursive rule chaining is e.g. a Web crawler that recursively follows the hyperlinks found
in an HTML document.

This thesis aims at demonstrating this on a wide range of example applications (Chapter 5 is dedicated
to different use-cases and applications of Xcerpt).

1.3.6 Forward and Backward Chaining

Forward and Backward Chaining

Chaining in rule-based languages can be evaluated using twodifferent approaches:

• Forward Chaining. Forward Chaining is adata drivenapproach. Starting with the initial database,
rules are evaluated iteratively against the data until saturation is achieved (“fixpoint”), i.e. no rule
application yields data items that have not already been deduced. Forward Chaining is useful for
instance for materialising views and for view maintenance,but can be problematic if the fixpoint is
infinite, i.e. the iteration never terminates. Also, as forward chaining is not goal oriented, most of the
derived data is usually irrelevant to the query.

• Backward Chaining. Backward Chaining is aquery drivenapproach. Beginning with a dedicated
query called thegoal, program rules and data items are recursively selected if they are relevant for
“proving” that a query succeeds. The query is then replaced by the query part (possibly consisting
of a conjunction or disjunction of smaller queries) of the selected rule, and the process is repeated
until all queries can be evaluated against data items in the database (“facts”). Backward Chaining
is useful when the expected result is small in comparison with the number of possible results of the
program. Thus, backward chaining is goal-oriented. On the other hand, naı̈ve backward chaining
may not terminate even in cases where the fixpoint is finite andforward chaining is guaranteed to
terminate.

Rule-based query languages for traditional database systems, likeDatalog[101], often implement for-
ward chaining, because forward chaining can be evaluated more efficiently and its implementation is usu-
ally straightforward. If recursion is not allowed (e.g. when materialising views), or if there are no so-called
dependency cyclesin the data considered, forward chaining is also unproblematic since it always termi-
nates. On the other hand, logic programming languages usually implement backward chaining, as they are
working with more complex data structures and thus allow recursion, and do not require dependency cycle
freeness of the data.

On the Web, both a forward and a backward chaining approach appear to be desirable. Forward chain-
ing is useful to materialise query results, e.g. for creating static Web pages from an XML document that
specifies the content and a query program that adds styling information. Backward chaining is useful if the
queried data is not a local resource but instead the Web itself, which is – although finite – very large and
difficult to grasp as a whole, as pages might for instance not be available at the moment. Although possible
in theory, considering the whole Web as a starting point for aforward chaining evaluation is not viable in
practical applications, because the size of the Web exceedsthe limit for reasonable response times.

This thesis mainly investigates backward chaining for evaluating query programs. This decision has
several interesting consequences, most notably the introduction of a new, non-standard unification algo-
rithm and a runtime engine based on constraint solving.

Non-Standard Unification

When using backward chaining, simple pattern matching of incomplete patterns with data items of a
database is not sufficient: queries need to be evaluated against rule heads that might also contain vari-
ables, and variables thus cannot always be bound only to non-ground values. It is furthermore usually
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<ul>
{ FOR $person in document("addressbook.xml")//person,

$first in $person/name/first/text(),
$last in $person/name/last/text()

RETURN
<li> { $first } { $last } </li>

}
</ul>

Figure 1.2: XQuery uses subqueries for grouping: This queryconstructs an HTML list from an address
book.

if

<address-book>
<person>

<name>
<first>$FIRST</first>
<last>$LAST</last>

</name>
</person>

</address-book>

then
<ul>
all <li> $FIRST $LAST </li>

</ul>

Figure 1.3: Grouping withall in a pattern and rule-based query language with strict separation of querying
and construction

desirable to also bind (orrestrict) the variables in the rule head so as to improve performance by restricting
the set of possible answers early in the chaining process.

Therefore, logic programming languages that rely on backward chaining, likeProlog, use a method
calledunification instead of pattern matching, first introduced by Robinson in1965 [91]. A unification
yields variable bindings whose application makes the queryand the rule head syntactically equal except
for variable renaming. However, thisstandard unificationdoes not take into account incomplete query
patterns like those that are used in Xcerpt. An important part of this thesis is therefore to introduce a new,
non-standard unification calledsimulation unificationthat respects incomplete query patterns.

1.3.7 Separation of Querying and Construction

A further salient property of the language Xcerpt, and one that distinguishes it from almost all other Web
query languages, is that it strictly separates querying from construction. Such a separation is desirable as
the data items that occur in a query pattern are those of the queried data, while the data items occurring in
a construction pattern are those of the resulting data. In XML terms, this means that in general, the two
belong to different schemas. Mixing them makes programs more difficult to conceive and thus can result
in avoidable programming errors.

A fundamental aspect of this strict separation is that – unlike in other query languages – it is not
possible to use embedded subqueries in the style of XQuery orSQL in Xcerpt. While rule chaining can
be a substitute for many subqueries, it is not possible to useit for groupingseveral data items within a
single Web page. Grouping is e.g. necessary to arrange all entries of an address book in an HTML list.
Whereas other query languages like XQuery use a subquery andan iteration construct for this purpose
(Figure 1.2), Xcerpt introduces a special construct calledall that declaratively specifies that data items
selected in a query pattern have to be grouped (Figure 1.3) inthe separated construction pattern. Like in
SQL, the grouping constructall can be used together with aggregation functions to compute aggregated
values; unlike SQL, it can also be used without aggregation functions, in which case it serves to construct
a list of subterms. Thus,all takes into account the nested term structure of XML documents.
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CHAPTER 1. INTRODUCTION

1.3.8 Reasoning Capabilities

As already mentioned in theMotivation, the Semantic Web aims at adding meta-data to resources on the
Web that allow toreasonwith data and thus provide a certain amount of “intelligence” to data processing
on the Web. Current proposals for the specification of meta-data are theResource Description Framework
(RDF) [119], Topic Maps[85], and theOntology Web Language(OWL) [118], which are all based on
XML as a format for data representation. Nonetheless, most XML query languages are not well suited
for querying such data, wherefore several new query and reasoning languages for Semantic Web data have
been proposed (e.g.RQL [64] and OWL-QL [48]). However, all current proposals are special purpose
languages that only allow to implement specific forms of reasoning, e.g. those of a certain description logic
like SHIQ [58, 59], and are only capable of querying certain kinds of data, e.g. expressed in theResource
Description FrameworkRDF [119], or theWeb Ontology LanguageOWL [118].

Such restrictions, while acceptable for research purposes, are not desirable in practise, as they artifi-
cially separate querying and working with data from querying and working with meta-data. However, XML
query languages should be able to profit from semantic information in all possible formats and likewise,
queries to Semantic Web data should be able to also query XML content.

The last principle is therefore to support the implementation of a wide range of different reasoning
algorithms for the Web (without committing to a single formalism), while at the same time being capable
of querying any kind of Web data. The rule-based approach used by Xcerpt is promising for this task, as
the rules are very similar to the inference or deduction rules in logic programming, and rule chaining with
recursion allows to build complex reasoners. At the same time, Xcerpt is developed as a query language
for Web data and thus provides capabilities to easily retrieve both data and meta-data. In addition to an
implementation in Xcerpt, certain constructs that are frequently needed for querying the Semantic Web
might be built natively into the language Xcerpt for efficiency reasons (cf. Section 9.2).

The implementation of Semantic Web reasoning algorithms inXcerpt is not covered extensively in this
thesis, but some small examples of Semantic Web applications are provided. Applying Xcerpt to Semantic
Web reasoning is, however, currently being investigated inseveral related projects.

Sebastian Schaffert 13
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CHAPTER

TWO

Data Representation on the Web

The Internet and the Web have changed the way of how information is authored and represented in many
ways. While the only possibility to author text and make it available to a wider audience used to be to
submit it to a journal or to publish a book, which usually meant a rather thorough reviewing process and
possibly involved considerable expenses, the Web allows anyone to author, access and publish content
very easily, which results in a huge amount of documents withusually differing structures. Likewise,
whereas data mostly used to be stored in large, central databases with relatively homogeneous structure
and restricted access, information on the Web is decentralised, heterogeneous and often allows access by
anyone1. While there are also many social issues associated with this change, the main focus of this thesis
is on the new way how data is represented on the Web.

Two initially independent developments contribute to thisrepresentation: theextensible markup lan-
guage(XML), which has its roots in the document representation community, and the concept ofsemistruc-
tured data(SSD), which has been developed to represent heterogeneousdata that is not well-suited for tra-
ditional database systems. Sections 2.1 and 2.2 give introductions into semistructured data and XML. They
follow similar descriptions in [27] and [4]. XML and semistructured data have many concepts in common,
and consequently, Section 2.3 tries to bridge the gap between the two. Three larger example scenarios for
XML and semistructured data are given in Section 2.4, which will also be referred to in other parts of this
thesis. Section 2.5 continues with a graph representation of semistructured data and of XML. Finally, Sec-
tion 2.6 introduces the notion ofrooted graph simulation, which is a similarity relation between two graphs
that can serve as a foundation for both, querying graph structured data and validating graph structured data
against a schema, and which is thus the base for the language Xcerpt presented in this thesis.

Beyond the information provided in this Chapter, interested readers might find a good introduction into
the history of the Web in Tim Berners-Lee’s bookWeaving the Web[18]. A more thorough overview over
semistructured data and the Web is provided by the bookData on the Web[4].

2.1 Semistructured Data

2.1.1 Traditional Database Systems

Traditional database management systems (DBMS) – i.e. object-oriented, relational, hierarchical or net-
work database management systems – require to specify a rigid schemain advance of storing any data. A
schema defines in which structures data items have to be arranged if they are to be stored in the DBMS. For
instance, in relational DBMS, the schema definition specifies which relations are available and how many
and what kinds of fields they allow.

Such a schema definition isrigid in the sense that (1) all data must adhere to it, and (2) it has to be
defined in advance. Whereas this restriction might be sensible in traditional database systems that store a

1A premier example of this isWikipedia, the online encyclopedia, to which anyone can contribute with minimum technical
efforts. (http://www.wikipedia.org )
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huge amount of very uniform data, it is undesirable on the Web, where the data is very heterogeneous and
might come from different sources. It furthermore deters many users from authoring content, as they either
fear or are not proficient with in-advance schema definitionsand prefer to let the schema evolve during the
authoring process.

A further disadvantage of this approach is that data is usually not self-explanatory and invalid without its
schema information. For example, a tuple of("Mickey","Mouse",19281118) does not fully convey what
kind of information it represents. The fact that “Mickey Mouse” is probably a name can be guessed from the
data with reasonable certainty. But the meaning of the value19281118 is unclear without further schema
information, it might for example be the birth date, a socialsecurity number, or a telephone number2.
However, self-explanatory data is desirable on the Web, as such data is often exchanged between different
parties (and thus systems) not sharing a common schema or data representation format.

Of course, it has to be mentioned that a rigid schema definition also has many advantages, most of
them of technical nature (optimisability, data storage) and some of social nature (author has to think about
the schema in advance), which are the reasons why rigid schemas are well established in current database
systems.

2.1.2 Semistructured Data

Semistructured data has been of interest in database research since the mid-nineties [3, 4, 30, 36, 62, 83].
In contrast to the traditional database management systemsdescribed above, semistructured data does not
require a schema definition. For this reason, semistructured data was first referred to asunstructured data
[30]. This term has been abandoned because it does not conveythat semistructured datadoeshave structure,
the structure is merely not given separately and in advance,but instead is part of the data. The term
semistructured datadescribes such data more adequately: neither is the data fully structured with a rigid,
in-advance schema (like in traditional database management systems) nor is it completely unstructured
(like raw images or plain text). Instead, it is “structure-carrying” or “self-describing” and thus allows very
flexible structuring of the data.

Semistructured data is syntactically represented bysemistructured expressions, which are very similar
to term structures in logic or functional programming languages. The example above can be represented as
a semistructured expression as follows:

person [
name [

first [ "Mickey" ],
last [ "Mouse" ]

],
phone [ "19281118" ]

]

This data item is self explanatory, as the structure is part of the data.
Semistructured data is not limited to flat tuples or tree structured data as the example above might

imply. Graph structures can be represented in semistructured expressions by means ofobject identifiers
andreferences. The following extension of the address book adds a subexpressionknows to the two person
entries so as to represent thatMickey Mouse knowsDonald Duck and vice versa:

address-book [
&o1 @ person [

name [
first [ "Mickey" ],
last [ "Mouse" ]

],
phone [ "19281118" ],
knows [ &o2 ]

2It is, in fact, the (assumed) birth date (18th of November, 1928) of Mickey Mouse

16 Sebastian Schaffert



CHAPTER 2. DATA REPRESENTATION ON THE WEB

phone knowsname

person

name knows

person

address−book

first last first last

"Mickey" "Mouse"

"50773"

"Donald" "Duck"

&o2&o1

Figure 2.1: Graph induced by a semistructured expression

],
&o2 @ person [

name [
first [ "Donald" ],
last [ "Duck" ]

],
knows [ ˆ&o1 ]

]
]

Note also, that this semistructured “database” has two entries with differing structure: whereas the first
entry contains a phone number, the second does not.

Figure 2.1 illustrates the graph induced by the example above. Note that this thesis uses node-labelled
graphs whereas in [4], graphs are edge-labelled.

Expressions of the form&n are calledreferencesor object identifiers(oid). Occurrences of the form
ˆ&o1 arereferring occurrences, occurrences of the form&o1 @ person [ ... ] aredefining occurrences
of an oid. An object identifier can be defined exactly once, butreferred to 0 or more times. If an oid is
referred to, then it has to be defined as well.

Furthermore, it is often useful to distinguish betweenorderedandunordereddata. Consider for instance
a publication list of the following form3:

publications [
book [

title [ "Folket i Birka p å Vikingarnas Tid" ],
authors [

author [ "Mats Wahl" ],
author [ "Sven Nordqvist" ]
author [ "Bj örn Ambrosiani" ]

]
],

3The titles translate from Swedish to English as “The people of Birka in the Viking Age” and “The Book about Vikings”
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book [
title [ "Boken Om Vikingarna" ],
authors [

author [ "Catharina Ingelman-Sundberg" ]
]

]
]

This semistructured expression contains both ordered and unordered content: whereas it might be irrelevant
whether the first book occurs before the second, the order of authors might be significant for correct cita-
tions. Unordered content leaves a certain amount of freedomfor storage systems, in that they can decide to
rearrange data for more efficient storage or for building indexes. It is thus convenient to provide constructs
for expressing ordered sequences (denoted by[...] ) and unordered sequences (denoted by{...} ). With
this extension, the semistructured database above can be represented as follows:

publications {
book {

title [ "Folket i Birka p å Vikingarnas Tid" ],
authors [

author [ "Mats Wahl" ],
author [ "Sven Nordqvist" ]
author [ "Bj örn Ambrosiani" ]

]
},
book {

title [ "Boken Om Vikingarna" ],
authors [

author [ "Catharina Ingelman-Sundberg" ]
]

}
}

The syntax chosen for semistructured expressions in this Section deliberately deviates from other syn-
taxes as described e.g. in [4] and is closer to the syntax of the language Xcerpt introduced later in this thesis.
More formally, semistructured expressions are defined as follows using a context free grammar (following
a Definition in [27] and [28]):

1 <sse> := ( oid "@" )? ( label "{}" | label <list>) .
2 <list> := <ordered-list> | <unordered-list> .
3 <ordered-list> := "[" <sse-or-reference> ( "," <sse-or-re ference> )* "]" .
4 <unordered-list> := "{" <sse-or-reference> ( "," <sse-or- reference> )* "}" .
5 <sse-or-reference> := <sse> | ’"’ string ’"’ | "ˆ" oid .

In this grammar, expressions between< and> are non-terminal symbols (or variables).@, ˆ , "[" , "{" ,
"]" and "}" are terminal symbols.oid and label denote object identifiers and expression labels (tag
names), respectively.

If a semistructured expressione is of the formlabel[t 1,...,t n] or label{t 1,...,t n} , then thet i

are calledsubexpressions of e.

2.1.3 Other Languages for Representing Semistructured Data

Besides the semistructured expressions used above, several other formalisms have been proposed in the
literature, most notablyOEM/LoreandACeDB, which are briefly introduced below:
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OEM/Lore

OEM, theobject exchange model, was developed as part of theTsimmisproject at Stanford [36, 83, 54],
a project aiming at integrating heterogeneous informationsources. According to [4], “an OEM object is a
quadrupel(label,oid,type,value) , wherelabel is a character string,oid is the object’s identifier, and
type is eithercomplex or some identifier denoting an atomic type (likeinteger , string , gif-image ,
etc.). Whentype is complex , then the object is called acomplex object, andvalue is a set (or list) of oids.
Otherwise, the object is anatomic objectandvalue is an atomic value of that type.” In the original OEM,
graphs are thus node labelled, like in this thesis.

Most other representation formats are variants of OEM, so that OEM can be considered the de facto
standard for representing semistructured data. In particular, Lore [2] is an edge-labelled variant of OEM,
and used as the primary representation for semistructured data in [4] and [31].

In Lore, the address book example used above is expressed as follows:

{address-book: {
person: &o1{

name: { first: "Mickey", last: "Mouse" },
phone: 19281118,
knows: &o2

},
person: &o2{

name: { first: "Donald", last: "Duck" },
knows: &o1

}
}

OEM/Lore does not differentiate between ordered and unordered content.

ACeDB

ACeDB (A C. elegansDatabase) [62, 4, 21] is a database system originally developed to store genetic data
of a specific organism (C. elegans). As such data is usually rather heterogeneous and often incomplete,
ACeDB is capable of dealing with missing parts or loose structure and can thus be considered as a general
format for representing semistructured data, although ACeDB initially was not developed for this purpose.

Unlike other languages for semistructured data, ACeDB requires the definition of a schema. However,
the data is not required to strictly conform to it, data itemsmay be missing. Also, the data itself still carries
the structure necessary to identify data items.

The address book example can be expressed using ACeDB as follows:

?Person name UNIQUE first Text
last Text

phone Text
knows ?Person

&o1 name first "Mickey"
last "Mouse"

phone "19281118"
knows &o2

&o2 name first "Donald"
last "Duck"

knows &o1

The first block defines the schema of the data. A person must have a unique name, and may have a phone
number and know other persons. The second and third block comprise the data items representing the two
persons.
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2.2 XML – the Extensible Markup Language

This section introduces into XML, theeXtensible Markup Language. Section 2.2.1 begins with a short
introduction into the concept ofmarkup languagesand Section 2.2.2 briefly summarises the history and
motivation that lead to the development of XML. Theanatomy of an XML document(Section 2.2.3) intro-
duces into the building stones from which XML documents are composed, namely theprologue, character
sets, elements, character data, attributesandentities. This introduction is not complete, but should pro-
vide a good understanding for XML. Section 2.2.4 briefly introduces two XML schema languages,DTDs
andRelax NG. The XML reference mechanismsID/IDREF is presented in Section 2.2.5. In order to use
elements structured according to different schemas withina single document, XML supports so-called
namespaces, which are discussed in Section 2.2.6.

2.2.1 Markup Languages

The notionmarkuporiginates from the verb “to mark up”, which means to annotate text documents with
formatting instructions for use in type setting. Amarkup languagedefines a set of valid instructions for
marking up text documents. Three kinds of markup languages are usually differentiated: (1)specificor
layout orientedmarkup languages, (2)generalisedor structure orientedmarkup languages, and (3)generic
or metamarkup languages.

Specific or Layout Oriented Markup Languages

Specific or layout oriented markup languages contain a fixed set of formatting instructionsthat may be
used to mark up text documents (e.g.bold or italic). Examples for such languages arePostScript[89],
which provides instructions for typesetting a document on aprinter, orHTML (thehypertext markup lan-
guage) [109, 107], which is a markup language that provides instructions for rendering documents in a Web
browser. For example, the HTML expression<b>Mickey Mouse</b> formats the textMickey Mouse in
bold font.

Generalised or Structure Oriented Markup Languages

Generalised or structure oriented markup languages contain a fixed set of instructions that allow to structure
a document logically (e.g. inchaptersandsections). Examples for such languages are the venerableDCF
GML (Document Composition Facility Generalized Markup Language) [53] or DocBook4, a language
designed for structuring documents into chapters, sections, etc.

Generic or Meta Markup Languages

Generic or meta-markup languages allow to define custom markup languages. They do not specify any
markup, but are instead a means for defining new markup, both for structure and presentation. The most
widespread such language isSGML, the Standard Generalized Markup Language[1], but it is increas-
ingly superseded by XML. In spite of its name5, SGML is a meta markup language that originated in the
document management community as a unified method for defining markup languages (calledSGML ap-
plications) for structured documents. For example, both HTML and DocBook are specified as an SGML
application.

An SGML application is defined in terms of a grammar specified in adocument type definition(DTD),
which is like a database schema definition, albeit for text markup. SGML schemas are mandatory: every
SGML document is required to be associated with and conform to a schema.

4http://www.docbook.org
5SGML was developed as a refinement of DCF GML and kept the name “generalised” from that language
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2.2.2 A Generic Markup Language for the Web

Although HTML has many deficiencies and has thus undergone significant changes, the Web of the year
2004 mostly consists of HTML documents containing text content with presentational markup. There are
probably three reasons for this: (1) HTML allows users to easily define hyperlinks (i.e. clickable references
to other documents), (2) HTML isopen, i.e. it is not restricted to a specific product and availableto anyone,
and (3) HTML issimple to useand thus enables a wide variety of users to author content [18].

However, the limitation to presentational markup is one of HTML’s most significant disadvantages:
most data available on the Web is – although machineprocessable– not machineunderstandable, i.e.
computers are able to process and display the data but have nomeans to reason with it. For example, a web
shop might list articles with prices in an HTML table, but thebrowser of a user is not aware of the fact that
certain numbers are prices whereas other numbers merely identify products.

A generic markup language like SGML would improve this situation significantly: authors of Web
pages can “mark up” all prices with custom markup such that they can be automatically recognised by
machines. The problem with SGML is that it is complicated to use, as it always requires to adhere to a
possibly complex schema, and allows many abbreviations (like omitting of closing or opening tags or tag
minimisation) that can lead to confusion or ambiguities.

Recognising the deficiencies of HTML and SGML, theWorld Wide Web Consortium(W3C) proposed
in 1996 the language XML, theeXtensible Markup Language[116], which aims at unifying the advantages
of SGML and HTML in providing a meta-markup language that allows to define custom markup, but which
keeps the simplicity of HTML so as to enable a wide range of authors and application programmers to use
it. In particular, XML simplifies SGML in the following aspects:

• it removes ambiguous constructs liketag minimisation(as in<b>Mickey Mouse</> ), interleaved
opening and closing tags(as in<b><i>Mickey Mouse</b></i> ), etc.

• it allows documents without a schema definition

• it supports hyperlinks and references

• is is intended to be used not only for documents but also for data items

Or to quote Tim Berners-Lee in anScientific Americanarticle entitled “XML and the Second-Generation
Web”6:

“Just as HTML created a way for every computer user to read Internet documents, XML makes
it possible, despite the Babel of incompatible computer systems, to create an Esperanto that
all can read and write. Unlike most computer data formats, XML markup also makes sense to
humans, because it consists of nothing more than ordinary text.”

Although initially developed primarily as a document representation format, “to meet the challenges
of large-scale electronic publishing”7, XML is now increasingly being used for data exchange and storage.
The development of native XML database systems like Xindice8, eXist9 or Tamino10, and data exchange
formats like SOAP11 bear testimony of this development.

Nowadays, it is necessary to differentiate between XML as alanguageand XML as anactivity, which
contains a plethora of different developments centered around XML, like XML Schema12, XML Linking13

andXML Query14. While many of these activities are often criticised for their complexity and redundancy,
XML as a language is mostly considered to be well established.

6http://www.sciam.com/article.cfm?articleID=0008C786 -91DB-1CD6-B4A8809EC588EEDF
7http://www.w3.org/XML/
8http://xml.apache.org/xindice/
9http://exist.sourceforge.net/

10http://www.softwareag.com/tamino/
11http://www.w3.org/TR/soap12-part0/
12http://www.w3.org/XML/Schema
13http://www.w3.org/XML/Linking
14http://www.w3.org/XML/Query
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2.2.3 Anatomy of an XML Document

An “XML document” is a file, or collection of files, that adheres to the general syntax specified in the
XML Recommendation [116], independent of the concrete application. XML documents consist of an
optionaldocument prologueand adocument treecontainingelements, character dataandattributes, with
a distinguished root element.

Document Prologue

The document prologue is used to define properties of an XML document, like the version of XML used,
the character encoding, processing instructions and schema information. It consists of the following parts:

• a mandatoryXML declarationdenoted by<?xml version="1.0" ...?> which specifies the ver-
sion of XML used, and optionally the encoding of the document.

• zero or more application specificprocessing instructionsthat may be evaluated when loading an
XML document denoted by<?target data?> , wheretarget identifies the application to which
the instruction is directed, anddata represents additional information for the application

• an optional schema declaration in terms of a DTD, defined either internally, or system file, or as a
public identifier associated with a DTD which is assumed to beknown to the processing program15.

Example 2.1 (XML Document Prologue)
The following document prologue initiates an XML document in DocBook format (the DTD of which is
identified by a public identifier), to be processed with a stylesheetstylesheet.css and an encoding of
ISO-8859-15 (Western Europe with Euro):

<?xml version="1.0" encoding="ISO-8859-15"?>

<?stylesheet href="stylesheet.css"?>

<!DOCTYPE book PUBLIC "-//Norman Walsh//DTD DocBk XML V1.4 /EN"
"http://docbook.org/docbook/xml/1.4/db3xml.dtd">

Although several improved schema languages like XML Schema[111] and Relax NG [39] for XML exist,
both XML 1.0 and the recently released XML 1.1 only support the declaration of DTD schemas in the
document prologue (see schema languages below).

Character Set and Encodings

Since the Web is a place containing documents in many different languages, XML has been designed as
an internationalised language from the beginning. XML supports all characters defined in ISO/IEC 10646
(a superset of Unicode16), amounting to approximately 4 billion. To represent thesecharacters in concrete
documents, XML supports a variety of encodings, which can bespecified in the XML declaration of the
document prologue. Table 2.1 lists some of the more frequentcharacter encodings17. Of these encodings,
XML language processors need to implement at leastUTF-8 andUTF-16 .

Elements

Elements are used to “mark up” the document. They are identified by a label (calledtag name) and specified
by opening and closing tags that enclose the element content. Opening tags are of the form<label ...>
and contain the label and optionally a set of attributes (seebelow). Closing tags are of the form</label>
and contain only the label. Labels start with either an alphabetical character (with respect to the defined
character encoding) or with underscore_. They may contain any alphanumeric characters, and the signs_,
- , : and. . The character: is reserved for separating namespace prefixes from element names.

15public identifiers are commonly used for widespread XML applications like XHTML or DocBook
16http://www.unicode.org
17A comprehensive list can be found at WikiPedia:http://en.wikipedia.org/wiki/Character_encoding
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ASCII American Standard for Character Information Interchange, 7-bit
Big5 Traditional Chinese, Hong-Kong and Taiwan, 2 byte
GB2312 Simplified Chinese (Guójiā Biāozȟun Mǎ), People’s Republic of China, 2 byte
ISO-2022-JP Japanese, 1-2 bytes variable length (compatible to ASCII)
ISO-8859-1 Latin, Western European without Euro, 8-bit
ISO-8859-2 Latin, East European, 8-bit
ISO-8859-15 Latin, Western European with Euro, 8-bit
KOI8-R Cyrillic, Russian, 8-bit
UTF-8 Unicode, 1-4 bytes variable length (compatible to ASCII)
UTF-16 Unicode, 2 byte

Table 2.1: Frequently used character encodings in XML

Example 2.2 (XML Elements)
<address-book>
content

</address-book>

Elements may contain either other elements, character data, or both (mixed content). In analogy with the
document tree, such content is often referred to aschildren of an element. Interleaving of the opening
and closing tags of different elements (e.g.<b><i>Text</b></i> ) is forbidden. The order of elements
is relevant (so-calleddocument order). This is a reasonable requirement for storing text data, but might
be too restrictive when storing data items of a database. Applications working with XML data thus often
ignore the document order. If an element contains no content, it may be abbreviated as<label/> , i.e. the
“closing slash” is contained in the start tag.

Example 2.3 (Empty Elements)
In HTML, line breaks are indicated by an empty element with labelbr . In XML syntax, this is specified as

<br/>

An XML document always contains a distinguished element called theroot elementthat encloses all other
content of the document. If a schema is associated with an XMLdocument, then the root element has to
be an instance of this schema in order for a document to bevalid . Documents that do not conform to a
specified schema, but otherwise adhere to the XML specification areinvalid, butwell-formed.

Character Data

Besides elements, XML documents may contain character data. In general, character data is written “as-
is”, i.e. it is not enclosed in special symbols like in many programming languages or the semistructured
expressions above.

Example 2.4 (Character Data)
The following XML document contains character data mixed with element content:

<document>
...
The quick brown fox <highlight>jumps</highlight> over the lazy dog.
...

</document>

Whitespace in character data is ignored and certain reserved characters (like<) are disallowed. Therefore,
XML provides an additional construct for escaping character data, so-calledCDATA sections. CDATA
sections are enclosed in<![CDATA[ and]]> .

Example 2.5 (CDATA Sections)
The following is only character data and does not contain markup:

<![CDATA[The quick brown fox <highlight>jumps</highligh t> over the lazy dog.]]>
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Attributes

Opening tags of elements may contain a set of key/value pairscalledattributes. Attributes are of the form
name = "value" wherename may contain the same characters as element labels and value is a character
sequence which is always enclosed in quotes" and in which white space is insignificant. An opening tag
may contain attributes in any order, but each attribute namecan occur at most once.

Example 2.6 (XML Attributes)
<person id="mickey mouse">

<name>
<first>Mickey</first>
<last>Mouse</last>

</name>
<phone type="home">19281118</phone>

</person>

XML defines certain reserved attributes, currentlyxml:lang (which defines the language of the element
content) andxml:space (which in XML 1.1 defines that whitespace is significant). Furthermore, certain
extensions of XML, likeXLink [110] andXML Namespaces[117], reserve attributes prefixed byxlink:
andxmlns: .

Example 2.7 (xml:lang)
The reserved attributexml:lang may be used to specify the language of element contents. Thismay e.g.
be used to specify two different titles for a book:

<book>
<title xml:lang="sv">

Folket i Birka p å Vikingarnas Tid
</title>
<title xml:lang="de">

Die Leute von Birka. So lebten die Wikinger.
</title>
<title xml:lang="en">

The people of Birka in the Viking Age
</title>

</book>

Entities

XML entities are a macro mechanism for reusing commonly usedcontent. In particular, the reserved
characters< and& can be expressed using entities. Note that, unlike many other macro mechanisms, XML
entities cannot be parametrised.

Entitiesare defined in the document type definition in the prologue of an XML document (or in an
external DTD) with the construct<!ENTITY name "value"> , which defines the entityname to be an ab-
breviation forvalue . value may contain any content, including markup.Entity referenceshave the form
&name; , wherename is the name of an either predefined or previously defined entity. The occurrence of
&name; is then literally replaced by the value of the entity.

Example 2.8 (Entities)
The following example defines an entitywarn to be the data<bold>Warning:</bold> (i.e. the word
“Warning” printed in bold face) and refers to it later by&warn; :

<?xml version="1.0" encoding="ISO-8859-15"?>

<!DOCTYPE paragraph [
<!ELEMENT paragraph ANY >
<!ENTITY warn "<bold>Warning:</bold>">
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&amp; &
&lt; <
&gt; >
&apos; ’
&quot; "
&#x; the ISO/IEC 10646 character with hexadecimal number x

Table 2.2: Predefined character references available in XML

]>

<paragraph>
&warn; Don’t ever try this out yourself.

</paragraph>

Entities can also be used forcharacter references. For example,&lt; refers to the letter<, which is
otherwise not allowed in character data. Table 2.2 summarises character references that may be used in
XML.

Example 2.9 (Character References)
The following character reference includes the characterα, which has the hexadecimal number 0x03B1 (or
945 in decimal format): The character &#03B1; is rendered as The characterα.

A third application of entities that is of interest is the possibility to include binary data in an XML
document, like a PNG (Portable Network Graphics) image with so-calledexternal entities.

Example 2.10 (External Entities with Binary Content)
The following external entity includes the PNG imagefigure.png in the XML document:

<!ENTITY figure SYSTEM "./figure.png" NDATA png>

2.2.4 XML Schema Languages

An XML schema language describes what structure an XML document is allowed to have. For example,
the schema of an address book might specify that all entries are required to contain a name, but the phone
number is optional. Unlike SGML or relational databases, anXML document is not required toconform
to a schema, or even tohavea schema, but if it does, it is calledvalid with respect to its schema. However,
schema definitions are advantageous as they allow for automatic optimisations, may be used to commu-
nicate the admissible structure between authors and may support the authoring process if schema-aware
editors are used.

Several languages for defining schemas are available. This section briefly introduces the languages
DTD (as it is part of the XML specification) andRelax NG(as it is more flexible than DTD and used for
schema specifications in this thesis). Other approaches (like XML Schema[111] or Schematron[63]) are
not discussed here, as schema languages are outside the scope of this thesis.

DTD

The specification for XML DTDs, ordocument type definitions, is included in the W3C XML recommen-
dation [116]. DTDs allow to define the possible structure of XML documents in terms of a tree grammar.
DTDs allow four kinds ofmarkup declarations:

Element Declarations have the form<!ELEMENT label content> , wherelabel is the element label
andcontent defines what kind of content an element may have. The content definition has the following
structure:
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• (child 1,...,child n) denotes an ordered sequence of child elements of typeschild 1, ...,
child n.

• (child 1|...|child n) denotesn alternatives of child elements of typeschild 1, ..., child n.

• child? denotes optional child elements, sequences or alternatives

• child* denotes repetition of child elements, sequences or alternatives (0 or more)

• child+ denotes repetition of child elements, sequences or alternatives (1 or more)

• (#PCDATA) denotes character content

• ANYdenotes that the element may contain any content

• EMPTYdenotes that the element may not contain content

If an element is allowed to contain both other elements and character data, it is said to be ofmixed content.
In DTDs, it is not possible to associate types likeintegeror floatwith character content.

Attribute List Declarations have the form

<!ATTLIST element-label att-name 1 att-type 1 # qualifier
...
att-name n att-type n # qualifier>

whereelement-label is the label of the element to which the attributes belong,att-name i is the name of
theith attribute andatt-type i is the type definition of content of theith attribute. The most important type
definitions are18:

• CDATAfor character content

• ID for defining occurrences of identifiers (see ID/IDREF in Section 2.2.5)

• IDREF for referring occurrences of identifiers (see ID/IDREF in Section 2.2.5)

• (token 1,...,token n) for definingn alternative attribute valuestoken 1,...,token n, where ato-
kenconforms to the same syntax requirements as an element label.

Each attribute pair definition has an additionalqualifier , which is one ofREQUIRED(all instance
elements must have the attribute),IMPLIED (instance elements may have the attribute) orFIXED value ,
wherevalue is the fixed value of the attribute.

Entity Declarations have already been described in Section 2.2.3.

Notation Declarations are used to identify external binary formats and specify helper applications that
can be used to process the format. For example, the notation declaration

<!NOTATION png SYSTEM "/usr/bin/gimp">
<!ATTLIST picture format NOTATION (png | jpg)>

specifies that pictures take a format attribute with values of eitherpng or jpg and that the helper application
for the notationpng is called via the system call/usr/bin/gimp . Notation declarations are apparently only
rarely used.

Example 2.11 (DTD)
The following DTD defines a grammar for the address book used earlier:

18other types areNMTOKENS, ENTITY andNOTATION
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<!ELEMENT address-book (person*)>
<!ELEMENT person (name,phone?)>
<!ELEMENT name (first,last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT phone (#PCDATA)>

<!ATTLIST person oid ID # REQUIRED
knows IDREF # IMPLIED >

Although DTDs are very widespread, they have several significant deficiencies:

• they do not allow context dependent definitions of elements;it is thus not possible to define that the
name child element of aperson has a different structure than thename child element of acompany
in the same document.

• they do not support typed content; for instance, it might be desirable to restrict a phone number to
only digits and dashes.

• it is difficult to express repetitions of cardinalityn-m.

• their syntax differs from the syntax used for XML documents.

A further criticism of DTDs is that they are not restricted tospecifying the schema of a document
or database, but also allow to define content, e.g. in entities, in ID/IDREF, or in attribute default values
(qualifierFIXED above). Thus, a DTD can be considered apreprocessing specificationrather than a mere
schema specification.

XML DTDs differ from SGML DTDs in various aspects. Most importantly, XML DTDs are in contrast
to SGML DTDscase sensitiveand allow all ISO/IEC 10464 characters. On the other hand, XML DTDs
do not support unordered content specification (SGML’s& operator)19.

Relax NG

Relax NG [39, 102] is a schema language defined by theOasis Openconsortium and thus developed
independently from XML Schema and the W3C. It has recently been adopted as an ISO/IEC standard and
is used by IETF20 as the “official” XML schema language for defining the schema of IETF publications
in XML format. It has a solid formal foundation in the theory of tree automata (Relax NG uses so-called
hedge automata), and is rather easy to learn and use, while still being flexible and more expressive than
DTD. Relax NG has an XML-based syntax and a so-calledcompactnotation, which resembles the syntax
for semistructured expressions used in this thesis. Whereas the XML syntax allows to use many existing
tools like editors or browsers, the compact notation is muchterser and easy to read for human users.

This section provides an short intuitive introduction intoRelax NG’s compact notation. Readers inter-
ested in the XML notation or in a more thorough description ofRelax NG should refer to [39] or [102], or
to Relax NG’s website21.

A Relax NG schema is defined in terms of production rules in aregular tree grammar, where the left
hand side is always a non-terminal symbol (where a distinguished non-terminal symbol calledstart is the
start symbol of the grammar) and the right hand side is eitheran element definition, an attribute definition,
text, a datatype from an external library (e.g. XML Schema Datatypes [112]) or an ordered or unordered
list of the former constructs. Elements are introduced by the keywordelement , followed by the label and
the specification for the admissible children. For example,the grammar rule

nphone = element phone { text }

19a good summary can be found athttp://www.xml.com/pub/a/98/07/dtd/
20IETF is an abbreviation for the so-calledInternet Engineering Task Force, which defines many of the standards the Internet

builds upon, e.g. TCP/IP, HTTP or the various email standards (http://www.ietf.org )
21http://www.relaxng.org
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defines the non-terminal symbolnphone to describe elements with label “phone” and only text content.
The specification of admissible children is a list of furtherdefinitions or non-terminals separated by

, (ordered sequence), by& (unordered set), or by| (alternatives). For instance, the following grammar
defines the non-terminalname to be elements with label “name” and unordered child elements with labels
“first” and “last”:

nname =
element name {

element first { text } &
element last { text }

}

In the specification of admissile children, it is (as usual ingrammars but in contrast to DTD) possible
to replace any non-terminal by its definition and vice versa to improve readability. For example, in the
definition ofname above, it would be possible to replace the definitions of the elementsfirst andlast by
non-terminals as follows:

nname = element name { nfirst & nlast }
nfirst = element first { text }
nlast = element last { text }

Repetitions of elements may be specified using the operators* and+ like in regular expressions and
DTDs. The following grammar rule specifies that anaddress-book element may contain an arbitrary
number of children defined by the non-terminalperson :

start = element address-book { person* }

Attributes are defined using the keywordattribute , followed by the attribute name and the specifica-
tion of the admissible values. They are defined in the same manner as elements. The following grammar
rule completes the addressbook schema by providing the definition for persons. Note that Relax NG sup-
ports to import external datatype libraries, in this caseXML Schema Datatypes(prefix xsd: ).

person =
element person {

attribute oid { xsd:ID } &
attribute knows { xsd:IDREF } &
name &
phone*

}

Example 2.12 (Relax NG)
The following Relax NG document again summarises the schemafor the address book (in compact nota-
tion).

1 datatypes xsd = "http://www.w3.org/2001/XMLSchema-data types"
2

3 start = element address-book { person* }
4 person =
5 element person {
6 attribute oid { xsd:ID } &
7 attribute knows { xsd:IDREF } &
8 element name {
9 element first { text } &

10 element last { text }
11 } &
12 element phone { text }*
13 }
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For many applications, Relax NG is more suitable than DTD, because it is more expressive than DTD
(in DTD, it is e.g. not possible to define two elements with label “name” but differing structure, once for
a person, once for a company). In addition, Relax NG grammarsare easy to read and maintain, as their
syntax is close to the usual syntax of grammars, and they are more flexible than DTDs as they allow to
structure a grammar independent from the structure described by the grammar. For these reasons, Relax
NG is used for XML schema definitions in this thesis.

2.2.5 XML References: ID/IDREF

References in XML serve two purposes. The first, implementedby ID/IDREF, is to support cross references
within a document. In the document context, this may be used to refer to the bibliography, or to other
sections in the text. In the same manner, it may also be used within data items of a database to form
graph structures. ThusID/IDREF is a structural reference mechanism. The second, implemented by
XLink, is to connect several documents – possibly even at different locations – with so-calledhyperlinks.
Such references cannot be considered as structural, they are rather at the level of the content and typically
only resolved by explicit user interaction (e.g. clicking on a link in a browser). Since this thesis does not
investigate browsing aspects, only ID/IDREF is described here.

ID/IDREF references are implemented by using two special types of attributes:identifiers(denoted by
ID ) are used to specify that the attribute value is a unique identifier for the element containing the attribute,
andidentifier references(denoted byIDREF) are used to specify that the attribute value is a reference to an
element identified by a unique identifier. Both types need to be associated to attributes by a DTD or other
schema definition.
Example 2.13 (ID/IDREF)
The following XML document models the address book of Section 2.1.2. Note that the DTD is used to
identify the attributes that are used as identifiers and references.

<?xml version="1.0" encoding="iso-8859-15"?>

<!DOCTYPE address-book [
<!ELEMENT address-book (person*)>
<!ELEMENT person (name,phone?)>
...

<!ATTLIST person oid ID # REQUIRED
knows IDREF # IMPLIED >

]>

<address-book>
<person oid="o1" knows="o2">

<name>
<first>Mickey</first>
<last>Mouse</last>

</name>
<phone type="home">19281118</phone>

</person>
<person oid="o2" knows="o1">

<name>
<first>Donald</first>
<last>Duck</last>

</name>
</person>

</address-book>

Although this reference mechanism is very similar to the OIDreferences of semistructured expressions
introduced in Section 2.1.2, the limitation to attributes does not allow to position references beneath the
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children of an element in case the order is significant. For example, in the address book above, it is not
possible to position the referenceknows as thelast child of theperson elements using ID/IDREF.

2.2.6 XML Namespaces

In many documents, it is desirable to combine parts of several schemas. For instance, the adress book
might contain an elementremarks for each entry, in which it is possible to write free text annotated with
certain parts of (X)HTML, like bold or italic face. Unfortunately, such combinations often result in naming
conflicts or ambiguities (“does thename element refer to company names from one schema or to person
names from another?”).

Therefore, XML supports so-called namespaces [117] that uniquely associate elements with names-
paces. Namespaces are identified by so-calledinternationalised resource identifiers(IRI, [61])22 Elements
in an XML document can be associated with a namespace IRI by so-callednamespace prefixes, which
appear in the opening and closing tags and are separated fromthe element label by a colon. Namespace
prefixes are defined by certain attribute-value pairs and arevalid in the scope of the element they are de-
fined in (i.e. in the element itself and in all descendants). Namespace prefixes can be chosen arbitrarily and
always resolve to the IRI they are associated with.

It is also possible that two different prefixes are associated with the same namespaces, in which case
the elements prefixed with either of them are obviously in thesame namespace.

Example 2.14 (XML Namespaces)
In the address book, it might be desirable to complement all entries by anremarks element that contains
free text remarks, possibly marked up with certain HTML elements, about the entry. The following XML
document shows how namespaces can serve this purpose. It uses the namespace prefixa to refer to the
address book schema, and the namespace prefixb to refer to the XHTML schema:

<a:address-book xmlns:a= "http://www.myschemas.org/address-book"
xmlns:b= "http://www.w3.org/2002/06/xhtml2" >

<a:person a:oid= "&o1" a:knows= "&o2" >
<a:name>

<a:first> Mickey </a:first>
<a:last> Mouse</a:last>

</a:name>
<a:phone a:type= "home" >19281118 </a:phone>
<a:remarks>

<b:strong> Note: </b:strong> The phone number is also the
<b:em> birthday </b:em> !

</a:remarks>
</a:person>
<a:person a:oid= "&o2" a:knows= "&o1" >

<a:name>
<a:first> Donald </a:first>
<a:last> Duck</a:last>

</a:name>
</a:person>

</a:address-book>

In this example, an address book browser might render XHTML elements using an HTML component
(like Java’s HTML component in the packagejavax.swing.text.html ) while displaying all elements of
thehttp://www.myschemas.org/address-book namespace in an application specific manner (e.g. in a
table).

22IRIs are introduced in XML 1.1 and replace the formerly used URIs, oruniform resource identifiers. IRIs differ from URIs in
that they can contain characters from any character set.
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XML namespaces are always declared by using thexmlns attribute, either followed by a colon and a
namespace prefix (as in the example above), or as a stand-alone attribute (in the latter case, the so-called
default namespace is defined for elements that have no prefix). Namespace prefix declarations may appear
inside any element and thus have a clearly defined scope. Furthermore, namespace prefix declarations may
be shadowed by redefining a namespace prefix within the scope of an already defined prefix with the same
name.

2.3 XML, Semistructured Expressions and Semistructured Data

Although XML and semistructured data have initially been independent developments, and initially have
been aimed at different application areas (i.e. document representation vs. databases), they have much in
common: both represent rooted graph structured data, both are structure-carrying and schema independent
and both allow to represent very heterogeneous data items. In fact, XML can be seen as just another syntax
for semistructured expressions. For instance, the XML document

<publications>
<book>

<title>Folket i Birka p å Vikingarnas Tid</title>
<authors>

<author>Mats Wahl</author>
<author>Sven Nordqvist</author>
<author>Bj örn Ambrosiani</author>

</authors>
</book>
<book>

<title>Boken Om Vikingarna</title>
<authors>

<author>Catharina Ingelman-Sundberg</author>
</authors>

</book>
</publications>

corresponds to the following semistructured expression:

publications [
book [

title [ "Folket i Birka p å Vikingarnas Tid" ],
authors [

author [ "Mats Wahl" ],
author [ "Sven Nordqvist" ]
author [ "Bj örn Ambrosiani" ]

]
],
book [

title [ "Boken Om Vikingarna" ],
authors [

author [ "Catharina Ingelman-Sundberg" ]
]

]
]

Beyond this straightforward correspondence, however, a translation of XML into semistructured ex-
pressions and vice versa is not always possible. Whereas semistructured expressions can contain both
ordered and unordered data (or in the case of OEM only unordered data), XML elements are always or-
dered. Furthermore, references in XML behave slightly differently than in semistructured expressions (see
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Section 2.2.5). In particular, object identifiers in semistructured expressions must be known, i.e. the data
must be managed centrally. This restriction is impossible on an open Web. Likewise, semistructured ex-
pressions do not have a counterpart for XML attributes, processing instructions, entities, document type
definitions, schema languages, XLink hyperlinks, and similar features.

Despite these differences, semistructured expressions are a useful “abstraction” of XML documents.
On the one hand, the deficiencies mentioned above are either rarely used (processing instructions, entities)
or can be overcome in a straightforward manner (attributes can be seen as flat, unordered elements). On the
other hand, semistructured expression provide with a concise representation of semistructured data that is
capable of differentiating between ordered and unordered content and has a flexible reference mechanism
while at the same time avoiding many constructs that are redundant or add unnecessary complexity.

2.4 Three Scenarios for Querying Semistructured Data

Throughout this document, many examples will be illustrated based on three scenarios introduced in this
section. The first two scenarios are examples for semistructured databases: astudent databaserepresents
information gathered during a course and twobook databasesrepresent the databases of two online book-
stores. The last example is more document oriented: it is this thesisitself (but for obvious reasons only
incomplete). All databases and documents are given both in form of an XML document and in form of
a semistructured expression, and are accompanied by a schema definition in Relax NG compact notation,
which serves to further illustrate the structure of the databut is not itself used in further examples. In the
two database examples, the semistructured expression is given using unordered specification of subexpres-
sions, since this is reasonable in a database context. Note,however, that the XML document representation
is always ordered.

2.4.1 Student Database

Imagine a lecture that is accompanied by a course managementsystem (CMS), which manages all kinds of
data about students. At the beginning of a teaching term, students have to register with their name, student
id and email address. Of course, students are students, and some do not fill in their student id – maybe they
have not remembered it and do not have their student registration card ready. During the teaching term,
students have to submit their solutions to the weekly exercises before certain deadlines. Since students are
not obliged to submit all exercises, each student might havemissing exercise entries. Teaching staff correct
the solutions and assign scores to each. As teachers usuallyalso have other things to do, a teacher only
corrects some exercises at a time and updates the database accordingly, while other solutions might still be
uncorrected.

The XML documentstudents.xml (given in Figure 2.3) contains the data of such a course manage-
ment system. It represents a snapshot taken at a certain time: some students have not (yet) submitted
their solutions, some submitted solutions have not yet beencorrected. Furthermore, information is in parts
incomplete, as the student id is missing for some students.

The student database uses the following intuitive schema (aformal schema definition in Relax NG
compact notation is given in Figure 2.2):

• each student is represented by astudent element and its subtree

• each student has at least a name (elementname), an arbitrary number of email addresses (element
email ) and an optional inscription number (elementmatrnr ), which might be missing in case a
student did not specify it at the registration.

• for each solution to an exercise a student submitted, the respective entry contains anexercise
element with at least the exercise number (elementnumber ), and optionally a score (elementscore ),
which is used to represent the result of correction.

Naturally, in such a system it is necessary to be able to querycertain kinds of data and generate sum-
maries. For example, the CMS might provide a page listing allstudents with name and email, but the email
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stud-db = element students {
element student {

element name { text },
element email { text }*,
element matrnr { text }?,
element exercise {

element number { text },
element score { text }?

}*
}*

}

Figure 2.2: Schema of the student database in Relax NG [39] compact notation

should be in a format that is not easily parsable by spam address harvesters (so-called “spamvertised” ad-
dresses). Also, teachers might be interested in the total scores for each student, in information like “all
students that did not submit a solution to exercise 2”, or “all students whose submission of the solutions
to exercise 3 have not yet been corrected”. All of these queries (and some more) will be presented in the
remainder of this thesis.

This database is representative for a large number of semistructured databases. Information might be
missing (like email address or inscription number), or explicitly not given (exercises that have not been
submitted, or are not yet corrected). The individual entries are heterogeneous, for instance there might be
several email addresses for a student, but only one for others. Order in such databases is usually irrelevant
(indicated by curly braces in the Xcerpt syntax).

2.4.2 Bookstore

The second scenario considers two online bookstores that represent their data in an XML database23. Since
both use customised applications, the structures and content of the two databases differ: whereas the first
bookstore (bookstore A) stores information about title, authors, price and publisher, the second bookstore
(bookstore B) does not have information about authors and publisher but instead provides for each book
a review part that contains comments made by readers of a book. Furthermore, the data provided by
bookstore A is not homogeneous: while some books have a list of authors, others have instead an editor,
which contains in addition to first and last name also an affiliation. Figure 2.5 shows the database of
bookstore A and Figure 2.6 shows the database of bookstore B.

The Relax NG compact notation of the schemas for both bookstores is given in Figure 2.4. Note that
this scenario is in analogy to a use case in theXQuery Use Cases[34], from which it differs in two aspects:
(1) book entries are augmented by anauthors element to group the authors. This is useful to illustrate that
a database may contain both ordered and unordered content. (2) Instead of the by now rather well known
Computer Science books, this thesis uses a set of books aboutthe Viking Age to make reading a little more
diversified. Note that parts of the XQuery use case are discussed in more detail later in this thesis (Section
5.1).

As in the student database above, the XML document representation differs slightly from the semistruc-
tured expression. One aspect is that the semistructured expressions are unordered (except the list of au-
thors), the other is that attributes have to be represented as subexpressions in a semistructured expression.
To this aim, they are grouped within a subexpression with label attributes that is always the first subex-
pression of an expression.

Many queries are conceivable in this scenario. Common queries are to list all titles for an author, or to
list books of a certain publication year, with a certain string in the title, and so on. More complex queries
could create a summary of prices for both bookstores, or create a mediated list of books with the minimum

23Such a database is e.g. accessible athttp://www.amazon.com/webservices
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<students>
<student>

<name>Donald Duck </name>
<email> donald@duck.org </email>
<matrnr> 123456789 </matrnr>
<exercise>

<number> 1</number>
<score> 15</score>

</exercise>
<exercise>

<number> 2</number>
<score> 7</score>

</exercise>
<exercise>

<number> 3</number>
</exercise>

</student>
<student>

<name>Mickey Mouse </name>
<email> mickey@mouse.org </email>
<matrnr> 987654321 </matrnr>
<exercise>

<number> 1</number>
<score> 3</score>

</exercise>
<exercise>

<number> 3</number>
<score> 14</score>

</exercise>
</student>
<student>

<name>Goofy </name>
<email> goofy@goofy.org </email>
<email> goofy@disney.com </email>
<exercise>

<number> 2</number>
<score> 13</score>

</exercise>
<exercise>

<number> 3</number>
</exercise>

</student>
</students>

students {
student {

name { "Donald Duck" },
email { "donald@duck.org" },
matrnr { "123456789" }
exercise {

number { 1 },
score { 15 }

},
exercise {

number { 2 },
score { 7 }

},
exercise {

number { 3 }
}

},
student {

name { "Mickey Mouse" },
email { "mickey@mouse.org" },
matrnr { "987654321" },
exercise {

number { 1 },
score { 3 }

},
exercise {

number { 3 },
score { 14 }

}
},
student {

name { "Goofy" },
email { "goofy@goofy.org" },
email { "goofy@disney.com" },
exercise {

number { 2 },
score { 13 }

},
exercise {

number { 3 }
}

}
}

Figure 2.3: The student database as an XML document and as a semistructured expression. Note that the
semistructured expression is unordered whereas the XML document is ordered.
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bib = element bib { book* }
book =

element book {
attribute year { text },
element title { text },
(authors | editor),
element publisher { text },
element price { text }

}
authors =

element authors {
element author { last, first }*

}
editor =

element editor { last, first, affil }
last = element last { text }
first = element first { text }
affil = element affiliation { text }

reviews = element reviews { entry* }
entry =

element entry {
element title { text },
element price { text },
element review { text }

}

Figure 2.4: Schemas of the two bookstore databases in Relax NG [39] compact notation

price and the name of the bookstore where we can get this minimum price. Also, one could be interested
in “which books that A sells are not sold by B”.

2.4.3 Document-Centric: PhD Thesis

The last of the three scenarios is this PhD thesis itself, which is an good representative for document-
centric data. Not only is the data in such a document usually ordered, it also contains a very heterogeneous
structure with deep levels of nesting, and also cross references to bibliographic information and other parts
of the document.

The following Relax NG grammar provides a simplified, incomplete definition of the schema for this
thesis (incomplete parts are indicated by . . . ):

report = element report { abstract, part*, appendix? }
part = element part { chapter* }
appendix = element appendix { chapter* }
chapter = element chapter { title, scontent }
section = element section { title, scontent }
paragraph = element paragraph { title?, pcontent }
scontent = paragraph* & section* & bibliography
pcontent = text* & cite* & emph* & strong* ...
...

For obvious reasons, the following XML document only contains a fragment of this thesis:

1 <report>
2 <abstract xml:lang="en">
3 ...
4 </abstract>
5 <abstract xml:lang="de">
6 ...
7 </abstract>
8 <part>
9 <title>Introduction and Motivation</title>

10 </part>
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<bib>
<book year="1995">

<title> Vikinga Blot </title>
<authors>

<author>
<last> Ingelman-Sundberg </last>
<first> Catharina </first>

</author>
</authors>
<publisher> Richters </publisher>
<price> 5.95 </price>

</book>
<book year="1998">

<title> Boken Om Vikingarna </title>
<authors>

<author>
<last> Ingelman-Sundberg </last>
<first> Catharina </first>

</author>
</authors>
<publisher> Prisma </publisher>
<price> 22.95 </price>

</book>
<book year="1999">

<title> Folket i Birka på Vikingarnas Tid </title>
<authors>

<author>
<last> Wahl </last>
<first> Mats </first>

</author>
<author>

<last> Nordqvist </last>
<first> Sven </first>

</author>
<author>

<last> Ambrosiani </last>
<first> Björn </first>

</author>
</authors>
<publisher> BonnierCarlsen </publisher>
<price> 39.95 </price>

</book>
<book year="1997">

<title> Vikingar i Österled </title>
<editor>

<last> Larsson </last>
<first> Mats </first>
<affiliation> Lunds universitet </affiliation>

</editor>
<publisher> Atlantis </publisher>
<price> 49.95 </price>

</book>
</bib>

bib {
book { attributes { year { "1995" } },

title { "Vikinga Blot" },
authors [

author {
last { "Ingelman-Sundberg" },
first { "Catharina" }

}
],
publisher { "Richters" },
price { "5.95" }

},
book { attributes { year { "1992" } },

title { "Boken Om Vikingarna" },
authors [

author {
last { "Ingelman-Sundberg" },
first { "Catharina" }

}
],
publisher { "Prisma" },
price { "22.95" }

},
book { attributes { year { "1999" } },

title { "Folket i Birka på Vikingarnas Tid" },
authors [

author {
last { "Wahl" },
first { "Mats" }

},
author {

last { "Nordqvist" },
first { "Sven" }

},
author {

last { "Ambrosiani" },
first { "Björn" }

}
],
publisher { "BonnierCarlsen" },
price { "39.95" }

},
book { attributes { year { "1997" } },

title { "Vikingar i Österled" },
editor {

last { "Larsson" },
first { "Mats" },
affiliation { "Lunds universitet" }

},
publisher { "Atlantis" },
price { "49.95" }

}
}

Figure 2.5: The Bookstore Databasebib.xml of bookstore A as XML document and as semistructured
expression.
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<reviews>
<entry>

<title> Folket i Birka på Vikingarnas Tid </title>
<price> 34.95 </price>
<review>

A children’s book telling the story of two siblings
in the Viking town of Birka; nicely illustrated.

</review>
</entry>
<entry>

<title>
Boken Om Vikingarna

</title>
<price> 24.95 </price>
<review>

A good description of Viking culture.
</review>

</entry>
<entry>

<title> Vikingar i Österled </title>
<price> 49.95 </price>
<review>

History of the Viking travels to Byzantine (Miklagård).
</review>

</entry>
</reviews>

reviews {
entry {

title { "Folket i Birka på Vikingarnas Tid" }
price { "34.95" }
review {

"A children’s book telling the story of two siblings
in the Viking town of Birka; nicely painted illustrated."

}
}
entry {

title {
"Boken Om Vikingarna"

}
price { "24.95" }
review {

"A good description of Viking culture."
}

}
entry {

title { "Vikingar i Österled" }
price { "45.95" }
review {

"History of the Viking travels to Byzantine (Miklagård)."
}

}
}

Figure 2.6: The Bookstore Databasereviews.xml of bookstore B as XML document and as semistructured
expression.

11 <part>
12 <title>The Language Xcerpt</title>
13 <chapter>
14 <title>Xcerpt: Core Language</title>
15 <section>
16 <title>Xcerpt Terms</title>
17 <paragraph>
18 A term in Xcerpt is a representation of a semistructured data base, or
19 a pattern for querying or constructing such a database. In pa rticular,
20 terms may be used for representing XML documents, but they ar e also
21 suited for other semistructured data formats like OEM <cite ref="oem95"/>
22 or RDF <cite ref="rdf"/>.
23 </paragraph>
24 ...
25 <section>
26 <title>Data Terms</section>
27 ...
28 </section>
29 <section>
30 <title>Query Terms</section>
31 ...
32 </section>
33 ...
34 </section>
35 <section>
36 <title>Xcerpt Programs</title>
37 ...
38 </section>
39 </chapter>
40 </part>
41 ...
42 <appendix>
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43 <chapter>
44 <title>Full Grammar</title>
45 <section>
46 <title>Data Terms</title>
47 ...
48 </section>
49 ...
50 </chapter>
51 <chapter>
52 <title>XML Syntax</title>
53 <section>
54 <title>Core Xcerpt Terms</title>
55 ...
56 </section>
57 ...
58 </chapter>
59 <chapter>
60 <title>Bibliography</title>
61 <bibliography>
62 <entry id="oem95">
63 <title>Object Exchange across Heterogeneous Information Sources</title>
64 <booktitle>11th Conference on Data Engineering</booktit le>
65 <author>Yannis Papakonstantinou</author>
66 <author>Hector Garcia-Molina</author>
67 <author>Jennifer Widom</author>
68 <year>1995</year>
69 </entry>
70 ...
71 </bibliography>
72 </chapter>
73 </appendix>
74 </report>

2.5 Graph Representation of Semistructured Data

Semistructured expressions and XML documents induce graphs in a straightforward manner, which has
already been introduced intuitively in Section 2.1, and is further elaborated below. Formally, semistructured
expressions can be represented either as an edge-labelled or as a node-labelled graph. This thesis always
represents a semistructured expression as a node-labelledgraph, as this representation is closer to the graph
model of XML specified in theXML Information Set[120]. A similar, node-labelled graph representation
is also used in thedocument object model, which is a uniform application programming interface for
accessing and manipulating XML data. Note, however, that [4] uses edge-labelled graphs instead.

Definition 2.1 (Graph Induced by a Semistructured Expression)
Given a semistructured expressione. Thegraph induced by eis a tupleGe = (V,E, r), with:

1. a set ofvertices(or nodes) V defined as the set of all subexpressions ofe (includinge itself)

2. a set ofedges E⊆V×V×N characterised as follows:

• for all expressionse1,e2,e3 ∈ V: if e2 is the ith subexpression ofe1 and of the form̂ oid (a
reference), ande3 is of the formoid @ e’ , with oid an identifier ande’ an expression, then
(e1,e3, i) ∈ E

• for all expressionse1,e2 ∈V: if e2 is theith subexpression ofe1 andnot of the formˆoid , then
(e1,e2, i) ∈ E
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3. a distinguished verticer ∈V called theroot nodewith r = e

Thelabelof a vertice is the label of the subexpression represented byit.

This definition differs in two aspects from the intuitive graph representation used in Section 2.1: (1)
vertices represent complete subexpressions instead of only labels, and (2) edges are associated with the
respective positions of the subexpressions within the parent. Both properties are necessary to distinguish
between ordered and unordered content. Note that for semistructured expressions with unordered content,
the position has to be ignored.

Example 2.15 (Graph Induced by a Semistructured Expression)
Consider again the semistructured expression representing an address book with two entries.

address-book {
&o1 @ person {

name [
first [ "Mickey" ],
last [ "Mouse" ]

],
phone [ "19281118" ],
knows [ &o2 ]

},
&o2 @ person {

name [
first [ "Donald" ],
last [ "Duck" ]

],
knows [ ˆ&o1 ]

}
}

Note that this expression differs from the expression used in Section 2.1.2 in that certain subexpressions
contain unordered content.

Figure 2.7 illustrates the graph induced by this semistructured expression. Note that in contrast to the
graph of Figure 2.1 the vertices now comprise subexpressions instead of labels (although space restric-
tions require that subexpressions are abbreviated by . . . ) and edges are labelled with the position of the
subexpression (indicated in red colour).

As usual, graphs are represented in this thesis with the rootat the top and the leaves at the bottom. In
this context, the maximum number of immediate subexpressions of a (sub)expression is called thebreadth
and the maximal number of edges from the root to a leaf is called thedepthof the tree, semistructured
expression, or XML document.

2.6 Rooted Graph Simulation – A Similarity Relation for Rooted
Graphs

The language Xcerpt presented in this thesis usespattern matchingto select data items in a semistructured
database (or XML document). A pattern can be considered as anexampleof the data in the database,
albeit one that usually is augmented by variables and omits much of the structure that is irrelevant for the
selection. A pattern thus has to besimilar to the queried data.

Pattern matching in Xcerpt (and UnQL, for that matter) is based on a similarity relation between the
graphs induced by two semistructured expressions, which iscalled graph simulation[56, 77]. Graph
simulation is a relation very similar to graph homomorphisms, but more general in the sense that it allows
to match two nodes in one graph with a single node in the other graph and vice versa.
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"Mickey" "Mouse"

"50773"

"Donald" "Duck"

address−book{...}

person{...}person{...}

name[...] phone[...] knows[...] name[...] knows[...]

first[...] last[...] first[...] last[...]

1

1

1 1

2 121 1

1 1 1 1

321 2

2

Figure 2.7: Graph Induced by the semistructured expressionof Example 2.15.
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Figure 2.8: Rooted Graph Simulations (with respect to vertex adornment equality)

The following definition is inspired from [56, 77] and refinesthe simulation considered in [24]. Recall
that a (directed) rooted graphG= (V,E, r) consists in a setV of vertices, a setE of edges (i.e. ordered pairs
of vertices), and a vertexr called the root ofG such thatG contains a path fromr to each vertex ofG. Note
that the initial definition of a rooted graph simulation doesnot take into account the edge labels of graphs
induced by a semistructured expression, it is defined on generic, node labelled and rooted graphs. Note
furthermore, that in general, there might be more than one simulation between two graphs, which leads to
the notion ofminimalsimulations also defined below.

Definition 2.2 (Rooted Graph Simulation)
Let G1 = (V1,E1, r1) andG2 = (V2,E2, r2) be two rooted graphs and let∼ ⊆V1×V2 be an order or equiv-
alence relation. A relationS⊆V1×V2 is arooted simulationof G1 in G2 with respect to∼ if:

1. r1 S r2.

2. If v1 S v2, thenv1∼ v2.

3. If v1 S v2 and(v1,v′1, i) ∈ E1, then there existsv′2 ∈V2 such thatv′1 S v′2 and(v2,v′2, j) ∈ E2

A rooted simulationS of G1 in G2 with respect to∼ is minimal if there are no rooted simulationsS′ of G1

in G2 with respect to∼ such thatS′ ( S (andS 6= S′).

Definition 2.2 does not preclude that two distinct verticesv1 andv′1 of G1 are simulated by the same
vertexv2 of G2, i.e. v1 S v2 andv′1 S v2. Figure 2.8 gives examples of simulations with respect to the
equality of vertex adornments. The simulation of the right example is not minimal.
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Theexistanceof a simulation relation between two graphs (without variables) can be computed effi-
ciently: results presented in [67] give rise to the assumption that such problems can generally be solved
in polynomial time and space. However, computation of pattern matching usually requires to compute not
only one, but all minimal simulations between two graphs, inwhich case the complexity increases with the
size of the “answer”.

Interestingly, graph simulation can also be used for schemavalidation (cf. e.g. [4]). In this case, a
schema is considered as a graph in which all instances have tosimulate. This suggests that schema valida-
tion and querying are closely related: schema validation can be considered as querying the schema with a
semistructured expression. If the query succeeds, the expression is an instance of the schema (i.e. valid). If
the query fails, the expression is no instance of the schema (i.e. invalid).
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CHAPTER

THREE

Web Query Languages

As we have seen in Chapter 2, XML is increasingly used not onlyas a format for representing text docu-
ments, but also as a format for representing semistructureddatabases and for exchange of data on the Web.
As such, it becomes more and more important to be able toqueryXML data. Obviously, query languages
for XML need to respect the peculiarities of the data and thusdiffer from traditional query languages.
Likewise, a query language for theWebneeds not only to be capable of querying XML data, it also needs
to be able to perform network operations, and — following theReasoning Capabilitiesdesign principle of
Section 1.3.8 — support reasoning mechanisms for the Semantic Web.

This Chapter first argues why Web query languages need to provide a higher expressive power than
traditional database query languages (Section 3.1). It then continues with an overview of desirable charac-
teristics of Web query languages following [73] (Section 3.2). Finally, existing Web query languages are
summarised (Section 3.3), with a focus on the predominant languagesXPath, XSLTandXQuery.

3.1 Database vs. Web Query Languages

Traditionally, access to a database management system is realised using a query language (the so-called
data manipulation language) embedded in a so-calledhost language(which can be any programming
language available on a system, e.g.JavaorC). In this setup, the query language only has limited expressive
power, whereas more complex computations are performed in the host language [100]. For example, in
relational database systems, query languages are usuallyrelationally complete(i.e. they support all of the
operations of the relational algebra, likeprojection, selectionandjoins), but exclude recursion and thus do
not provide the same expressive power as general purpose programming languages.

Example 3.1
The original versions of SQL, e.g. did not allow to compute the transitive closure of a relation (this func-
tionality has later been added to SQL’99 [6], but is not part of the core standard). Consider e.g. a binary
relationuncle that relates nephews with their (immediate) uncles:

uncle nephew uncle

Donald Duck Scrooge Duck
Huey Duck Donald Duck
Dewey Duck Donald Duck
Louie Duck Donald Duck

Note that the (transitive)uncle relationship between e.g. Dewey Duck and Scrooge is not directly
represented in the table. Query languages like SQL (earlierthan SQL3) are in general (i.e. if the number
of transitive steps is not known in advance) not capable of retrieving this information. In contrast, more
expressive languages likeDatalogare capable of doing this by using recursion. The following recursive
Datalog query describes this transitive closure:
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uncle(X,Y) :- uncle(X,Z), uncle(Z,Y).

This restriction is deliberate as it allows for many automatic optimisations that are much more difficult
or even not possible in more expressive languages. However,since many applications need to perform more
powerful query tasks while at the same time making use of the advantages of database management systems
(like efficient storage and access, concurrency, etc.), database management systems have been combined
with more expressive languages (usually languages providing the full expressiveness of first order logic, or
at least the expressiveness of theHorn-fragment of first order logic). Such systems are often referred to as
knowledge base systems[100]. According to [100], “applications require a knowledge-base system if they
have a recursive or nested structure that needs to be queried” (p.983).

Since XML documents and semistructured databases often comprise such nested structures, a query
language for such data consequently needs to be more expressive than traditional database query languages
like SQL. Consider for example an XML document containing a large text (e.g. a book or this thesis)
structured in chapters and sections (for an example, cf. Section 2.4.3). A typical query could be to retrieve
all sections (at arbitrary level of nesting) where the titlecontains the substring “XML”. Since this query
needs to consider sections at an depth unknown by the query author, such queries cannot be expressed in
languages that do not support recursion. In general, restructuring of graph structured data also requires
languages with a higher expressive power than is available in traditional query languages ([4], p.54).

Also, embedding a Web query language into a host language is often not feasible: queries might be
exchanged between different Web sites and processed in a distributed manner (e.g. either on the client, or
on the server, or on both); relying on a host language would require that all participating Web sites are able
to evaluate the query language as well as the host language. Consequently, a Web query language needs to
beself-contained(cf. characteristics 3 in Section 3.2 below).

When querying on theSemantic Web(cf. Section 1.3.8), a higher expressiveness is even more important.
Reasoners like FaCT [58] or RACER [55] need the expressive power of the description logicSHIQ [59],
but the Semantic Web is still in development and more powerful reasoners are conceivable. To support
arbitrary Semantic Web reasoners, it is thus desirable to provide query languages that have the same power
as general purpose programming languages.

3.2 Desirable Characteristics of Web Query Languages

From Section 3.1, it is already possible to see that Web querylanguages need to be different from traditional
database query languages in terms of expressive power. Thissection introduces further characteristics that
have been deemed desirable for Web query languages. In the article Database Desiderata for an XML
Query Language[73], David Maier summarises 13 such characteristics for XML query languages (David
Maier uses the termXQueryto refer to any XML query language; at the time of publication, the language
now called XQuery did not exist). The following is a quote from Section 2 of this article. References have
been adapted to point to the correct items and emphasis has been added to improve readability.

1. XML Output
An XQuery should yield XML output. Such a closure property has many benefits. De-
rived databases (views) can be defined via a single XQuery. Query composition and
decomposition is aided. It is transparent to applications whether they are looking at base
data or a query result.

2. Server-side Processing
XQuery should be suitable for server-side processing. Thus, an XQuery should be self-
contained, and not dependent on resources in its creation context for evaluation. While
an XQuery might incorporate variables from a local context,there should be a “bound”
form of the XQuery that can be remotely executed without needing to communicate with
its point of origin. An example of local content that should be “bound away” is the local
alias for a namespace. (See Requirement 11.)

3. Query Operations
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Selection, extraction, reduction, restructuring and combination should all be possible
in a single XQuery. This requirement is a consequence of Requirement 2, really. It
should not be necessary to resort to another language or multiple XQueries to perform
these operations. One reason is that an XQuery server might not understand the other
language, necessitating moving fragments of the desired result back to the sender for final
processing. Some of these operations greatly reduce data volumes, so are highly desirable
to perform on the server side to reduce network requirements. Further, efficient query
optimization and evaluation depends on having as much data access and manipulation
described in advance as possible, to plan the best data retrieval, movement and processing
strategies.
What I mean my these different operations, briefly:

• Selection: Choosing a document or document element based on content, structure
or attributes.
• Extraction: Pulling out particular elements of a document.
• Reduction: Removing selected sub-elements of an element.
• Restructuring: Constructing a new set of element instances to hold querieddata.
• Combination: Merging two or more elements into one.

[. . . ]

4. No Schema Required
XQuery should be usable on XML data when there is no schema (DTD) known in ad-
vance. XML data is structurally self-describing, and it should be possible to an XQuery
to rely on such “just-in-time” schema information in its evaluation. This capability means
XQueries can be used against an XML source with limited knowledge of its documents’
precise structures.

5. Exploit Available Schema
Conversely, when DTDs are available for a data source, it should be possible to judge
whether an XQuery is correctly formed relative to the DTDs, and to calculate a DTD for
the output. This capability can detect errors at compile time rather than run time, and
allows a simpler interface for applications to manipulate aquery result.

6. Preserve Order and Association
XQueries should preserve order and association of elementsin XML data. The order of
elements in an XML document can contain important information – a query shouldn’t
lose that information. Similarly, the grouping of sub-elements within elements is usually
significant. For example, if an XQuery extracts<title> and<author> sub-elements
from <book> elements in a bibliographic data source, it should preservethe <title> -
<author> associations.

7. Programmatic Manipulation
XQueries should be amenable to creation and manipulation byprograms. Most queries
will not be written directly by users or programmers. Rather, they will be constructed
through user-interfaces or tools in application development environments.

8. XML Representation
An XQuery should be representable in XML. While there may be more than one syntax
for XQuery, one should be as XML data. (Note that XSL is written in XML.) This
property means that there do not need to be special mechanisms to store and transport
XQueries, beyond what is required for XML itself. It also helps satisfy Requirement 7.

9. Mutually Embedding with XML
XQueries should be mutually embedding with XML. That is, an XQuery should be able
to contain arbitrary XML data, and an XML document should be able to hold arbitrary
XQueries. The latter capability allows XML document to contain both stored and virtual
data. The former capability allows an XQuery to hold arbitrary constants, and allows for
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partial evaluation of XQueries. Representation of arbitrary constants helps with Require-
ment 2. Partial evaluation is useful in a distributed environment where data selected at
one source is sent to another source and combined with data there.

10. XLink and XPointer Cognizant
XQuery should provide for following XLinks and XPointers. One expects much XML
will contain external and internal cross-references, which a query should be able to tra-
verse.

11. Namespace Alias Independence
An XQuery should not be dependent on namespace aliases localto an XML document.
An XQuery of course needs to disambiguate elements names that occur in more than one
DTD for a document. However, it is unreasonable to expect thequery creator to know
the internal aliases that a document uses for those DTDs. Also, if a query is issued over
a group of documents, they may well use different aliases forthe same DTD.

12. Support for New Datatypes
XQuery should have an extension mechanism for conditions and operations specific to a
particular datatypes. I am thinking mainly of specialized operations for selecting differ-
ent kinds of multimedia content.

13. Suitable for Metadata
XQuery should be useful as a part of metadata descriptions. For example, a metadata
interchange format for data warehousing transformations or business rules might have
components that are queries. It would good if XQuery could beused in such cases,
rather than defining an additional query language. Another possible metadata use would
be in conjunction with XMI for expressing data model constraints. An implication is that
queries should be able to stand alone, and not have to be appended to a URL or URI.

3.3 Existing Web Query Languages

3.3.1 XPath

XPath, theXML Path Language[108], is a selection language aiming at addressing parts ofan XML docu-
ment. As it lacks capabilities for restructuring data items, it cannot be considered a true query language, it
is rather aselection language. However, many other query languages are based on XPath, in particular the
two most prominent query languages XSLT and XQuery, which are presented below.

Data Model: Ordered Tree

XPath models an XML document as anordered tree. XPath differentiates between several kinds of nodes,
includingdocument nodes, element nodes, attribute nodesandtext nodes. This document tree induces the
so-called document order, which is obtained by traversing the document tree in a depth-first, left-to-right
manner. XPath does not consider non-tree graph structures like semistructured expressions, and ID/IDREF
are only supported by explicit dereferencing.

Navigation Steps

An XPath expression specifies a sequence ofnavigationor location steps(separated by and beginning with
“ / ”) in this tree, similar to what a car navigation system mightprovide to locate a certain address. For
example, to select the phone number ofMickey Mouse in the address book used in Chapter 2, an XPath
expression would specify to start at the document node, proceed to the element nodeaddress-book , from
there move to each of the children, and for each child to the name to determine whether the name isMickey
Mouse. In this case, it would select in the next step the child node with labelphone :

/child::address-book/child::person[
child::name[child::first = "Mickey" and child::last = "Mo use"]]/child:phone
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axis description
/ select the document root (which is considered the parent of the

document element)
ancestor proper ancestor of current node
ancestor-or-self current node or proper ancestor of current node
attribute attribute of current node
child immediate descendant (child) of current node
descendant proper descendant of current node
descendant-or-self current node or proper descendant of current node
following node following the current node in document oder
following-sibling node following the current node in document oder and at the

same depth as the current node
preceding node preceding the current node in document oder
preceding-sibling node preceding the current node in document oder and at the

same depth as the current node
namespace namespace node of the current node
parent immediate ancestor (parent) of current node
self current node

Table 3.1: Axis Specifications available in XPath

The result of such a selection is always a sequence of nodes. XPath does not differentiate between a single
value and the sequence consisting only of that value. This has serious implications, for instance, the=
operator is not true equality but only “existential” equality, i.e. it tests whether the intersection of two
sequences is non-empty.

Axis Specifications

The navigation steps in XPath expressions contain so-called axis specificationsthat specify the “direction”
of the traversal in the document tree. In the example above, the only axis specifier used waschild . Other
frequently used axis specifiers aredescendant , which selects not only immediate child nodes but also
child nodes of child nodes and so forth, andfollowing-siblings selects all siblings that come after the
currently selected node in document order. Axis specifications are separated from node tests by:: . Table
3.1 summarises the axis specifications available in XPath.

An XPath expression beginning with a forward slash (i.e./ ) always specifies a traversal anchored at the
root, and is thus called anabsoluteXPath expression. An XPath expression beginning with any other axis
specifications isrelativeto the currentcontext node.

Node Tests

Navigation steps consist ofnode teststhat specify what kinds of nodes to select. XPath supports, among
others, the following node tests:

name matches elements of typename
* matches every element
namespace:name matches elements of typename from the given names-

pace
namespace:* matches every element from the given namespace
comment() matches comment nodes
text() matches text nodes
node() matches every node

The most common form of node test is to specify the element name, as in the example above.
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Predicates

Predicates express further conditions on node tests that gobeyond the capabilities of simple matching. For
example, they may be used to select every second element node, or all person element nodes that contain
a child node with labelfirst and further text childMickey , together with a child node with labellast
and further text childMouse. Predicates are enclosed in square brackets[ ] and follow the node test (or
other predicates). Predicates may contain:

location path the predicate succeeds if the evaluation of the location path returns a
non-empty sequence

expOPexp compares two expressions, which may either be atomic values, location
paths or function calls, with OP. The following comparison operators
are supported:

• = tests whether the intersection of two sequences is non-empty

• != tests whether the intersection of two sequences is empty

• >, >=, < and<= convert the two expressions to numbers and com-
pare them accordingly

predand pred connects two predicates withand
predor pred connects two predicates withor

Abbreviated Syntax

Those axis specifications that are most frequently used (e.g. child anddescendant-or-self ) can also
be expressed using anabbreviated syntax, which closely resembles path specifications for directories and
files in UNIX. The following table summarises the available abbreviations:

Expression Abbreviation
child:: name name
/descendant-or-self:: name // name
self::node() .
parent::node() ..
attribute:: name @name
[position()= n] [ n]

All other axes have no counterpart in the abbreviated syntax, but it is possible to mix abbreviated and
non-abbreviated syntax as required.

In the abbreviated syntax, the selection of the phone numberof “Mickey Mouse” is more conveniently
expressed as:

/address-book/person[name[first = "Mickey" and last = "Mo use"]]/phone

3.3.2 XSL/XSLT

The Extensible Stylesheet Language1 includes both a transformation language (calledXSL Transforma-
tionsor XSLT) and a formatting language (calledXSL Formatting Objectsor XSL-FO). Both are specified
as XML applications (i.e. they use an XML syntax) and are developed by theWorld Wide Web Consor-
tium (W3C), where they have achieved the status ofW3C Recommendation, which in W3C terms is the
equivalent of a standard.

Whereas XSL-FO is merely a language containing instructions for formattingdocuments (similar to
HTML), XSLT [106] can be considered a query language, as it allows to select data from an XML document
and rearrange it in a new structure. XSLT is currently mainlyused to transform XML documents into
HTML, but other applications exist.

1http://www.w3.org/Style/XSL/
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XML-based Syntax

XSLT stylesheets(i.e. query or transformation programs) are themselves XMLdocuments. An XSLT
stylesheet can be seen as aformor templatefor the resulting XML document, augmented by data selection
expressions. This is advantageous for two reasons:

• it allows to easily embed queries in documents that contain mostly static content, similar to other
Web languages like PHP or JSP.

• it allows to treat XSLT stylesheets as data, i.e. XSLT stylesheets can be input as well as output of
another XSLT stylesheet.

XSLT stylesheets have the following XML structure:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XS L/Transform">

template rules

</xsl:stylesheet>

Template Rules

An XSLT stylesheet is always given in terms of a sequence oftemplate rules. A template rule consists of
an XPath expression (called thepattern) functioning as aguard to the rule (i.e. a condition that specifies
when the rule is applicable), and an XML fragment used as atemplatefor the output that may contain
either fixed markup, XPath expressions for data selection, or recursive applications of template rules.

Example:Recall the address book example used earlier. The followingXSLT stylesheet creates an
HTML document summarising the entries of the address book ina table.

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XS L/Transform">

<xsl:template match="/address-book">
<html>

<head><title>Address Book</title></head>
<body>

<table>
<tr><td>Name</td><td>Phone</td><td>Email</td></tr>
<xsl:apply-templates select="./person"/>

</table>
</body>

</html>
</xsl:template>

<xsl:template match="person">
<tr>

<td><xsl:value-of select="./name/first"/>
<xsl:value-of select="./name/last"/></td>

<td><xsl:value-of select="./phone"/></td>
<td><xsl:value-of select="./email"/></td>

</tr>
</xsl:template>

</xsl:stylesheet>
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The first template rule matches the root element (specified by/ ) if it has the labeladdress-book . It
contains a template that creates some static HTML markup, and recursively applies the stylesheet to all
person child elements relative to the current element (i.e. the root element). The second template rule
matches only elements that have a label ofperson , but at arbitrary depth. It constructs a table row and fills
it with values relative to the current element.

Structural Recursion

The fundamental computation model of XSLT is structural recursion over the structure of a single, fixed
input document, beginning with the root element and traversing to the leaves. In the course of this traversal,
template rules are applied in case their patterns match and content is immediately written to the result
document. Since rules have to adhere to this traversal, theyin general cannot serve to structure a stylesheet
into logical components. As a consequence, it is neither possible to query more than one document nor to
query the results of other rule applications for further processing within a single stylesheet.

However, the author of a stylesheet can deviate from the root-to-leaves traversal by specifying explicit
selections in recursive calls toapply-templates or by using absolute or backward XPath expressions in a
rule pattern or selection. The following template rule lists for each person the names of person that he/she
knows. It first selects the value of the attributeknows into the variableknows , then outputs the person
name, then applies the stylesheet to all names of persons that this person knows. The latter are selected
beginning again at the root element, and consequently, thisselection deviates from the default traversal of
the tree.

<xsl:template match="person">
<xsl:variable name="knows" select="@knows"/>
<p>

Person Name: <xsl:value-of select="name/first"/>
<xsl:value-of select="name/last"/> <br/>

Knows: <xsl:apply-templates select="//person[@oid = $kn ows]/name"/>
</p>

</xsl:template>

Imperative Constructs

Besides the recursive application of template rules, XSLT provides a set of imperative constructs that may
be used inside of template rules:

• xsl:for-each may be used to iterate over all elements of a sequence selected by an XPath expres-
sion

• xsl:if may be used to output certain parts only if some condition succeeds (noelse )

• xsl:choose is a generalisation ofxsl:if that allows to specify several alternatives guarded by
conditions and works likecase or switch in other programming languages

Example: The example in the previous paragraph listed all known person, but the output does not
contain commas to separate the different names. The following refinement adds commas after a name in
case it is not the last name of the list.xsl:for-each is used to iterate over the sequence of person names
that are known, and anxsl:if inserts a comma in case the name is not the last element in the sequence:

<xsl:template match="person">
<xsl:variable name="knows" select="@knows"/>
<p>

Person Name: <xsl:value-of select="name/first"/>
<xsl:value-of select="name/last"/> <br/>

Knows: <xsl:for-each select="//person[@oid = $knows]/na me"/>
<xsl:value-of select="first"/>
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<xsl:value-of select="last"/>
<xsl:if test="position() = last()">,</xsl:if>

</xsl:for-each>
</p>

</xsl:template>

Named Templates

XSLT allows to add names to template rules by using aname attribute, in which case the template rule
is also called anamed template. Named templates can then be called explicitly (as opposed to the im-
plicit xsl:apply-templates ) by xsl:call-template , similar to function calls in other programming
languages. Such calls can take an arbitrary number of named parameters (usingxsl:with-param ) and can
also be recursive. This feature provides XSLT with the capability to express any kind of computation [66].

Example: The following XSLT template recursively calculates the faculty of the parametern. The
parameterakk is an accumulator, which is necessary because all construction of a template is immediately
written to the output and cannot be bound to variables. Ifn is greater than 1, then the template is called
recursively, withn decreased by 1 and the accumulator multiplied byn. Otherwise, the accumulator is
returned. Both parameters are assigned a default value of1.

<xsl:template name="fac">

<xsl:param name="n" select="1"/>
<xsl:param name="akk" select="1"/>

<xsl:choose>
<xsl:when test="$n > 1">

<xsl:call-template name="fac">
<xsl:with-param name="n" select="$n - 1"/>
<xsl:with-param name="akk" select="$n * $akk"/>

</xsl:call-template>
</xsl:when>
<xsl:otherwise>

<xsl:value-of select="$akk"/>
</xsl:otherwise>

</xsl:choose>

</xsl:template>

Due to its verbose XML syntax, XSLT programs often appear more complicated than they are. Also,
the built-in recursion over the tree structure of the input document – while being very powerful – often
confuses users, in particular beginners.

3.3.3 XQuery

XQuery [113] is an XML query language developed by theXML Query Working Group2 at W3C. It is
currently aW3C Working Draft, but scheduled to become aW3C Recommendation(i.e. the W3C equivalent
of a standard) soon. TheXML Query Working Groupis a committee with participants from both, academia
and industry, and the design of the language is influenced by many different groups, which sometimes
gives the impression that XQuery tries to solve all problemsat once (a phenomenon often referred to as
“design-by-committee”3)

The following introduction is inspired by the recently published bookXQuery from the Experts[65],
the first chapter of which is also available online4, and by the lecture notes found at [27].

2http://www.w3.org/XML/Query
3http://c2.com/cgi/wiki?DesignByCommittee
4http://www.datadirect.com/techzone/xml/xquery/docs/ katz_c01.pdf
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Data Model

Like XSLT, XQuery regards every XML document as anordered tree, consisting of (among others)element
nodes, attribute nodes, andtext nodes, with a particular node called theroot node, which is parent of the
node corresponding to the outermost element and representsthe whole document.

Everyvaluein XQuery is a sequence of nodes or atomic values, there is no distinction between a single
element and the sequence consisting only of this element. A sequence is always ordered, usually (if not
explicitly sorted differently) in so-calleddocument order, i.e. in order of appearance in the XML document.
Atomic values can be typed using a type system that is similarto XML schema’s basic types. Also, the
document itself can be associated with a schema definition.

Path Expressions

XQuery uses XPath for selecting nodes in this tree. Any XPathexpression is itself an XQuery program.
The following XQuery program thus retrieves all authors in the bibliography example of Section 2.4.2
(abbreviated XPath syntax):

/bib/book/authors/author

The result of an XQuery program is in general not a tree like inXSLT but instead aforest, i.e. a sequence
of trees. In the example above, the result would be:

<author>
<last>Ingelman-Sundberg</last>
<first>Catharina</first>

</author>

<author>
<last>Ingelman-Sundberg</last>
<first>Catharina</first>

</author>

<author>
<last>Wahl</last>
<first>Mats</first>

</author>

<author>
<last>Nordqvist</last>
<first>Sven</first>

</author>

<author>
<last>Ambrosiani</last>
<first>Bj örn</first>

</author>

Constructing Nodes

Similar to XSLT, queries can be embedded in construction patterns that resemble the intended result. A
very simple XQuery program is thus just an XML document without any XQuery specific expressions:

<result>
Hello World!

</result>
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When embedding XQuery expressions in construction patterns, they are enclosed in curly braces{ } .
Anything not enclosed in curly braces is written to the output and not evaluated. The following XQuery
program groups the forest created above under anauthors element:

<authors>
{ /bib/book/authors/author }

</authors>

Variables

An expression of the form$name is called avariable reference. Variables may be bound tovalues, i.e.
sequences of subtrees selected by XPath expressions (seeFORandLET below). Variable references may be
used in XPath expressions where they are substituted by their binding. If the value (a sequence!) of the
binding contains more than one item, then each of these itemsis substituted in turn, building a union of all
selected data items.

Example:Assume, the variable$b is bound to a sequence ofbook subtrees in the bibliography. The
following XQuery expression creates a sequence of authors for the books contained in$b:

$b/authors/author

Variables may not only occur at the beginning of an expression but in certain cases also within it. The
following example assumes that the variable$b is bound to the (sequence containing only the) stringbook
(in contrast to the example above, where$b was bound to the sequence of subtrees with labelbook ). This
expression again creates a sequence of authors:

/bib/$b/authors/author

FLWOR Expressions

Variables are bound in so-called FLWOR (read “flower”) expressions. FLWOR is an abbreviation com-
posed of the initial letters of the five fundamental XQuery keywordsFOR. . .LET . . .WHERE. . .ORDER BY
. . .RETURN.

FOR and LET serve to bind variables in different manners. WhereasFORiterates over all items in a
sequence and binds a variable successively to each item (or rather to the singleton sequence containing
only that item),LET binds the variable once to the complete sequence.

Example:The following expression binds the variable$b successively to each book in the bibliography
(selected by the XPath expression/bib/book ):

FOR $b IN /bib/book

whereas the following expression binds the variable$b to the sequence of all books:

LET $b := /bib/book

FORloops may also iterate over several sequences, which effectively is a shortcut for nested loops and
allows to compute e.g. the cross-product of two sequences. For instance, the following expression builds
the cross-product of all books and all authors:

FOR $b IN /bib/book,
$a IN /bib//author

WHERE allows to attach conditions to filter the admissible bindings of a variable in aFORexpression.
For instance, the following expression binds the variable$b only to books published after 1997:

FOR $b IN /bib/book
WHERE $b/@year > 1997
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ORDER BY specifies an ordering for the variable bindings in aFORexpression.ORDER BYis followed
by an XPath expression selecting the nodes based on which thesequence should be ordered. The following
XQuery expression successively binds the variable$b to all books of the bibliography sorted by title:

FOR $b IN /bib/book
ORDER BY $b/title

RETURN returns the result of an XQuery expression. The result is again specified by an XQuery (sub-
)expression, i.e. it may contain construction templates, XPath expressions, or nested FLWOR expressions.
For instance, the following XQuery expression (example XMP-Q3 from theXQuery Use Cases[34]) lists
for each book in the bibliography the title and authors, grouped inside aresult element:

<results>
{

FOR $b IN doc("file:bib.xml")/bib/book
RETURN

<result>
{ $b/title }
{ $b/author }

</result>
}
</results>

FLWOR expressions can also be nested. The following XQuery expression (example XMP-Q4 from
theXQuery Use Cases) lists for each author in the bibliography the author’s nameand the titles of all books
by that author, grouped inside aresult element, i.e. the symmetric case for the example above. It also
uses a function calleddistinct-values that eliminates duplicates in a sequence:

<results>
{

LET $a := doc("file:bib.xml")//author
FOR $last IN distinct-values($a/last),

$first IN distinct-values($a[last=$last]/first)
ORDER BY $last, $first
RETURN

<result>
<author>

<last>{ $last }</last>
<first>{ $first }</first>

</author>
{

FOR $b IN doc("file:bib.xml")/bib/book
WHERE some $ba IN $b/author

satisfies ($ba/last = $last and $ba/first=$first)
RETURN $b/title

}
</result>

}
</results>

The two previous examples also show a major deficiency of XQuery: although both examples query
exactly the same data, the second query expression is much more complicated, as it has to arrange the data
in a new structure, whereas in the first example the result quite similar in structure to the original document.
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The Positional Variableat

Iterations withFORalso allow to simultaneously bind a variable to the positionof the current item in the
sequence. This is achieved by the constructat . The following XQuery expression selects books together
with their position in the bibliography, and outputs this inan appropriate XML representation:

<results>
{

FOR $b at $p IN /bib/book
RETURN

<result>
<position>{ $p }</position>
<title>{ $b/title }</title>

</result>
}
</results>

Selecting the position can be important as the position often conveys meaning. For example, in an
HTML table, the position is the only way to refer to a certain column or row.

Joins

It is often useful to combine data from different sources. Tothis aim, XQuery supports not only to bind
multiple variables in aFORloop (which computes the cross product), but also to join them based on certain
join conditions. Join conditions are added to theWHEREclause of an XQuery expression, like any other
condition. For example, the following query expression selects books from both databases of Section 2.4.2
to combine them in a unified representation:

<books>
{

FOR $b IN doc("file:bib.xml")/bib/book,
$r IN doc("file:reviews.xml")/reviews/entry

WHERE $b/title = $r/title
RETURN

<book>
{ $b/title }
{ $b/authors }
{ $r/review }

</book>
}
</books>

Using nesting of query expressions, XQuery is capable of expressing a wide range of different join
conditions, like equijoin, left outer join, etc.

Quantifiers

Sometimes it is necessary to determine whetherall items orat least oneitem in a sequence satisfy a certain
condition. This is achieved using the quantifiersall andsomein aWHEREclause. For instance, the following
XQuery expression selects only such books where one of the authors is “Sven Nordqvist”:

FOR $b IN doc("file:bib.xml")/bib/book
WHERE some $a in $b/authors/author

satisfies ($a/last = "Nordqvist" and $a/first = "Sven")
RETURN $b

Sebastian Schaffert 55



3.3. EXISTING WEB QUERY LANGUAGES

Conditional Expressions: if . . . then . . . else . . .

XQuery usesif ...then ...else ... expressions similar to conditional expressions in other lan-
guages. Both thethen and theelse branch are required, but it is possible to use() as return value to
denote empty content. The following XQuery expression lists for each book having at least one author the
title and the first two authors, and adds an emptyet-al element in case there are more than two authors
(example XMP-Q6 of [34]):

<bib>
{

for $b in doc("file:bib.xml")//book
where count($b/author) > 0
return

<book>
{ $b/title }
{

for $a in $b/author[position()<=2]
return $a

}
{

if (count($b/author) > 2)
then <et-al/>
else ()

}
</book>

}
</bib>

Operators and Functions

XQuery provides a variety of pre-defined operators and functions that can be used in XQuery expressions.
These include arithmetic operators (like+, - , or * ), comparison operators (like=, != , or >), sequence
operators (likeunion , intersect , or except ), and a function library containing functions for many tasks
that occur frequently (like date/time conversion, string search, etc.).

User-Defined Functions

It is also possible to define own functions that can be used to reuse frequently used query expressions, or
to define recursive traversals of a data structure. Functiondefinitions in XQuery have the following form
(fname is the function name,$param1, $ param2, ... is a list of parameters with namesparam1 ,
param2 , etc):

define function fname ($ param1, $ param2, ...)
as element()*

{
XQuery expression

}

The expressionas element()* indicates that the return type of the function is an arbitrary number of
elements (see types below).

3.3.4 Survey over other Web Query Languages

The remainder of this section gives a brief survey over otherXML query languages that are relevant to this
thesis because they have properties that are interesting for the development of the language Xcerpt. Besides
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the languages listed below, there exist many other XML querylanguages that are not discussed here,
e.g.XQL [90] andXirQL [52] (both are similar to XPath),Quilt [35] (the main predecessor of XQuery),
Lorel [2] (which is an extension of the Object Query Language OQL tosemistructured data),fxt [17] (the
Functional XML Transformer, similar to XSLT),FnQuery[96] (adds XPath-like constructs for querying
XML to Datalog and/or Prolog),XPathLog/LoPiX[75] and X-DEVICE [10] (both are deductive path-
based query languages for XML),Elog [11] andCXQuery[38] (the Constraint XML Query Language),
are extension of Datalog with XPath expressions,WebLog[68], XML-RL [70] (theXML Rule Language),
andXET/XDD[7] (XML Equivalent Transformations). In addition to these pure query languages, there are
furthermore the languagesXDuce[32] andCDuce[13], which extend the functional programming language
ML by constructs for XML processing, and the libraryHaXml[121], which adds XML processing support
to the functional programming languageHaskell.

All of these languages aretextuallanguages aimed at querying XML or semistructured data. Besides
this, a number ofvisualquery languages exist (e.g.XML-GL [33], Xing [47], Complete Answer Aggregates
[76], BBQ [78], QURSED[84], VXT [86], andLixto [12]) that allow to compose query programs using
a visual interface. Since visual querying is not the focus ofthis thesis, none of them are described here
in detail. Furthermore, a number of query languages aiming at querying Semantic Web data are proposed
(e.g.RDQL[95], OWL-QL[48], andTRIPLE[99]), which are not capable of querying plain XML data and
thus also not discussed here.

UnQL

UnQL [31] (the Unstructured Query Language) is a query language originally developed for querying
semistructured data and precedes the development of XML. Ithas later been adopted to querying XML, but
the origins are still apparent in many language properties (for example, UnQL has a non-XML syntax that is
very similar to the syntax of OEM presented in Section 2.1.3). UnQL usesquery patternsandconstruction
patternsand a query consists of a singleselect ...where ... rule that separates construction from
querying. Queries may be nested, in which case the separation of querying and construction is abandoned.

Example 3.2 (UnQL)
Select all authors and titles of books written after 1991 andreturn them inresult elements contained
within a results element. Note the use of nestedselect ...where ... statements to group titles and
authors.

select { results: (
select { result: { title: T,

( select { author: A }
where { author: A } in Book )

}
}

where { book: Book } in Bib,
{ year: Y, title: T } in Book ) },
Y > 1991

where { bib: Bib } in db

Since UnQL has originally not been developed for the Web, it is apparently not possible to address arbi-
trary Web documents. Instead, the example above uses an identifier calleddb to refer to the semistructured
database represented by the documentbib.xml .

Pattern-Based Querying and Simulation. UnQL is to the best of our knowledge the first language to
propose a pattern-based querying (albeit with subqueries instead of rule chaining) for semistructured data
(including XML). It furthermore usesgraph simulationas its foundation for evaluation, which inspired the
usage of simulation for the evaluation of Xcerpt.
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XML-QL

XML-QL [45] is a pattern-based, rule-based query language for XML designed at AT&T Labs. Like UnQL,
it usesquery patternsinitiated byWHEREand augmented by variables for selecting data andconstruction
patternsinitiated by CONSTRUCTfor reassembling selected data in new structures. An XML-QLquery
always consists of a singleWHERE-CONSTRUCTrule, which may be divided into several subqueries. The
following example gives a flavour of how XML-QL queries are constructed using nested subqueries. Like
in XQuery and XSLT, expressions beginning with$ are variables. Note also that XML-QL uses tag-
minimisation to abbreviate closing tags.

Example 3.3 (XML-QL)
Select all authors and titles of books written after 1991 andreturn them inresult elements contained
within a results element. Like in UnQL, subqueries are used to group titles and authors.

WHERE
<bib>

$book
</> IN "bib.xml"

CONSTRUCT <results>
WHERE <book year=$y>

<title>$t</>
<author>$a</>

</book> IN $book, y > 1991
CONSTRUCT <result>

<title>$t</>
WHERE $a2 IN $a
CONSTRUCT <author>$a2</>

</result>
</results>

Logic Variables. One of the main characteristics of XML-QL is that it uses query patterns containing
multiple variables that may select several data items at a time instead of path selections that may only
select one data item at a time. Furthermore, variables are similar to the variables of logic programming, i.e.
“joins” can be evaluated over variable name equality. SinceXML-QL does not allow to use more than one
separate rule, it is often necessary to employ subqueries toperform complex queries.

XMAS

XMAS[72], (theXML Matching And Structuring language), is an XML query language that builds upon
XML-QL. Like XML-QL, XMAS uses query patternsandconstruction patterns, and rules of the form
CONSTRUCT ...WHERE ... . However, XMAS extends XML-QL in that it provides a powerfulgroup-
ing constructinstead of relying on subqueries for grouping data items within an element. It furthermore
supportspattern restrictionsthat allow to restrict the admissible bindings of a variable.

Example 3.4 (XMAS)
Select all authors and titles of books written after 1991 andreturn them inresult elements contained
within a results element. Note that XMAS provides special grouping constructs for grouping titles and
authors and thus avoids nested subqueries.

CONSTRUCT
<results>

<result>
$T
$A {$A}

</result> {$T}
<results>
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WHERE
<bib>

<book year=$Y>
$T: <title/>
$A: <author/>

</>
</> IN "bib.xml"
AND $Y > 1991

Grouping Constructs. In any kind of tree or graph structured databases, it is desirable togroup data
items beneath a node in the construction of the result. For example, when constructing the list of authors
with all titles in the example used in this Section, it is necessary to group allresult elements that can be
created for different authors beneath theresults element. Likewise, it is necessary to group all book titles
of an author beneath theresult element corresponding to that author.

Many query languages (like XQuery, UnQL, and XML-QL) implement grouping by reverting tosub-
queriesthat are embedded in the construction pattern, which leads to a close intertwining of query and
construction patterns (as shown in the examples for XQuery,UnQL, and XML-QL above). In contrast,
languages like XMAS (and Xcerpt) provide high-levelgrouping constructsthat allow to collect data items
that are bound in a separate query pattern. Such grouping constructs usually specify a set of variables
on whose bindings the grouping is performed. A data item is created for each different combination of
bindings for these variables.

In XMAS, grouping is expressed by enclosing the variables onwhose bindings the grouping is per-
formed in curly braces and attaching them to the end of the subpattern that specifies the structure of the
resulting instances. In Example 3.4 above, aresult element is created for every instance of$T (indicated
by {$T} after the closing tag of the elementresult ). Within every such result element, all authors are
collected (indicated by{$A} ).

When comparing this XMAS query with the XML-QL query above, it is easy to see that grouping
constructs that result in a separation of querying and construction are a desirable property for a query
language, as the query is more declarative and therefore easier to grasp.

Pattern Restrictions. A pattern restrictionrestricts the admissible bindings of a variable to such data
items that match a certain query pattern. In XMAS, pattern restrictions may be attached to variables in the
WHEREpart of a rule and are denoted by: , followed by the restricting pattern. In Example 3.4 above,the
variables$T and$A are restricted to certain patterns.

Arguably, a pattern restriction is a very declarative meansto specify restrictions for variables. In lan-
guages that do not support pattern restrictions, it is necessary to add the restriction by using additional
external constraints that are not part of the query pattern,and thus break up the query pattern. As a conse-
quence, queries in such languages are not only less concise,but often also less efficient to evaluate.
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CHAPTER

FOUR

Xcerpt: A New Programming Paradigm for Querying the Web

This Chapter introduces the syntactical constructs of the language Xcerpt and gives an intuitive meaning to
them based on many examples without immediately providing the formal definition. Similar descriptions
have also been published in [23, 93]. More extensive examples can be found in the next chapter.

This Chapter is structured as follows: Section 4.1 describes two different syntaxes that are available
for Xcerpt programs, one based on XML and the other using a more compact term syntax. Section 4.2
describesdata terms, which are Xcerpt’s means to represent semistructured dataand closely resemble the
semistructured expressions of Section 2.1. Section 4.3 introducesquery terms, which are patterns used to
select subterms from data terms by binding variables. They resemble data terms, but provide advanced
constructs for querying. Section 4.4 formally describes matching of query with data terms and introduces
the notion ofground query term simulation, which is central to this thesis and replaces the syntactical
equivalence used in most standard pattern matching approaches. Next, Section 4.5 describes how query
terms can be combined to form more complexqueries. Section 4.6 then introducesconstruct terms, which
serve to reassemble variable bindings gathered in queries into new structures. Of particular interest here
are the powerful grouping constructsall andsomethat serve to create nested lists of subterms. Finally,
Section 4.7 introducesconstruct-query rulesthat combine queries with construct terms.

4.1 Two Syntaxes

Xcerpt uses two different syntaxes for programs and semistructured data, an XML syntax and a compact
term syntax (called the Xcerpt syntax). The XML syntax allows to use standard XML tools like parsers,
editors or browsers (in particular, the visXcerpt prototype [14, 16, 15] is based on a rendering of the XML
syntax in Mozilla). The Xcerpt syntax, which is used in most parts of this thesis, is a more compact
representation of Xcerpt programs. It is more convenient for both presentation and editing of Xcerpt
programs. Furthermore, to emphasise that XML is not the onlyrepresentation format for semistructured
data (see Section 2.1 above), the Xcerpt syntax also provides a more generic format with a deliberate
abstraction from XML. The XML syntax of Xcerpt is not presented in this thesis. Regular updates are
available athttp://www.xcerpt.org .

Besides such “convenience features”, the Xcerpt syntax allows to express language constructs that have
no direct counterpart in XML and thus can only be representedin the XML syntax by using Xcerpt-specific
attributes and elements:

• graph-structured data:Semistructured data is in general graph structured (cf. Section 2.1). While
several linking and reference mechanisms for XML exist (e.g. XLink [110] and ID/IDREF [116]),
they privilege hierarchical data, as all of them need explicit dereferencing.

In contrast, references in Xcerpt terms are treated as equalto a parent-child relationship when match-
ing a query pattern against a “database”.
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• unordered/ordered content:In XML documents, content is always considered as beingordered(the
so-calleddocument order). In many applications, particularly in semistructured databases, it is how-
ever desirable to be able to consider data asunordered, i.e. the order in which data items occur is
irrelevant.

Xcerpt allows to mix both ordered and unordered content.

• query specific constructs:As Xcerpt is a pattern-based language, it is necessary to enrich term pat-
terns with certain query-specific constructs like variables or partial/total and ordered/unordered term
specification (seeQuery Termsbelow), but nonetheless stay as close as possible to the representation
of data items.

4.2 Data Terms: An Abstraction for Data on the Web

Data terms represent XML documents and data items in semistructured databases. Data terms correspond
to groundfunctional programming expressions andgroundlogical atoms. Syntactically, they are very sim-
ilar to the semistructured expressions introduced in 2.1, but they contain additional constructs that allow to
represent peculiarities of XML (like attributes). Apart from the special constructs for ordered/unordered
term specification and the Xcerpt reference mechanism, dataterms are thus just a simplified syntax for
XML, or “XML in disguise”. Data terms are not restricted to representing XML data or semistructured ex-
pressions: they are meant as an abstraction of many of the available formalisms for rooted, graph structured
data like data represented in OEM or ACeDB, but also Lisp S-expressions or RDF graphs.

1 <data-term> := ( oid "@" )? <ns-label> <list> .
2 <ns-label> := ( <ns-prefix> ":" )? label
3 <ns-prefix> := label | ’"’ iri ’"’ .
4 <list> := <ordered-list> | <unordered-list> .
5 <ordered-list> := "[" <attributes> ? <data-subterms> ? "]" .
6 <unordered-list> := "{" <attributes> ? <data-subterms> ? "}" .
7 <data-subterms> := <data-subterm> ( "," <data-subterm> )*
8 <data-subterm> := <data-term> | ’"’ string ’"’ | number | "ˆ" oid .
9 <attributes> := "attributes" "{" <attribute> ( "," <attribute> )* "}" .

10 <attribute> := <ns-label> "{" ’"’ string ’"’ "}" .

Like in the grammar of Section 2.1, expressions between< and> are non-terminal symbols (or vari-
ables). Expressions enclosed in the quotation characters" or ’ are terminal symbols.oid andlabel denote
object identifiers and expression labels (tag names), respectively. oid , label , andstring are character
sequences corresponding to XML identifiers, tag names, and text content.number is an arbitrary integer or
floating point number.iri is aninternationalised resource identifieras defined in [61]. In this thesis, the
symbolˆ is often replaced by the more concise symbol↑, which is unfortunately not available in ASCII.

If a data termt is of the formlabel[t 1,...,t n] or label{t 1,...,t n} , then thet i are calledim-
mediate subterms of t. Subterms of thet i are calledindirect subtermsof t. If neither “immediate” nor
“indirect” is specified, the termsubtermusually only refers to the immediate subterms of a term. In anal-
ogy to the XML terminology,t is theparent termof its subterms, (immediate) subterms are sometimes also
referred to aschild terms, and the topmost parent term is called theroot term. In an¡attributes¿expression
of the formattributes{label 1{...},...,label n{...}} , the labels must be different, because XML
attributes need to have different names.

Example 4.1
Consider again the publication list from Section 2.1. The representation of this semistructured data item
as a data term (or semistructured expression) is shown on theleft. An equivalent representation (except
subterm ordering) as an XML document is shown on the right. Note that the document prologue is omitted
for brevity.
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publications {
book {

title [ "Folket i Birka på Vikingarnas Tid" ],
authors [

author [ "Mats Wahl" ],
author [ "Sven Nordqvist" ]
author [ "Björn Ambrosiani" ]

]
},
book {

title [ "Boken Om Vikingarna" ],
authors [

author [ "Catharina Ingelman-Sundberg" ]
]

}
}

<publications>
<book>

<title>Folket i Birka på Vikingarnas Tid</title>
<authors>

<author>Mats Wahl</author>
<author>Sven Nordqvist</author>
<author>Björn Ambrosiani</author>

</authors>
</book>
<book>

<title>Boken Om Vikingarna</title>
<authors>

<author>Catharina Ingelman-Sundberg</author>
</authors>

</book>
</publications>

In this example, the terms with labelbook areimmediate subtermsor child termsof the term with label
publications , which is also theroot term. The term with labelpublications is thus theparent term
of the terms with labelbook . The terms labelledauthor are immediate subterms of the respective terms
labelledauthors , andindirect subtermsof e.g. the respective terms labelledbook .

Data terms may be used as an abstraction for many other formalisms that represent hierarchical or graph
structured data. The following two examples show the publication list as aLisp S-expressionand in the
Object Exchange Model(OEM).

(publications
(book

(title "Folket i Birka på Vikingarnas Tid")
(authors

(author "Mats Wahl")
(author "Sven Nordqvist")
(author "Björn Ambrosiani")

)
)
(book

(title "Boken Om Vikingarna")
(authors

(author "Catharina Ingelman-Sundberg")
)

)
)

{ publications:
{ book:

{ title: "Folket i Birka på Vikingarnas Tid",
authors:

{ author: "Mats Wahl",
author: "Sven Nordqvist",
author: "Björn Ambrosiani"

},
},

book:
{ title: "Boken Om Vikingarna",

authors:
{ author: "Catharina Ingelman-Sundberg" }

}
}

}

4.2.1 Term Specifications

Like semistructured expressions, data terms allow the specification of orderedandunorderedlists of sub-
terms. These properties are expressed by using different kinds of braces to parenthesise the subterms.

• Square brackets (i.e.[ ]) denoteordered term specification, i.e. the order of subterms in the list is
significant. An ordered term specification allows to select subterms by position and is important e.g.
in text documents.

• Curly braces (i.e.{ }) denoteunordered term specification, i.e. the order of subterms in the term
is insignificant, although they are stored in a particular sequence. An unordered term specification
allows to rearrange subterms in the list e.g. for building anindex for faster access, or for more
efficient use of a storage system (like grouping several small subterms in a single page of background
memory while storing large subterms in an individual page each). Unordered term specification is
commonly found in semistructured databases.

In Example 4.1 above, the term with labelpublications has an unordered term specification, meaning
that the order of thebook subterms is irrelevant, i.e. the storage system might choose to rearrange them in
a different order. The terms with labelauthors have ordered term specification, meaning that the order of
the list ofauthor elements is significant (e.g. for proper citing).

Terms with different term specifications may be nested (i.e.subterms of a term may have a term
specification different from the parent term’s), but nesting of term specifications within the same list
of subterms is not permitted. For example, the termf{g["a","b"],h{"c","d"}} is a data term, but
f{"a",["b","c"],"d"} is not.
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4.2.2 References

References are used for representing graph structures in a textual syntax. In Xcerpt data terms, subterms of
the formoid @ t (read: “oid at t”) aredefining occurrencesof oid and associate the identifieroid with
the subtermt . Subterms of the form̂oid (or ↑oid , read: “reference to oid”) arereferring occurrencesof
oid and refer to the subterm associated with the identifieroid . As with semistructured expressions, every
identifier may occur at most once in a defining occurrence, andan identifier used in a referring occurrence
must also occur in a defining occurrence somewhere.

References in data terms are a unified representation for thevarious linking mechanisms available for
XML (and other formalisms), like ID/IDREF, XPointer, XLinkand URIs, and serve to simplify their rep-
resentation in Xcerpt.1 Unlike other query languages, Xcerpt automatically dereferences such references
when querying, i.e. a reference can be treated like a parent-child relationship.

Example 4.2
The following two terms are considered to be equivalent:

f {
b { &o1 @ d {} },
c { ↑&o1 }

}

f {
b { ↑&o1 },
c { &o1 @ d {} }

}

4.2.3 Attributes

Unlike XML, Xcerpt does not have a special representation for attributes. Instead, XML attributes are
treated as subterms of a term with the specific restriction that the value may not be structured content. An
attribute of the formkey = "value" is represented in Xcerpt as a term of the formkey{"value"}

In order to separate attributes from child elements and thusretain the possibility to perform one-to-
one transformations between Xcerpt and XML, Xcerpt groups them in a special subterm with the label
attributes . Since attributes in XML are always unordered, this specialsubterm always has an unordered
term specification (see above). As a convention, every data term should containat most oneattributes
subterm, and this subterm, if existent, should be thefirst subterm in the list of subterms (even in case the
parent term is unordered). Also, all attributes of a term need to have different labels.

Example 4.3
Each book in thebib.xml database of Section 2.4.2 contains an attributeyear in the XML syntax. Con-
sider for example the following book:

<book year="1995">
<title> Vikinga Blot </title>
<authors>

<author>
<last> Ingelman-Sundberg </last>
<first> Catharina </first>

</author>
</authors>
<publisher> Richters </publisher>
<price> 5.95 </price>

</book>

In Xcerpt syntax, this book can be represented as follows. Note in particular that the element itself is
ordered (as it is a representation of an XML document) while the attributes are unordered:

1Note that Xcerpt is not limited to its own reference mechanism: e.g. ID/IDREF can easily be dereferenced using an appropriate
query (cf. Section 5.1.2).
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book [
attributes { year { "1995" } },
title [ "Vikinga Blot" ],
authors [

author [
last [ "Ingelman-Sundberg" ],
first [ "Catharina" ]

}
],
publisher [ "Richters" ],
price [ "5.95" ]

]

This treatment of attributes has the main advantage that no exceptions are needed in the definition of
Xcerpt extensions like variables or regular expressions. Instead, since attributes are represented in the same
term structure as elements, it is possible to use the standard constructs for all occurrences of attributes.

4.2.4 Namespaces

Xcerpt supports namespaces in a straightforward manner that follows closely the use of namespaces in
XML (cf. Section 2.2.6). Like in XML, namespaces are URIs (uniform resource identifiers) or IRIs (inter-
nationalised resource identifiers). Namespace prefixes can be declared and are then separated from term
labels by a colon. As an extension to XML namespaces, it is also possible to use the namespace URI as a
prefix 2.

Namespace Declarations

Namespace prefixes are declared with the keywordns-prefix followed by the defined prefix, a= and the
namespace IRI. The default namespace (i.e. the namespace ofall subterms that do not have an explicit
namespace prefix) can be defined with the keywordns-default , followed by= and the namespace IRI of
the default namespace.

1 <ns-declaration> ::= "ns-prefix" <ns-prefix> "=" ’"’ iri ’ "’
2 | "ns-default" "=" ’"’ iri ’"’ .

As a simplification over XML namespaces, this thesis allows namespace declarations only outside
terms. This restriction obviously anticipates nested namespace declarations and shadowing, and thus asyn-
tactic one-to-one mapping between XML documents and Xcerpt terms preserving the namespace prefixes
is not always possible, although the two approaches have equivalent expressiveness (both allow to associate
namespace IRIs with term/element labels). Transforming XML documents that use nested namespace dec-
larations into data terms and vice versa is nevertheless possible as thenamespacesthemselves are preserved
and just thenamespace prefixesmight get lost. Further refinements of namespaces that take into account
both nested declarations and shadowing are currently beinginvestigated.

Namespaces in Data Terms

In Xcerpt terms, namespaces are used almost as in XML. The most significant difference to XML is that
the namespace IRI may also be used as a namespace prefix. In this case, it is not necessary to define the
namespace in advance.

2In XML, this is not admissible due to syntactic restrictions. Xcerpt does not need to adhere to such restrictions as it is not
necessary to retain backwards compatibility with applications that are not namespace aware.
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1 <ns-prefix> = label | ’"’ uri ’"’ .

Example 4.4 (Namespaces in Xcerpt)
Consider again Example 2.14 on page 30, which illustrated the use of namespaces in XML by adding
a remarks element to address book entries that might contain HTML elements for markup. It uses the
namespace prefixa to refer to the address book schema, and the namespace prefixb to refer to the XHTML
schema. As a data term, this document might be represented asfollows:

ns-prefix a = "http://www.myschemas.org/address-book"
ns-prefix b = "http://www.w3.org/2002/06/xhtml2"

a:address-book {
&o1 @ a:person {

a:name {
a:first { "Mickey" },
a:last { "Mouse" }

},
a:phone {

attributes {
a:type { "home" }

},
"19281118"

},
a:knows { ↑&o2 },
a:remarks {

b:strong{ "Note:" }, "The phone number is also the" , b:em{ "birthday" }, "!"
}

},
&o2 @ a:person {

a:name {
a:first { "Donald" },
a:last { "Duck" }

}
}

}

Instead of declaring the namespace prefixb, it would also be possible to use the namespace URI directly,
as in the following example. Note also the use of the default namespace declaration.

ns-default = "http://www.myschemas.org/address-book"

address-book {
&o1 @ person {

name {
first { "Mickey" },
last { "Mouse" }

},
phone {

attributes {
type { "home" }

},
"19281118"
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},
knows { ↑&o2 },
remarks {

"http://www.w3.org/2002/06/xhtml2" :strong{ "Note:" },
"The phone number is also the" ,
"http://www.w3.org/2002/06/xhtml2" :em{ "birthday" }, "!"

}
},
&o2 @ person {

name {
first { "Donald" },
last { "Duck" }

}
}

}

4.3 Query Terms: Patterns for Selecting Data

Query terms are (possibly incomplete) patterns matched against Web resources represented by data terms.
A pattern is like aform augmented by variables acting as place holders for data retrieved from data terms
(cf. Section 1.3.3), very similar to (non-ground) atoms in logic programming. Query terms build upon data
terms, but may containvariables, constructs for expressingincompleteness(cf. Section 1.3.4), as well as
position specifications, subterm negation, and subterm exclusion.

4.3.1 Incompleteness

As discussed in Section 1.3.4, query patterns need to support incomplete query specifications, because
data represented on the Web has a much more flexible schema than data represented e.g. in relational
databases. Query terms may contain constructs for expressing incompleteness inbreadth, in depth, with
respect toorder, and with respect tooptional subterms. The terms “breadth” and “depth” refer to the graph
induced by a data term or semistructured expression (cf. Sections 2.5 and 4.4.1). Note that the constructs
described here together realise requirement 4 (“no schema required”) of David Maier’s database desiderata
(cf. Section 3.2).

Incompleteness in Breadth: Partial Term Specifications

Incompleteness in breadth (i.e. within the subterms of the same parent term) is expressed by using so-called
partial andtotal term specifications:

• double square or curly braces (i.e.[[ ]] or {{ }} ) denotepartial term specifications, i.e. a data
term matched by the query term may contain additional subterms not matched by subterms of the
query term.

• single square or curly braces (i.e.[ ] or { } as in data terms) denotetotal term specifications, i.e. a
data term matched by the query term must not contain additional subterms that are not matched by
subterms of the query term.

Consequently, a data term that is used as a query term matchesonly itself (and all such terms that are equiv-
alent with respect to subterm ordering in case of unordered term specifications), whereas a query term con-
taining partial term specifications matches possibly infinitely many data terms. As with ordered/unordered
term specifications, subterms with different term specifications may be nested, but nesting within the same
list of subterms is disallowed.
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Example 4.5 (Total/Partial Term Specifications)
Consider thebib.xml document of the bookstore example from Section 2.4.2. The following two are
query terms for this database:

bib {
book {

title { "Boken Om Vikingarna" }
}

}

This query term does not match with the data term,
as its total term specification requires that there is
exactly one book with exactly onetitle element.

bib {{
book {{

title {{ "Boken Om Vikingarna" }}
}}

}}

This query term will match with the data term, as it
allows for additional books and additional elements
inside thebook element.

Incompleteness wrt. Order: Unordered Term Specifications

Like data terms, query terms may contain bothordered term specifications(square brackets[ ] and
[[ ]] ), andunordered term specifications(curly braces{ } and {{ }} ). Let t1 be a query term and
let t2 be a data term:

• if t1 has an ordered term specification, then it matches witht2 only if t2 also has an ordered term
specification. Furthermore, all subterms oft1 must match subterms int2 in the same order of appear-
ance.

• if t2 has an unordered term specification, then it matches witht2, if t2 has either an ordered term
specification or an unordered term specification. All subterms of t1 must match subterms int2 in
arbitrary order.

In case a query term uses ordered and partial term specification, the matched data term has to contain
corresponding subterms in the same order as the subterms of the query term, but there may be additional
subterms in between.
Example 4.6 (Ordered/Unordered Term Specifications)
Consider thebib.xml example of Section 2.4.2. Recall that in this example the list of authors for each book
uses anorderedterm specification. The following two query terms show the difference between ordered
and unordered term specifications in query terms:

bib {{
book {{

authors [[
author {

first [ "Bj örn" ],
last [ "Ambrosiani" ] },

author {
first [ "Sven" ],
last [ "Nordqvist" ] }

]]
}}

}}

Match with all books where the author “Björn
Ambrosiani” appears before the author “Sven
Nordqvist”.
This query term does not match with the data term,
as the authors in the database do not have the same
order as in the query term.

bib {{
book {{

authors {{
author {

first [ "Bj örn" ],
last [ "Ambrosiani" ] },

author {
first [ "Sven" ],
last [ "Nordqvist" ] }

}}
}}

}}

Match with all books that have (at least) the two
authors “Björn Ambrosiani” and “Sven Nordqvist”
in any order.
This query term will match with the database, as
the query term does not enforce a particular order
on authors.
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Incompleteness in Depth: Descendant

Incompleteness in depth is expressed using thedescendant construct. A query term of the formdesc t
(read: “descendant t”) matches with all data terms that contain a subterm that is matched byt at an arbitrary
depth (including zero). It is the counterpart to the Kleene star operator of regular path expressions and to
XPath’s descendant (in short notation:// ) construct (cf. Section 3.3.1).

Example 4.7 (Descendant)
The following query term matches with a text document (like the one introduced in Section 2.4.3), if at
arbitrary depth below the root term, the data term representing the text document contains asection
term with atitle subterm containing the string “Data Terms”, i.e. either a section, a subsection, a sub-
subsection, etc.

report {{
desc section {{

title {{ "Data Terms" }},
}}

}}

Currently, the descendant construct is unrestricted, i.e.it “matches” with any path. Extensions are
being considered that allow restrictions to these paths, e.g. using regular expressions over labels, or sets of
admissible term labels.

Incompleteness wrt. Optional Subterms: Optional

Terms containing a subterm of the formoptional t specify to match the subtermt with a subterm of
the data term if possible (and yield variable bindings for the variables int accordingly); otherwise, the
evaluation of the query does not fail, but does not yield any bindings for the variables int .

Example 4.8
Consider in the following the student database example introduced in Section 2.4.1. The following query
term retrieves student names (variableName) and student ids (variableMatrNr ). If both exist, both are
returned. If only the name exists, the evaluation does not fail (i.e. the query term still matches), but binds
only the variableName. If there is no name in the data term, the query term fails to match it.

students {{
student {{

name { var Name },
optional matrnr { var MatrNr }

}}
}}

The constructoptional is not strictly necessary as the same queries can be expressed by using sev-
eral query terms instead of only one. However, it is a convenient construct in many practical examples
of semistructured databases and XML documents, as the schema languages of such formats often allow
optional elements.

4.3.2 Term Variables, Label/Namespace Variables and the→-Construct

Variables act as “handles” for those subterms of the data term that match with the subterm the variable
is “attached to”. If a query term matches with a data term, thevariables are bound to the corresponding
subterms. They can thus be used to retrieve data from a data term and assemble it in a new structure (with
the help of construct terms, Section 4.6 below). As in logic programming, a single variable can occur at
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several positions in a term. Of course, bindings to such variables have to be consistent for all occurrences,
i.e. all occurrences of the same variable must have the same binding.

Matching a query term with a data term yields a set of alternative substitutions, each of which represents
a possible binding for the variables in the query term such that the resulting ground instance matches with
the data term (see Section 4.4 below). Obviously, the use of unordered and partial term specifications
allows several alternative bindings for the variables thatall fulfill this requirement.

In Xcerpt query terms, the following variable notions are used:

• Variables without restrictionare expressed using the keywordvar followed by an identifier (variable
name). They can be bound to any subterm in the data term and arethus very similar to the variables
in logic programming, i.e. they act as place holders.

• Variables with restrictionare expressed like a variable without restriction followedby the symbol->
or→ (read “as”) and a query term. They can only be bound to subterms of the data term that match
with the pattern they are restricted to. Note that variable restrictions are also used in the language
XMAS (cf. Section 3.3.4).

• Label Variablesare, like variables without restrictions, expressed by using the keywordvar followed
by an identifier, but they occur at the position of a label in a query term. They can be bound to any
label of a subterm of the data term that matches with the remaining term specification.

• Namespace Variablesare similar to label variables. They occur at the position ofa namespace
prefix in a query term. Namespace variables are always bound to the namespace URI/IRI, not to the
namespace prefix.

Note that in logic programming, variable restrictions are represented using external constraints. The
advantage of constraining a variable to certain subtermswithin a query term instead ofoutsidethe query
is to better convey the overall structure of the considered query. Arguably, restricting variables inside the
query term more appropriately realises the concept ofquery patterns.

Example 4.9 (Substitutions)
In the student database (Section 2.4.1), the query term given on the left hand side matches the variable
Namewith the student name and variableEmail with the email address. The right hand side lists different
substitutions that yield ground instances of the query termthat match with the data term given in Figure
2.3 on page 34.

students {{
student {{

name {{ var Name }}
email {{ var Email }}

}}
}}

Substitutionσ1:
Name Donald Duck
Email donald@duck.org

Substitutionσ2:
Name Mickey Mouse
Email mickey@mouse.org

Substitutionσ3:
Name Goofy
Email goofy@goofy.org

Substitutionσ4:
Name Goofy
Email goofy@disney.com

Note in particular thatGoofy is listed twice as the data term contains two possible email addresses that
can be bound to the variableEmail .

Example 4.10 (Pattern Restrictions)
The following query terms for thebib.xml database of Section 2.4.2 illustrate the difference between
variables without and with pattern restrictions.
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bib {{
book {{

var X,
authors {{ var AUTHOR}}

}}
}}

In this query term, the occurrence of the variable
X is unrestricted. Thus, the variableX might be
bound to any subterm of thebook element (besides
authors ), e.g. toprice or title , since the vari-
ableX occurs without restriction.

bib {{
book {{

var X → title {{ }},
authors {{ var AUTHOR}}

}}
}}

In this query term, the occurrence of the variableX
is restricted to such subterms that are matched by
the query termtitle {{ }} . Thus, the variableX
can only be bound to thetitle element.

The use of the keywordvar to introduce a variable is not strictly necessary. It is often possible to
determine from the context whether a term is a variable or not. In particular, extensions of the Xcerpt
syntax are investigated that allow to declare variables in acontext block. However, using the keyword
var simplifies the syntax in particular for the programmer, as itallows to easily identify variables without
having to look at the context.

Label variables are useful to retrieve structural information that is unknown in advance, e.g. when trans-
forming an XML document into an HTML representation displaying the structure of the XML document
(as e.g. in the implementation of the visual languagevisXcerpt[14, 16, 15]).

Example 4.11 (Label Variables)
Consider the student database of figure 2.3. The following query term retrieves the label of the element
containing the string “Goofy” in the variableX:

students {{
student {{

var X {{ "Goofy" }},
}}

}}

4.3.3 Position Specification and Positional Variables

In some applications it is desirable to query subterms only at a certain position while still being able to use
partial query patterns, or to query the position of subtermsin the database. For example, a query to a report
in XML format could select the second paragraph of all sections.

In query terms, subterms of the formposition X t denote that the query term only matches with data
terms that have at positionX a subtermt’ that is matched byt . The position specificationX is either a
positive number, or a negative number, or a variable:

• apositive numberspecifies the position of the matched subterm below its parent term, where 1 is the
position of the first subterm

• a negative numberspecifies the position relative to the last subterm of the parent, where−1 is the
position of the last subterm.

• a variable matches with a subterm with any position and binds the variable to the position of this
subterm as a positive integer number.

Position specification is admissible in all kinds of term specifications, i.e. ordered and unordered as
well as total and partial query terms. Note, however, that itis possible to express patterns that are contra-
dictory and thus impossible to match, as position specifications might conflict with ordered or total term
specifications (e.g.f[[position 2 a, position 1 b]] or f{position 2 a} ).
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Note that a term containing a subterm with position specification can never match against a data term
with unordered term specification, as in such cases there is no information available about the position of
elements.

Example 4.12 (Position Specification)
Consider an HTML document containing a table with books and prices, like the following:

<table>
<th>

<td>No.</td>
<td>Title</td>
<td>Price</td>

</th>
<tr>

<td>3675</td>
<td>Vikinga Blot</td>
<td>5.95</td>

</tr>
<tr>

<td>6743</td>
<td>Boken Om Vikingarna</td>
<td>22.95</td>

</tr>
</table>

table [
th [

td [ "No." ],
td [ "Title" ],
td [ "Price" ]

],
tr [

td [ "3675" ],
td [ "Vikinga Blot" ],
td [ "5.95" ]

],
tr [

td [ "6743" ],
td [ "Boken Om Vikingarna" ],
td [ "22.95" ]

]
]

Now suppose you want to select the titles and prices of books in this HTML table. Since there is no
possibility to determine this via subterm labels, it is necessary to explicitly specify the position in the
selection, as in the following query term:

table {{
td {{

position 2 td { var Title },
position 3 td { var Price }

}}
}}

A solution that is even more flexible takes advantage of the column labels in the table headings and uses
variables in the position specification to select the positions of the columns with label “Title” and “Price”.
The same variables are then used in place of the positions 2 and 3 of the example above.

table {{
th {{

position var TPos td { "Title" },
position var PPos td { "Price" }

}},
td {{

position var TPos td { var Title },
position var PPos td { var Price }

}}
}}

Note that this query term does not assume that the price column comes after the title column!

4.3.4 Subterm Negation: without

Subterms of the formwithout t denote so-calledsubterm negation. Subterm negation allows to express
that a data term shouldnot contain subterms matching a certain query pattern. It is only applicable to
subterms and may not be used at the root level. Furthermore, subterm negation is only reasonable in
partial term specifications, and order does not have influence on the negated subterms (only on all positive
subterms).
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This kind of negation is useful in semistructured data, as the schema of such data often allows to omit
subterms. For example, a query might ask for “all students that did not submit their homework” (i.e. all
student elements that do not contain an element indicating that they submitted their homework). Note that
in relational database systems, this negation is very similar to querying for NULL values.

Example 4.13
Recall the student database from Section 2.4.1. The following query term retrieves students that did not
submit exercise 2 in the variableS.

students {{
var S → student {{

without exercise {{ number { 2 } }}
}}

}}

The query matches if there is at least one student that does not have anexercise element with number 2.

Subterms negated bywithout may contain variables, but such an occurrence can never yield variable
bindings, i.e. it is not possible to retrieve all subterms that donot occur. Accordingly, all variables that
occur in the scope of awithout have to appear elsewhere outside the scope of a negation construct (cf.
Section 6.2). Nonetheless, using variables in negated subterms can be useful, as shown in the following
example.

Example 4.14
Given a text document like the PhD thesis described in Section 2.4.3. The following query term uses
subterm negation to retrieve all references to citations that have no corresponding entry in the bibliography
in the variableCitation (note the representation of attributes in the Xcerpt term notation):

report {{
desc var Citation → cite {

attributes { ref { var Ref } }
},
desc bibliography {{

without entry {{
attributes {{ id { var Ref } }}

}}
}}

}}
END

As there is no bibliography entry with anid of rdf , the result of evaluating this rule against the sample
document of page 35 is:

var Citation = cite { attributes { ref{ "rdf" } } }

Subterm negation is anexistentialnegation: As long as there exists at least one term which doesnot contain
the negated subterm (and matches with the remainder of the pattern), all other terms are irrelevant. There
might be terms that contain the negated subterm, those simply do not match. Note that although subterm
negation might appear less expressive than full negation asfailure, it does in fact share the same problems
if it occurs in combination with theall construct introduced below.
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4.3.5 Regular Expressions

Query terms provide advanced text processing capabilitiesusingregular expressions(abbreviated:RE). In
language theory, a regular expression is a means to define a regular language (see e.g. [57]) and matches
with a character sequence, if the character sequence is a word of the language defined by the regular
expression. In Xcerpt, regular expressions may be used either in place of strings or in place of subterm
labels, and take the form

/ <regexp>/

where<regexp> is a regular expression based on the syntax defined inPOSIX[60] (Portable Operating
System Interface) with some Xcerpt-specific extensions (see below). POSIX regular expressions are very
widespread (they are e.g. used in the languagesPerl, Python, andJava) and thus well known to many
programmers.

Example 4.15 (Regular Expressions)
The following query term against a text document (like the document described in Section 2.4.3) selects
all sections that contain the substring “XML” in their title, i.e. where an arbitrary number of characters
appears before and after a substring “XML” (expressed by.* ).

report {{
desc var S → section {{

title {{ /.*XML.*/ }}
}}

}}

POSIX Regular Expressions

As POSIX regular expressions are very well-known, this thesis only provides a brief summary over the
major constructs used for building regular expressions. The language definition is available at [60], and
many introductory books into programming languages provide a thorough treatment of the topic (see e.g.
[49]).

In POSIX, an underlying character set is assumed (e.g. Unicode). Valid characters are all characters of
the character set, where an ordinary (i.e. not special) character usually matches only itself, and the special
character. matches all characters.

Special Characters Special characters are not matched. The following special characters are used in
POSIX regular expressions:

character(s) description
* arbitrary repetition (0–) of the preceding character or subexpression
+ arbitrary repetition, but at least one (1–) of the precedingcharacter or

subexpression
? optional occurrence (0–1) of the preceding character or subexpression
| separates alternatives
{n} exactlyn occurrences of the preceding character or subexpression
{n,m} betweenn andm occurences of the preceding character or subexpres-

sion
ˆ anchor (beginning of line)
$ anchor (end of line)
( and) enclose subexpressions (see below)
[ and] define character classes (see below)
\ quote special characters

If a special character is to match instead of being interpreted, it has to be quoted using the prefix symbol\ .
For instance,\. matches the point and\+ matches the plus character.
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Character Classes Square brackets are used to define character classes, i.e. sets of characters. A charac-
ter class matches with all characters that are part of the class. The following character classes are predefined
by POSIX:

[:alnum:] [:cntrl:] [:lower:] [:space:]
[:alpha:] [:digit:] [:print:] [:upper:]
[:blank:] [:graph:] [:punct:] [:xdigit:]

For example, the character class[:alnum:] contains all alphanumeric characters,[:upper:] contains
all upper case characters, and[:blank:] contains all whitespace characters of the character set.

It is also possible to define new character classes by enclosing all matched characters in square brackets.
The character class[abc] for instance matches with the characters a, b, and c. Character classes may
contain range expressions using the hyphen character, likein [a-zA-Z] (matching all Latin lower/upper
case letters), where the range is defined depending on the underlying character set (e.g. ASCII or Unicode).

Character classes are negated if the first character after the opening bracket iŝ. For instance,[ˆ-+]
denotes all characters except- and+. Note the different meaning ofˆ in regular expressions as negation of
character classes and as beginning of line anchor, and in Xcerpt terms as reference to an identifier.

Subexpressions. POSIX allows to specify subexpressions in regular expressions in order to retrieve spe-
cific parts from the matched text. A subexpression is enclosed in parentheses( and) (often also\( and\) ,
e.g. in the search function of the editorEmacs). Subexpressions can later be referred to by their position.
If subexpressions are nested, the position is determined bycounting the opening parentheses.

Example 4.16 (POSIX Regular Expressions)
The following regular expression matches with date stringsof the form “1999-12-23” (i.e. in ISO syntax)
and retrieves the year, month and day in the subexpressions 1, 2 and 3.

([1-9][0-9]{3})-([01][0-9])-([0-3][0-9])

Backreferences. Backreferences are denoted by\n , wheren is a single digit other than 0. A backref-
erence matches a literal copy of whatever was matched by the corresponding n’th subexpression of the
pattern.3

The regular expression matches e.g. the strings
(.*)-\1 a-a

go-go
wiki-wiki

Note that “regular expressions with backreferences” are (strictly speaking) not regular, they describe a
subset of context free languages.

Xcerpt Extensions

In POSIX, the (substrings matched by) subexpressions are referred to by position after the matching is
evaluated. This approach is well suited for imperative languages likePerl or Java, where the evaluation
is sequential. For example, the followingPerl program retrieves the year, month, and day from the string
"2004-03-04" by referring to the positions of the subexpressions after the regular expression is matched.
The overbraces highlight the respective subexpressions.

if("2004-03-04" =˜ /

1
︷ ︸︸ ︷

([1-9][0-9] {3})-

2
︷ ︸︸ ︷

([01][0-9])-

3
︷ ︸︸ ︷

([0-3][0-9])/) {
$year = $1;
$month = $2;
$day = $3;

}

3Note that matching with backreferences is NP-hard (http://perl.plover.com/NPC/ ), as it is possible to encode the 3-SAT
problem in a regular expression with backreferences.
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In Xcerpt, referring to subexpressions by position is not feasible: it is incompatible with pattern-
matching as it requires a specific control flow and does not fit with Xcerpt’s notion of variable binding.
Instead, Xcerpt introduces variables (→ restrictions) into regular expression patterns, similar to the way
variables are part of term patterns. With this extension, subexpressions can take the form

( var <name> →...)

where... denotes the regular expression pattern and<name> is the name of the variable restricted by this
pattern. When the regular expression is matched against a character sequence, the variable is bound to the
part of the character sequence that is matched by the subexpression.4 For example, the following query
term binds the year, month and day of a date string to the variables Y, M and D:

/( var Y →[1-9][0-9]{3})-( var M →[01][0-9])-( var D →[0-3][0-9])/

Note that subexpressions of the form(...) are still possible as a means for structuring the expression,
but the character sequences they matched with cannot be retrieved.

Example 4.17 (Variables in Regular Expressions)
The following query term retrieves student names and email addresses from the filestudents.xml and
separates the local name (User ) from the domain name (Domain ) of the email addresses. The first subex-
pression binds everything from the beginning of the string (indicated bŷ ) up till the first appearance of@
(indicated by the character class[ˆ@] matching all characters except@) to the variableUser . The second
subexpression binds every alphanumeric character (including . and- ) after the@to the variableDomain .

in { resource { "file:students.xml" },
students {{

student {{
name { var Name},
email {

/ˆ( var User →[ˆ@]+)@( var Domain →[a-zA-Z0-9.-]+)/
}

}}
}}

}

Such a separation could be useful for rendering email addresses on Web pages in a “spamvertised form”, i.e.
not easily recognisable by automatic email address harvesters: the variable bindings forUser andDomain
could be reassembled in a construct term (see below) with a suitable representation (e.g. separateUser and
Domain by <at> ).

4.4 Query Evaluation: Ground Query Term Simulation

Matching query terms with data terms is based on the notion ofrooted graph simulationsintroduced in
Section 2.6. Intuitively, a query term matches with a data term, if there exists at least one substitution for the
variables in the query term (calledanswer substitutionof the query term) such that the corresponding graph
induced by the resultinggroundquery term simulates in the graph induced by the data term. Ofcourse,
graph simulation needs to be modified to take into account thedifferent term specifications, descendant
construct, optional subterms, subterm negation, and regular expressions.

It might appear that it would suffice to restrict simulation to matching a ground query term with a data
term instead of allowing to match two ground query terms; however, a relation on arbitrary combinations of
ground query terms is useful as ground query term simulationis later used to definesimulation equivalence

4Note that this approach is similar to the extensions of regular expressions in the language Python [104], where a group may have
the form(?P<name>...) . The substring matched by this group is later accessible viathe symbolic name<name>.
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and a (partial) ordering on the set of ground query terms . This ordering is used in the definition of answers
below to ensure that a variable is always bound to the maximalpossible value.

To simplify the formalisation below, it is assumed that strings and regular expressions are represented as
compound terms with the string or regular expression as label, no subterms, and a total term specification.
For example, the string"Hello, World" is represented as the term"Hello, World"{} .

4.4.1 Ground Query Terms and Ground Query Term Graphs

Let Tq be the set of all query terms.

Definition 4.1 (Ground Query Term)
1. A query term is calledground, if it does not contain (subterm, label, namespace, or positional)

variables.

2. Tg ( Tq denotes the set of all ground query terms, andTd ( Tg denotes the set of all data terms.

In the following, we differentiate between the ground queryterm itself and the graphs induced by a
ground query term. Whereas the term itself contains subterms of the formˆid and id@t , all references
are dereferenced in the graph induced by the ground query term. By thepositionof a subterm in a ground
query term, we mean the position in the list of children of that term. For example, inf{a,b,c} , c is the
subterm at position 3. Likewise, inf{id@a,ˆid} , id@a is the subterm at position 1, andˆid is the subterm
at position 2. Note that the position of subterms in the graphinduced by a ground query term is defined
differently: in the last example, the subterma has both the position 1 and the position 2. For this reason,
we will usually speak aboutsuccessorswhen referring to the graph induced by a ground query term, and
aboutsubterms, when referring to the syntactical representation of a ground query term.

Thegraph induced by a ground query term(or short:ground query term graph) is defined in analogy
to the graph induced by a semistructured expression (cf. Section 2.6) as follows.

Definition 4.2 (Graph Induced by a Ground Query Term)
Given a ground query termt. Thegraph induced by tis a tupleGt = (V,E, r), with:

1. a set ofvertices(ornodes)V defined as the set of all (immediate and indirect) subterms oft (including
t itself).

2. a set ofedges E⊆V×V×N characterised as follows:

• for all termst1,t2,t3 ∈ V: if t2 is the subexpression oft1 at positioni and of the formˆoid
(a referring occurrence), andt3 is of the formoid @ t’ (a defining occurrence), withoid an
identifier andt’ a term (∈V), then(t1,t3, i) ∈ E.

• for all termst1,t2 ∈ V: if t2 is the subexpression oft1 at positioni andnot of the formˆoid ,
then(t1,t2, i) ∈ E.

3. a distinguished vertexr ∈V called theroot nodewith r = t.

The label of a vertex is either the label, the string value, or the regular expression of the subterm it repre-
sents.

Like for semistructured expressions in Section 2.6, representing vertices as complete subterms and
edges with positions is necessary for the definition of the simulation relation, as it conveys information
about ordered/unordered and partial/total term specifications, and the respective positions of subterms in
a term. Figure 4.1 illustrates this definition on two ground query terms. Note that for space reasons, the
vertices in both graphs do not contain the subterms, but onlythe term labels and specifications.

The following additional terminology from graph theory is used below. LetG = (V,E, r) be the graph
induced by a ground query term. For any two nodesv1 ∈V andv2 ∈V, if (v1,v2, i) ∈ E for some integeri
(i.e. there is an edge fromv1 to v2), v1 andv2 are calledadjacent, v2 is theith successorof v1, andv1 is a
predecessorof v2.
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Figure 4.1: Graphs induced byf [a,a[c,d,a]] and f [[&1 @ a{{c,d,↑&1}}]]

4.4.2 Term Sequences and Successors

The following section uses the notion of (finite)term sequencesto represent the (immediate) successors of
a term. Note that sequences of subterms are used regardless of the kind of subterm specification. In case of
unordered term specifications, there is still a sequence of subterms given by the syntactical representation
of the term.

Recall in the following that a functionf : N→ M can be seen as a (binary) relationf ⊆ N×M such
that for every two different pairs(n1,m1) ∈ f and(n2,m2) ∈ f holds thatn1 6= n2. Considering a function
as a relation is more convenient for the representation of sequences. A functionf : N→M is furthermore
calledtotal, if f is defined for every element ofN.

Definition 4.3 (Term Sequence)
1. Let X be a set of terms and letN = {1, . . . ,n} (n≥ 0) be a set of non-negative integers. Aterm

sequenceis a total functionS⊆ N×X mapping integers to terms.

Instead of writingS= {(1,a),(2,b), . . .}, term sequences are often denoted byS= 〈a,b, . . .〉.

2. LetSbe a term sequence, and lets= (i,t) be an element inS.

• the indexof s is defined asindex(s) = i (projection on the first element)

• thetermof s is defined asterm(s) = x (projection on the second element)

If S= 〈. . . ,a, . . .〉 is a term sequence, i.e.S= {. . . ,(a, i), . . .}, then term((a, i)) = a. Since using
term((a, i)) is very inconvenient, we shall often writea instead of(a, i) and e.g. usea ∈ S instead of
(a, i) ∈ S. Accordingly, we use the notionindex(a) to represent the position of the subterma in the term
sequence, unless we have to distinguish multiple occurrences ofa in S.

Note that empty term sequences are not precluded by the definition, and term sequences are always
finite, because they serve to represent the (immediate) successors of a term. Instead ofterm sequence, we
shall often simply writesequenceas other sequences are not considered in this thesis. Theindexof an
element can also be called thepositionof that element. However, the notionindex is preferred to better
distinguish between theposition construct in a query term and the position in the sequence.

Sequences allow for multiple occurrences of the same term. For example, bothS = 〈a,b,a〉 =
{(1,a),(2,b),(3,a)} andT = 〈a,a,b〉= {(1,a),(2,a),(3,b)} are term sequences ofa andb.

Based on the graph induced by a ground query term, the definition of the sequence of successors is as
expected:

Definition 4.4 (Sequence of Successors)
Let t be a ground query term, letGt = (V,E,t) be the graph induced byt, and letv∈V be a node inGt (i.e.
subterm oft). Thesequence of successorsof v, denotedSucc(v), is defined as

Succ(v) =
{
(i,v′) | (v,v′, i) ∈ E

}

Note thatSucc(v) may be the empty sequence〈 〉, if v does not have successors.
Consider the termt1 = f{a,a,b}. The sequence of successors oft1 is Succ(t1) = 〈a,a,b〉 =

{(1,a),(2,a),(3,b)}. Consider furthermoret2 = o1@f [a,↑ o1,b]. The sequence of successors oft2 is
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a{{}}

a{{}} a{}

f[[]] f[ ]

a{}

c ddc

Figure 4.2: Minimal simulation off [[ a{{ }},a{{c,d,a{{ }} }} ]] in f [&1 @ a{c,d,↑ &1}]

Succ(t2) = 〈a,o1@f [a,↑ o1,b],b〉= {(1,a),(2,o1@f [a,↑ o1,b]),(3,b)}. Note that the reference int2 is
dereferenced (one level).

Mostly, the sequence of successors and the sequence of (immediate) subterms of a term coincide. The
most significant difference is that the sequence of successors is already dereferenced, i.e. all references
are “replaced” by the subterms they refer to. For this reason, the remainder of this Section uses the term
successorsinstead ofsubterms. Although it is somewhat imprecise, the notionsubtermis often added in
parentheses to emphasise the coincidence of the two sequences in most cases.

In Chapter 7, the following additional notions of subsequences and concatenation of sequences are
needed. Both definitions are straightforward. In order to distinguish subsequences from subsets, we usually
write S′ v S.

Definition 4.5 (Subsequences, Concatenation of Sequences)
Let S= 〈s1, . . . ,sm〉 andT = 〈t1, . . . ,tn〉 be term sequences.

1. T is called asubsequenceof S, denotedT v S, if there exists a strictly monotonic mappingπ such
that for each(i,x) ∈ T there exists(π(i),x) ∈ S.

2. Theconcatenationof SandT, denotedS◦T, is defined as

S◦T = 〈s1, . . . ,sm,t1, . . . ,tn〉

Consider for example the sequencesS1 = 〈a,b〉= {(1,a),(2,b)}andS2 = 〈a,a,b〉= {(1,a),(2,a),(3,b)}.
S1 is a subsequence ofS2 with π(1) = 1,π(2) = 3 or withπ(1) = 2,π(2) = 3. The concatenation ofS1 and
S2 yields

S1◦S2 = 〈a,b,a,a,b〉= {(1,a),(2,b),(3,a),(4,a),(5,b)}

4.4.3 Ground Query Term Simulation

Using the graphs induced by ground query terms, the notion ofrooted simulation almost immediately
extends to all ground query terms: intuitively, there exists a simulation of a ground query termt1 in a
ground query termt2 if the labels and the structure of (the graph induced by)t1 can be found in (the graph
induced by)t2 (see Figure 4.2). So as to define an ordering on the set of all ground query terms, ground
query term simulation is designed to be transitive and reflexive.

Naturally, the simulation on ground query terms has to respect the different kinds of term specification:
if t1 has atotal specification, it is not allowed that there exist successors(i.e. subterms) oft2 that do not
simulate successors oft1; if t1 has anorderedspecification, then the successors oft2 have to appear in the
same order as their partners int1 (but there might be additional successors between them if the specification
is also partial).

The definition ofground query term simulationis characterised using a mapping between the sequences
of successors (i.e. subterms) of two ground terms with one ormore of the following properties, depending
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on the kinds of subterm specifications and occurrences of theconstructswithout andoptional . Recall
that a mapping is called total if it is defined on all elements of a set and partial if it is defined on some
elements of a set.

Definition 4.6
Given two term sequencesM = 〈s1, . . . ,sm〉 andN = 〈t1, . . . ,tn〉.

1. A partial or total mappingπ : M→N is called

• index injective, if for all si ,sj ∈M with index(si) 6= index(sj) holds thatindex(π(si)) 6= index(π(sj))

• index monotonic, if for all si ,sj ∈ M with index(si) < index(sj) holds thatindex(π(si)) <
index(π(sj))

• index bijective, if it is index injective and for alltk ∈N exists ansi ∈M such thatπ(si) = tk.

• position respecting, if for all si ∈ M such thatsi is of the formposition j s′i holds that
index(π(si)) = j

• position preserving, if for all si ∈M such thatsi is of the formposition j s′i holds thatπ(si)
is of the formposition l t ′k and j = l .

2. A partial mappingπ : M→N is calledcompletablewith respect to some propertyP, if there exists a
partial or total mappingπ ′ : M→ N such that

• π(si) = π ′(si) for all si ∈M on whichπ is defined, and

• there exists at least one termsj ∈M on whichπ is undefined andπ ′ is defined and

• P holds forπ ′

Index monotonicmappings preserve the order of terms in the two sequences andare used for matching
terms with ordered term specifications.Index bijectivemappings are used for total term specifications.

A position respectingmapping maps a term with position specification to a term withthe specified
position and is required (and only applicable) if the term with the sequence of successors (subterms)N
uses total and ordered term specification. E.g. given two terms f{{position2 b}} and f [a,b,b], a position
respecting mapping maps the subtermposition2 b only to the firstb, because its position is 2, but not to
the secondb, because its position is 3.

A position preservingmapping maps a term with position specification to a term withthe same posi-
tion specification; it is applicable in case the sequence of successors of the second termN is incomplete
with respect to order or breadth, as the exact position cannot be determined otherwise in these cases. In
particular, this ensures the reflexivity and transitivity of the ground query term simulation (see Theorem
4.9 below). E.g. given the termsf{{position2 b}} and f{a,b, position2 b}, the subtermposition2 b of
the first term needs to be mapped to the subtermposition2 b of the second term, but cannot be mapped to
the firstb because its position is not “guaranteed”.

To summarise, aposition respectingmappingrespectsthe specified position by mapping the subterm
only to a subterm at this position. On the other hand, aposition preservingmappingpreservesthe position
by mapping the subterm only to a subterm with the same position specification.

Thecompletableproperty is used for optional and negated terms. If a term hasa negated successor, the
mapping of its sequence of successors to the successors of a second term has to be defined on all successors
that are not negated, but must not be completable to any of thenegated successors. For example, given the
terms f{{a,without b}} and f{a,b,c}, all positive subterms of the first term can be mapped to subterms
of the second term, but this mapping is completable to the negated subtermwithout b, causing the match
to fail. For optional successors, thecompletableproperty is used to ensure that the simulation is maximal
with respect to optional successors, i.e. all successors for which it is possible need to participate in the
simulation.

Besides these properties, ground query term simulation needs a notion oflabel matchesto allow match-
ing of string labels, regular expressions, or both:

Definition 4.7 (Label Match)
A term labell1 matches with a term labell2, if
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• if l1 andl2 both are character sequences or both are regular expressions, thenl1 = l2 or

• if l1 is a regular expression andl2 is a character sequence, thenl2 ∈ L(l1) whereL(l1) is the language
induced by the regular expressionl1

l1 does not match withl2 in all other cases.

Example 4.18
1. the labels of the termsf{a,b} and f{b,a}match

2. the labels of the termsf{a,b} andg{b,a} do not match

3. the labels of the terms/.*/ and"Hello World" match

4. the labels of the terms"Hello World" and/.*/ do not match

The following definition characterising a ground query termsimulation of a ground query termt1 into
a ground query termt2 is divided into several parts. The first part (points 1 and 2) describes simulation
for terms not containing the subterm negationwithout , which is rather straightforward. Subsequent parts
extend the notion of simulation by introducingwithout first only into the termt1 and then also into the
term t2 (points 4 and 5), and the last part (point 6) describes simulation in case ofoptional subterms.
Both extensions are rather complex and therefore treated separately.

Let G = (V,E,t) be the graph induced by a ground query termt. In the following,Succ(t ′) denotes the
sequence of all successors (i.e. immediate subterms) oft ′ in G, Succ+(t ′)⊆ Succ(t ′) denotes the sequence
of all successors of a termt ′ in G that are not of the formwithout t ′′, andSucc−(t) denotes the sequence
of all successors of a termt ′ in G that are of the formwithout t ′′ (i.e. Succ+(t ′)]Succ−(t ′) ≡ Succ(t ′)).
Furthermore,Succ!(t ′) ⊆ Succ(t ′) denotes the sequence of all successors of a termt ′ in G that are not of
the formoptional t ′′, andSucc?(t ′) ⊆ Succ(t ′) denotes the sequence of all successors of a termt ′ that
are of the formoptional t ′′ (i.e. Succ!(t ′)]Succ?(t ′) ≡ Succ(t ′)). Note thatSucc− ⊆ Succ!, because a
combination ofwithout andoptional is not reasonable.5

Definition 4.8 (Ground Query Term Simulaton)
Let r1 andr2 be ground (query) terms, and letG1 = (V1,E1, r1) andG2 = (V2,E2, r2) be the graphs induced
by r1 andr2. A relation�⊆V1×V2 on the setsV1 andV2 of immediate and indirect subterms ofr1 andr2

is called aground query term simulation, if and only if:

1. r1� r2 (i.e. the roots are in�)

2. if v1 � v2 and neitherv1 nor v2 are of the formdesc tnor have successors of the formswithout t
or optional t, then the labelsl1 and l2 of v1 andv2 match and there exists atotal, index injective
mappingπ : Succ(v1) → Succ(v2) such that for alls∈ Succ(v1) holds thats� π(s). Depending on
the kinds of subterm specifications ofv1 andv2, π in addition satisfies the following requirements:

v1 v2 it holds that
l1[s1, . . . ,sm] l2[t1, . . . ,tn] π is index bijectiveandindex monotonic
l1{s1, . . . ,sm} l2[t1, . . . ,tn] π is index bijectiveandposition respecting

l2{t1, . . . ,tn} π is index bijectiveandposition preserving
l1[[s1, . . .sm]] l2[t1, . . . ,tn] π is index monotonicandposition respecting

l2[[t1, . . . ,tn]] π is index monotonicandposition preserving
l1{{s1, . . .sm}} l2{t1, . . . ,tn} π is position preserving

l2[t1, . . . ,tn] π is position respecting
l2{{t1, . . . ,tn}} π is position preserving
l2[[t1, . . . ,tn]] π is position preserving

3. if v1� v2 andv1 is of the formdesc t1, then

• v2 is of the formdesc t2 andt1� t2 (descendant preserving, or

5optional only has effect on the variable bindings, andwithout may never yield variable bindings
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• t1 � v2 (descendant shallow), or

• there exists av′2 ∈ SubT(v2) such thatv1� v′2 (descendant deep)

4. if v1� v2, v1 has successors of the formwithout t, andv2 is either of the forml2{t1, . . . ,tm} or of the
form l2[t1, . . . ,tm], then the labelsl1 andl2 of v1 andv2 match, and there exists atotal, index injective
mappingπ : Succ+(v1)→ Succ(v2) such that for alls∈ Succ+(v1) holds thats� π(s). Depending
on the kinds of subterm specifications ofv1 andv2, π in addition satisfies the following requirements:

v1 v2 it holds that
l1[[s1, . . .sm]] l2[t1, . . . ,tn] π is index monotonicandposition respecting
l1{{s1, . . .sm}} l2{t1, . . . ,tn} π is position preserving

l2[t1, . . . ,tn] π is position respecting

Furthermore,π is not completablewith respect to the above mentioned properties to a (partialor
total) mappingπ ′ : Succ(v1)→ Succ(v2) such that there exists a successort ∈ Succ−(v1) with t of
the formwithout t ′ andt ′ � π(t).

In this case, the simulation is callednegation respecting.

5. if v1 � v2, both v1 and v2 have successors of the formwithout t, and v2 is either of the form
l2{{t1, . . . ,tm}} or of the forml2[[t1, . . . ,tm]], then the labelsl1 andl2 of v1 andv2 match, and there
exists atotal, index injective mappingπ : Succ(v1)→ Succ(v2) such that

• for all s∈ Succ+(v1) holds thats� π(s)

• for all s∈ Succ−(v1) such thats is of the formwithout s′ holds thatπ(s) is of the form
without t ′ andt ′ � s′ (negation preserving)6

Depending on the kinds of subterm specifications ofv1 andv2, π in addition satisfies the following
requirements:

v1 v2 it holds that
l1[[s1, . . .sm]] l2[[t1, . . . ,tn]] π is index monotonicandposition preserving
l1{{s1, . . .sm}} l2{{t1, . . . ,tn}} π is position preserving

l2[[t1, . . . ,tn]] π is position preserving

6. if v1� v2, andv1 or v2 have successors of the formoptional t, then the labelsl1 andl2 of v1 andv2

match and there exists apartial or total, index injective mappingπ : Succ(v1)→ Succ(v2) such that

• π is total onSucc!(v1)

• depending on the kinds of subterm specifications and occurrences of subterm negations inv1

andv2, π satisfies the requirements listed in the tables above

• for all s∈ Succ!(v1) holds thatπ(s) ∈ Succ!(v2) ands� π(s)

• for all s∈ Succ?(v1) such thats is of the formoptional s′ for which π is defined holds that
either

(a) π(s) ∈ Succ!(v2) ands′ � π(s), or

(b) π(s) ∈ Succ?(v2), π(s) is of the formoptional t ′, ands′ � t ′

• π is not completable to a mappingπ ′ that also satisfies these requirements7

In all other cases (e.g. combinations of subterm specifications not listed above),� is no ground query
term simulation. In subsequent parts of this thesis, the symbol� always refers to relations that are ground
query term simulations.

6Note that this property requirest ′ � s′ although one might expects′ � t ′ on a first glance. The reason is thats′ needs to exclude
at least the same subterms ast ′ and therefore needs to be more general

7This restriction, while not strictly necessary for ground terms, ensures that always a maximal number of optional subterms
participates in a simulation and thus yields variable bindings.
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Note that although graph simulation allows to relate two nodes of the one graph with a single node of
the other graph, it is desirable to restrict simulations between two ground query terms toinjectivecases,
i.e. such cases where no two subterms oft1 are simulated by the same subterm oft2. While it makes certain
queries more difficult, this restriction turned out to be much easier to comprehend for authors of Xcerpt
programs and reflected the intuitive understanding of querypatterns.

Example 4.19
The following comprehensive list of examples illustrates the different requirements for a ground query term
simulation. They are grouped in categories, each referringto the relevant requirement in Definition 4.8.

For illustration purposes, subterms are annotated with their index as subscript. This subscript is not
considered to be part of the label. Also,position is abbreviated aspos , optional is abbreviated asopt ,
andwithout is abbreviated as¬ for space reasons.

1. total ordered term specification (cf. requirement 2)
Let t1 = f [a1,b2,c3], t2 = f [a1,b2,c3,d4], t3 = f [a1,c2,b3], t4 = f {a1,b2,c3}, andt5 = g[a1,b2,c3]

• t1� t1: there exists a total, index bijective, and index monotonicmappingπ from 〈a1,b2,c3〉 to 〈a1,b2,c3〉
with s� π(s), mapping each subterm to itself.

• t1 6� t2: there exists no index bijective mapping from〈a1,b2,c3〉 to 〈a1,b2,c3,d4〉, as the two sets have
different cardinality.

• t1 6� t3: there exists no index monotonic mapping from〈a1,b2,c3〉 to 〈a1,c2,b3〉 with s� π(s); the only
mapping that would satisfys� π(s), i.e.{a1 7→ a1,b2 7→ b3,c3 7→ c2}, is not index monotonic.

• t1 6� t4: the braces oft1 andt4 are incompatible.

• t1 6� t5: the labels oft1 andt5 do not match.

2. total unordered term specification (cf. requirement 2)
Let t1 = f {a1,b2,c3}, t2 = f [a1,b2,c3,d4], t3 = f [a1,c2,b3], t4 = f {a1,b2,c3}, andt5 = g[a1,b2,c3]

• t1 � t1: there exists a total and index bijective mappingπ from 〈a1,b2,c3〉 to 〈a1,b2,c3〉 with s� π(s),
mapping each subterm to itself, thus being position preserving.

• t1 6� t2: there exists no index bijective mapping from〈a1,b2,c3〉 to 〈a1,b2,c3,d4〉, as the two sets have
different cardinality.

• t1� t3: there exists a total and index bijective mappingπ from 〈a1,b2,c3〉 to 〈a1,c2,b3〉with s� π(s), the
mapping{a1 7→ a1,b2 7→ b3,c3 7→ c2} (it does not need to be index monotonic) and it is trivially position
respecting, becauset1 does not contain position subterms.

• t1 � t4: there exists a total and index bijective mappingπ from 〈a1,b2,c3〉 to 〈a1,b2,c3〉 with s� π(s),
mapping each subterm to itself, thus being position preserving.

• t1 6� t5: the labels oft1 andt5 do not match

3. partial ordered term specification (cf. requirement 2)

Let t1 = f [[b1,c2]], t2 = f [a1,b2,c3,d4], t3 = f [a1,c2,b3], t4 = f {a1,b2,c3}, andt5 = f [b1,a2,c3]

• t1 � t1

• t1 � t2: there exists a total, index injective, and index monotonicmappingπ = {b1 7→ b2,c2 7→ c3} with
s� π(s). It is trivially position respecting.

• t1 6� t3: there exists no mappingπ with s� π(s) that is also index monotonic, becauset3 does not contain
b andc in the right order.

• t1 6� t4: the braces oft1 andt4 are incompatible.

• t1 � t5: there exists a total, index injective, and index monotonicmappingπ = {b1 7→ b1,c2 7→ c3} with
s� π(s). It is trivially position respecting.

4. partial unordered term specification (cf. requirement 2)
Let t1 = f {{b1,c2}}, t2 = f [a1,b2,c3,d4], t3 = f [a1,c2,b3], t4 = f {a1,b2,c3}, t5 = f [b1,a2,c3], and t6 =
f [a1,b2,d3]. All mappingsπ onSucc(t1) are trivially position respecting and position preserving.

• t1 � t1

• t1 � t2: there exists a total, index injective mappingπ = {b1 7→ b2,c2 7→ c3} with s� π(s)
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• t1 � t3: there exists a total, index injective mappingπ = {b1 7→ b3,c2 7→ c2} with s� π(s)

• t1 � t4: there exists a total, index injective mappingπ = {b1 7→ b2,c2 7→ c3} with s� π(s)

• t1 � t5: there exists a total, index injective mappingπ = {b1 7→ b1,c2 7→ c3} with s� π(s)

• t1 6� t6: there exists no total mappingπ such thats� π(s) holds for alls, ast6 does not contain a subterm
matching withc2.

5. position specification (cf. requirement 2)
Let t1 = f {{c1,pos 2b2}}, t2 = f [a1,b2,c3], t3 = f [b1,c2,a3], t4 = f [[a1,b2,c3]] andt5 = f [[a1,pos 2b2,c3]]

• t1 � t1: there exists a total, index injective, position preserving mappingπ = {c1 7→ c1,pos 2b2 7→
pos 2b2} with s� π(s)

• t1 � t2: there exists a total, index injective, position respecting mappingπ = {c1 7→ c3),pos 2b2 7→ b2}
with s� π(s)

• t1 6� t3: there exists no position respecting mappingπ with s� π(s); the only mapping withs� π(s) is
not position respecting, as it contains pos 2b2 7→ b1.

• t1 6� t4: there exists no position preserving mappingπ with s� π(s), becauset4 contains no subterm of
the formpos 2 t ′; positionrespectingis not sufficient, ast4 is incomplete and might match further terms
with b at a different position than 2, e.g. the termf [a1,d2,b3,c4], in which case� would not be transitive.

• t1 � t5: there exists a total, index injective, position preserving mappingπ = {c1 7→ c3),pos 2b2 7→
pos 2b)} with s� π(s); in contrast tot4, the termt5 “preserves transitivity” of�.

6. descendant (cf. requirement 3)
Let t1 = desc f{a}, t2 = desc f{a}, t3 = desc f{{a,b}}, andt4 = g{ f {a},h{b}}

• t1 � t2, becausef {a} � f {a}

• t1 6� t3, becausef {a} 6� f {{a,b}}

• t1 � t4, becauset4 contains a subtermt ′4 such thatf {a} � t ′4.

7. unordered term specification: subterm negation (cf. requirements 4 and 5)
Let t1 = f {{a1,¬b2{{d1}} }}, t2 = f {a1,c2}, t3 = f {a1,b2{d1,e2},c3}, t4 = f {{a1,c2}}, t5 = f {{a1,¬b2{{ }},c3}},
andt6 = f {{a1,¬b2{{d1,e2}},c3}}. All mappingsπ on Succ(t1) are trivially position respecting and position
preserving.

• t1 � t2: there exists a (partial) mappingπ = {a1 7→ a1} that is total onSucc+(t1) = a1 and for alls∈
Succ+(t1) holds thats� π(s), andπ cannot be completed to a mappingπ ′ such that there exists at ∈
Succ−(t1) of the form¬t ′ with t ′ � π ′(t), becauset2 does not contain a subterm matchingb2{{d1}}

• t1 6� t3: every partial mappingπ with s� π(s) for all s∈Succ+(t1), i.e. only the mappingπ = {a1 7→ a1},
can be completed to a mappingπ ′, i.e. the mappingπ ′ = {a1 7→ a1,¬b2{{d1}} 7→ b2{d1,e2}}, such that
there exists at ∈ Succ−(t1) of the form¬t ′ (i.e.¬b2{{d1}}) with t ′ � π ′(t) (i.e.b2{{d1}} � b2{d1,e2})

• t1 6� t4: there exists no mappingπ such that allt ∈ Succ−(t1) are mapped onπ(t) of the form¬t ′, as
Succ−(t4) = /0. Note thatt4 is of a form defined in requirement 4.

• t1 � t5: there exists a total index injective (and vacuously position respecting) mappingπ = {a1 7→
a1,¬b2{{d1}} 7→ ¬b2{{ }})} such that for allt ∈ Succ+(t1) holds thatt � π(t) (i.e. a1 � a2), and for
all ¬t ∈ Succ−(t1) with ¬t ′ = π(¬t) holds thatt ′ � t, i.e. b{{ }} � b2{{d1}}. Note that because of the
negation, it is necessary thatt ′ � t instead oft � t ′; otherwise, transitivity of� would not be guaranteed
(see the footnote in requirement 5).

• t1 6� t6: in the only mappingπ = {a1 7→ a1,¬b2{{d1}} 7→ ¬b2{{d1,e2}}} in which for all t ∈ Succ+(t1)
holds thatt � π(t) (i.e.a1 � a2), it does not hold that for all¬t ∈ Succ−(t1) with ¬t ′ = π(¬t) holds that
t ′ � t, becauseb{{d1,e2}} 6� b2{{d1}}. Note that because of the negation, it is necessary thatt ′ � t instead
of t � t ′; otherwise, transitivity of� would not be guaranteed, becauset5 could match with a term that
would not match witht1, e.g. f {a1,¬b2{d1},c3} (see again the footnote in requirement 5).

8. ordered term specification: subterm negation (cf. requirements 4 and 5)
Let t1 = f [[a1,¬b2]], let t2 = f [b1,a2,c3], and lett3 = f [a1,c2,b3]. Position requirements are again trivial.

• t1 � t2: there exists an index monotonic mappingπ = {(a1,a2)} that is total onSucc+(t1) = a1 and for
all s∈ Succ+(t1) holds thats� π(s), andπ cannot be completed to a mappingπ ′ such that there exists a
t ∈Succ−(t1) of the form¬t ′ with t ′ � π ′(t), such thatπ ′ is index monotonic; the only feasible completion
π = {a1 7→ a2,¬b2 7→ b1} is not index monotonic.
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• t1 6� t3: there exists an index monotonic mappingπ = {a1 7→ a1} that is total onSucc+(t1) = a1 and for
all s∈ Succ+(t1) holds thats� π(s), but it can be completed to an index monotonic mappingπ ′ = {a1 7→
a1,¬b2 7→ b3} such that there exists at ∈ Succ−(t1) of the form¬t ′ (i.e.¬b2) with t ′ � π ′(t)

9. optional subterms (cf. requirement 6)
Let t1 = f {{opt a1,b2}}, let t2 = f {b1,c2}, let t3 = f {a1,b2,c3}, and lett4 = f {{a1,opt b2}}

• t1� t1: there exists an injective mappingπ = {opta1 7→ opta1,b2 7→ b2} such thats� π(s) that cannot be
completed to a mappingπ ′ with these properties, asπ is already total; the other mappingτ = {b2 7→ b2}
fulfils the same properties, but can be completed toπ.

• t1� t2: there exists a partial injective mappingπ = {b2 7→ b1} such thats� π(s) for all s∈ Succ! (t1) that
cannot be completed to aπ ′ with these properties, asa1 does not simulate in any subterm oft2.

• t1 � t3: there exists an injective mappingπ = {opt a1 7→ a1,b2 7→ b2} such thats� π(s) that cannot be
completed to a mappingπ ′ with these properties, asπ is already total; the other mappingτ = {b2 7→ b2}
fulfils the same properties, but can be completed toπ.

• t1 6� t4: the mappingπ = {opt a1 7→ a1,b2 7→ opt b2}, which is the only mapping respecting the other
properties, does not fulfil the requirement that for alls∈ Succ!(t1) holds thatπ(s) ∈ Succ! (t2). This
restriction is important, becauset4 does not guarantee that there exists a subterm labelledb.

4.4.4 Simulation Order and Simulation Equivalence

Ground query term simulation has been designed carefully tobe transitive and reflexive, because it is
desirable that ground query term simulation is an ordering over the setTg of ground query terms. In
particular, this property is used in the definition ofanswersbelow.

Theorem 4.9
� is reflexive and transitive.

Proof. cf. Appendix B.1 ut

With this result, the following corollary follows trivially:

Corollary and Definition 4.10
� defines a preorder8 on the set of all ground query terms called thesimulation order.

Note that the simulation order is not antisymmetric (e.g.f{a,b} � f{b,a} and f{b,a} � f{a,b},
but f{a,b} 6= f{b,a}) and thus does not immediately provide a partial ordering. We therefore define an
equivalence relation as follows:

Definition 4.11 (Simulation Equivalence)
Two ground query termst1 andt2 are said to besimulation equivalent, denotedt1∼= t2, if t1� t2 andt2� t1.

The meaning of simulation equivalence is rather intuitive:two terms are considered to be equivalent,
if they differ only “insignificantly”, e.g. in a different order in the sequence of subterms in unordered
term specifications (e.g.f{a,b} and f{b,a}). This is consistent with the intuitive notion of unordered
term specifications given above. Note, however, thatf{a,a} 6∼= f{a}, because the first term contains two
a subterms, whereas the second contains only onea subterm, i.e. there cannot exist an index bijective
mapping of the successors of the first into the successors of the second term (and vice versa). Simulation
equivalence plays an important role later, because it allows to consider terms as “equal” that behave equally.

Simulation equivalence extends to non-ground terms in a straightforward manner: two non-ground
query termst1 andt2 are simulation equivalent, if for every grounding substitution σ holds thatσ(t1) ∼=
σ(t2). Note that for any two data termst1 andt2 it holds that ift1 � t2 thent1 ∼= t2, because data terms do
not contain partial term specifications.

Note that simulation equivalence is similar, but not equal to, bisimulation, because bisimulation requires
thesamerelation to be a simulation in both directions, whereas simulation equivalence allows two different
relations.
∼= partitionsTg into a set of equivalence classesTg/∼=. On this set,� is a partial ordering. Given two

equivalence classest̃1 ∈ Tg/∼= andt̃2 ∈ Tg/∼=, we shall writet̃1� t̃2 iff t1� t2.

8a preorder is defined as a transitive, reflexive relation
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Corollary 4.12
� is a partial ordering onTg/∼=.

In this partial ordering, it even holds that given two termst1 andt2 such that there exists a least upper
boundt3, thent3 is unique except for termst ′3 that are equivalent wrt.∼=.

4.5 Queries

A query is a connection of zero or more query terms using the n-ary connectivesand andor, the query
negationnot, and the conditional constructscaseandif. A query may furthermore be associated with re-
sources against which the query terms are evaluated. Detached query terms (i.e. query terms not contained
in one of the aforementioned constructs) and detached queryterms associated with a resource are called
query atoms, otherwise the query is acompound query.

4.5.1 Resource Declarations

Queries may be associated with input resource declarationsexpressed in terms of a URI or IRI, in which
case all query terms that are part of the query are evaluated against the XML documents or semistructured
databases located at the given URI/IRI. Resource declarations allow Xcerpt programs to consider any Web
site as input for a query program. An input resource declarations has the following form:

in {
resource [ <uri>, <format> ],
<query>

}

<uri> is the URI or IRI used to locate the resource on the Web. A URI/IRI may refer to any Web resource,
but the current prototype (cf. Chapter A) currently only supports resources accessible via the network
protocolshttp (Hypertext Transfer Protocol) and file (i.e. files located on the local disk).<format>
optionally specifies the format of the resource and may be used by the runtime system to choose the correct
parser. Feasible input formats for Xcerpt are resources that describe semistructured data in various formats
(e.g. Xcerpt, XML, HTML, LISP, RDF, OEM or BIBTEX).

Example 4.20
Assume that the XML document bib.xml containing the data of bookstore A is accessible via the URI
http://www.xcerpt.org/bib.xml . A query retrieving all book titles in this document is expressed as
follows:

in {
resource [ "http://www.xcerpt.org/bib.xml" , "xml" ],
bib {{

book {{
var Title → title {{ }}

}}
}}

}

Resource declarations may be nested, in which case the innermost declaration is relevant for the query;
all outer declarations are shadowed.

4.5.2 Conjunctions and Disjunctions of Queries

Queries can be connected with the n-ary boolean connectivesand and or . An expression of the form
and{ Q1,..., Qn} is anandconnected query, an expression of the formor{ Q1,..., Qn} is anor connected
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query. Intuitively,or merelymergesthe resulting sets of substitutions resulting from the queriesQ1, . . . ,Qn

(like union in relational database systems), whereasand creates the cross product of the substitution sets
and thusjoins the individual substitutions (if none of theQi contains a negation).

Curly braces in boolean connectives leave the evaluation order open to the runtime system. The eval-
uation engine may then apply heuristics to determine an optimal order of evaluation. For instance, the
evaluation engine might prefer queries that do not involve network I/O. Square brackets enforce a specific
evaluation order.
Example 4.21 (Boolean Connectives in Queries)

and {
in {

resource [ "file:bib.xml" ],
bib [[

book [[
title [ var T ],
price [ var Pa ]

]]
]]

},
in {

resource [ "file:reviews.xml" ],
reviews [[

entry [[
title [ var T ],
price [ var Pb ]

]]
]]

}
}

Two queries to the XML documentsbib.xml and
reviews.xml connected with the boolean connec-
tive and . Note that the two query terms share the
variableT. Since bindings of a variable in a substi-
tution need to be consistent, this expression joins
the prices of books with the same title in the two
book stores.

or {
in {

resource [ "file:bib.xml" ],
bib [[

book [[
title [ var T ],
price [ var P ]

]]
]]

},
in {

resource [ "file:reviews.xml" ],
reviews [[

entry [[
title [ var T ],
price [ var P ]

]]
]]

}
}

Two queries to the XML documentsbib.xml and
reviews.xml connected with the boolean connec-
tive or . Although the two query terms share the
variable T and P, this query does not evaluate a
join asor representsalternatives; results of the two
queries are thus merely merged (i.e. the union of the
two sets of substitutions is formed), and the result
is a combined list of book titles and prices from the
two book stores. Books found in both bookstores
are listed twice.

In the following, query specifications are often conveniently denoted by infix or postfix∧ instead of
and and infix or postfix∨ instead ofor , as inQ1∧·· ·∧Qn instead ofand{Q1,...,Qn} .

Note that it is possible to specify empty conjunctions and disjunctions. As is common in logic, the
empty conjunction representstruth and the empty disjunction representsfalsity. Convenient abbreviations
are thusTrue for the empty conjunction andFalse for the empty disjunction.

4.5.3 Query Negation: not

Besides the subterm negation introduced in Section 4.3.4 above (without construct), Xcerpt also supports
query negation, denoted by expressions of the formnot Q. The query negation used in Xcerpt isnegation
as (finite or infinite) failurelike in logic programming, i.e. a negated querynot Q succeeds if the queryQ
fails. Like in negated subterms, variables occurring in a negated query do not yield bindings, i.e. they have
to appear elsewhere in the query outside the scope of a negation construct (cf.range restrictedness, Section
6.2).

Sebastian Schaffert 89



4.5. QUERIES

Example 4.22
Recall the two XML documentsbib.xml and reviews.xml representing the data of two book stores
introduced in Section 2.4.2. The following query uses querynegation to query for such books that appear
in the first document but not in the second:

and {
in {

resource [ "file:bib.xml" , "xml" ],
bib {{

book {{
title { var Title }

}}
}}

},
not in {

resource [ "file:reviews.xml" , "xml" ],
bib {{

review {{
entry { var Title }

}}
}}

},
}

From a theoretical viewpoint, classical negation would be advantageous as it would ensure a precise
declarative semantics, which does not exist for negation asfailure in some cases. However, classical
negation is not feasible in many practical applications. Consider for example a train time table. Using
classical negation, the time table would have to contain entries not only for the train connections that exist,
but also for all train connections that donot exist (i.e. infinitely many). With negation as failure, it is
sufficient that the query for a train fails (i.e. an entry for anon-existent train does not exist) to fulfil the
query. Because of the well-known problems with the declarative semantics of negation as failure, negation
in Xcerpt requires so-calledstratification(cf. Section 6.4).

In contrast to the subterm negationwithout introduced in Section 4.3.4, query negation is auniversal
negation. If the query is negated, there must not exist a termwith which it matches, i.e. all terms are
required tonot match with the pattern. Note that (subterm and query) negation is not covered in the formal
semantics described in Chapter 7.

4.5.4 Conditions

Using patterns to restrict admissible variable bindings ina query (either by variable position in the pattern
or by pattern restrictions) is limited to structural properties like the term-subterm or sibling relationships
and does not allow to express conditions that go beyond pattern matching (like “the value of variable V
has to be larger than 50”). To express suchsemantic conditions, Xcerpt uses so-calledcondition boxes
(reminiscent of the condition boxes used in the languageQBE [127]). A condition box is attached to a
queryQ and has the form

Q where { Conditions }

Conditions apply only to the variables occurring inQ; other variables besides those occurring inQ are
not allowed to occur in the condition box. Conditions are comparison operators (e.g.>, <, ≥, ≤, =, or
6=) and need to have at least one of the variables occurring in the query as parameter. It is furthermore
possible to use arithmetic expressions in conditions (cf. Section 4.6.3 below), but aggregation constructs

90 Sebastian Schaffert



CHAPTER 4. XCERPT

are not allowed, as the conditions apply to each different substitution separately (like theWHEREpart in the
language SQL [6])9.

Example 4.23
The following query uses a condition box to select all students in thestudents.xml document (cf. Section
2.4.1) that have a score higher than 10 in the first exercise:

in {
resource [ "file:students.xml" ],
students {{

var S → student {{
desc exercise {

number { 1 },
score { var Score }

}
}}

}}
} where { var Score > 10 }

Condition boxes may be attached toanykind of query, includingand andor connected queries. The
following example illustrates this property:

Example 4.24
Recall the book store databases introduced in Section 2.4.2. The following query selects books that are
cheaper in bookstore A than in bookstore B (cf. also Example 4.21):

and {
in {

resource [ "file:bib.xml" ],
bib [[

book [[
title [ var T ],
price [ var Pa ]

]]
]]

},
in {

resource [ "file:reviews.xml" ],
reviews [[

entry [[
title [ var T ],
price [ var Pb ]

]]
]]

}
} where { var Pa < var Pb }

When evaluating conditions, a basic type system would be desirable to distinguish e.g. the comparison
operator< on numbers from the comparison operator< on strings. As typing is not investigated in this the-
sis, it is assumed that different operator symbols are used for different types and type casting is performed
implicitly by the runtime system.

9Note that SQL supports conditions over aggregated values ina HAVINGclause. Such conditions can be expressed in Xcerpt via
rule chaining
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4.6 Construct Terms: Patterns for Constructing Data

Construct terms serve to reassemble variable bindings, which are determined by query terms, so as to form
new data terms. Whereas query terms are patterns for the data(and thus may contain partial term speci-
fications), construct terms are patterns for the result (andthus may only contain total term specifications).
Construct terms may furthermore contain variables (but no→ restrictions), and so-calledgrouping con-
structsused for grouping different substitutions. Like in data terms, both constructs[ ] and { } may
occur in construct terms for expressing ordered and unordered sequences of subterms. The constructs
[[ ]] and {{ }} are not allowed, as they express partial term specificationswhich do not make sense
when constructing data items.

4.6.1 Variables

In construct terms, variables serve as place holders for thesubterms they are bound to. Construct terms
may contain label variables, namespace variables, and subterm variables without restriction. Allowing
variable restrictions in construct terms is not desirable,as a construct term is merely a specification of how
the variables should be reassembled and is not intended to constrain the set of possible variable bindings.
Obviously, however, label variables may take only values that are admissible as term labels and namespace
variables may only be bound to URIs or IRIs.

Example 4.25
In the bookstore example from Section 2.4.2, assume that there is the following set of answer substitutions
for the variablesTitle andAuthor :

σ1 Title title { "Vikinga Blot" }
Author author { last { "Ingelman-Sundberg" }, first { "Catha rina" }}

σ2 Title title { "Boken Om Vikingarna" }
Author author { last { "Ingelman-Sundberg" }, first { "Catha rina" }}

σ3 Title title { "Folket i Birka p å Vikingarnas Tid" }
Author author { last { "Wahl" }, first { "Mats" }}

σ4 Title title { "Folket i Birka p å Vikingarnas Tid" }
Author author { last { "Nordqvist" }, first { "Sven" }}

σ5 Title title { "Folket i Birka p å Vikingarnas Tid" }
Author author { last { "Ambrosiani" }, first { "Bj örn" }}

The following construct term collects a single title/author pair for these substitutions (one for each substi-
tution):

results {
result { var Title , var Author }

}

The result of applying the substitutions above to this construct term are the following five data terms:

results {
result {

title { "Vikinga Blot" },
author { last { "Ingelman-Sundberg" }, first { "Catharina" } }

}
}

results {
result {
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title { "Boken Om Vikingarna" },
author { last { "Ingelman-Sundberg" }, first { "Catharina" } }

}
}

results {
result {

title { "Folket i Birka p å Vikingarnas Tid" },
author { last { "Wahl" }, first { "Mats" } }

}
}

results {
result {

title { "Folket i Birka p å Vikingarnas Tid" },
author { last { "Nordqvist" }, first { "Sven" } }

}
}

results {
result {

title { "Folket i Birka p å Vikingarnas Tid" },
author { last { "Ambrosiani" }, first { "Bj örn" } }

}
}

4.6.2 Grouping and Sorting: all and some

It is often desirable to collect all bindings for a variable in a single answer term. Thegrouping constructs
all andsome serve this purpose:

• all groupsall possible instancesof the enclosed subterms resulting from different variablebindings
as children of the enclosing term. At least one instance has to exist, and the number of instances
always needs to be finite (otherwise the program does not terminate).

• some groups non-deterministicallysome of the possible instancesof the enclosed subterms resulting
from variable bindings as children of the enclosing term. Some is quantified by a number which
restricts the (maximum) number of alternatives to use. At least one instance has to exist.

The requirement that there has to exist at least one instancein both grouping constructs may seem unin-
tuitive. However, a construct term can only be evaluated if the rule it is part of “fires”, i.e. the query part
succeeds and thus yields at least one substitution for the variables occurring in the query. If this behaviour
is not desired, the grouping constructs can be combined withoptional (see below).

Example 4.26 (Grouping Constructs)
Consider again the substitutions of Example 4.25. The following construct term creates a list ofresult
subterms (one for each title/author combination from the substitutions) below aresults term using the
all -construct to collect all instances:

results {
all result { var TITLE , var AUTHOR}

}

The result of applying the substitutions to this construct term might be the following data term (compare
with the set of data terms from Example 4.25):
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results {
result {

title { "Vikinga Blot" },
author { last { "Ingelman-Sundberg" }, first { "Catharina" } }

},
result {

title { "Boken Om Vikingarna" },
author { last { "Ingelman-Sundberg" }, first { "Catharina" } }

},
result {

title { "Folket i Birka p å Vikingarnas Tid" },
author { last { "Wahl" }, first { "Mats" } }

},
result {

title { "Folket i Birka p å Vikingarnas Tid" },
author { last { "Nordqvist" }, first { "Sven" } }

},
result {

title { "Folket i Birka p å Vikingarnas Tid" },
author { last { "Ambrosiani" }, first { "Bj örn" } }

}
}

Formally, all t or some n t denote the grouping of all or some instances oft obtained from all
possible bindings of the variables that are free in the termt . Subterms oft that again have the form
all t’ or some n’ t’ are recursively evaluated in the same manner (see below). A variable isfree in a
(sub)termt , if it (1) occurs int , and (2) is not in the scope of another, nested grouping construct. E.g. in
the term

results {
all result { var TITLE , var AUTHOR}

}

both variablesTITLE andAUTHORare not free, since they are in the scope of anall construct. In the term

results {
result { all var TITLE , var AUTHOR}

}

the variableAUTHORis free, whereas the variableTITLE is not free. A variable is said to befree for a
grouping construct, if it is free in the term enclosed by the grouping construct.E.g. in the termall t , all
variables that are free int are free for the outermostall . All free variables in a construct term need to
have the same binding in each of the substitutions that are used for grouping.

Example 4.27
Consider a slightly modified variant of the previous construct term. Note that only the variableAUTHORis
in the scope of theall construct, while the variableTITLE is free.

result { var TITLE , all var AUTHOR}

The result of applying the set of answer substitutions of Example 4.25 to this construct term is the following
set of data terms:
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result {
title { "Vikinga Blot" },
author { last { "Ingelman-Sundberg" }, first { "Catharina" } }

}

result {
title { "Boken Om Vikingarna" },
author { last { "Ingelman-Sundberg" }, first { "Catharina" } }

}

result {
title { "Folket i Birka p å Vikingarnas Tid" },
author { last { "Wahl" }, first { "Mats" },
author { last { "Nordqvist" }, first { "Sven" },
author { last { "Ambrosiani" }, first { "Bj örn" }

}

Note that each of the three resulting data terms uses only onebinding for the variableTITLE of the construct
term, but groups possibly several bindings of the variableAUTHOR. In each instance (i.e. data term), the
grouping construct groups together substitutions that have the same binding forTITLE . As there exists only
one substitution for each of the titles “Vikinga Blot” and “Boken Om Vikingarna”, the grouping construct
only groups a single substitution in the first two data terms.In the third data term, three substitutions are
grouped (each having the same binding forTITLE , but a different binding forAUTHOR).

The grouping constructsall andsome are similar to the so-calledcollection constructs{.} and[.] in
XMAS [72] and to the grouping construct{.} in XML-RL [70].

Nesting of Grouping Constructs

Grouping constructs may be nested to perform more complex restructuring tasks. Recall that a term of the
form all t collects all instances oft with different bindings for the free variables int . If t contains nested
grouping constructs,eachinstance oft is further grouped according to the nested grouping constructs. For
example, the construct term

results {
all result {

all var TITLE ,
var AUTHOR

}
}

creates for each binding of the variableAUTHOR(i.e. the variable that is free for the outerall ) an instance
of the subtermresult . In each instance, the innerall collects all instances of the variableTITLE (that are
part of substitutions with the same binding forAUTHOR). Thus, the construct term creates a list of book titles
for each author, and groups theresult subterms below aresults term. Likewise, the construct term

results {
all result {

var TITLE ,
all var AUTHOR

}
}

lists for each book title all authors. Intuitively, nested grouping constructs are similar to nested iteration
constructs in imperative languages (likefor or while loops), where the inner loop performs a complete
run for each iteration of the outer loop. Note, however, thatnested grouping constructs do not compute the
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“cross-product”, but instead have to respect the differentanswer substitutions: in the example above, every
result elements contains a book title, andonlythe authors of that book, whereas the cross-product would list
for each result also the authors of other books. If it is desirable to compute the cross-product, it is necessary
to appropriately modify the query/query term such that it selects titles and authors independently.

Explicit Grouping: group by

In many cases, it is desirable to group by variables whose values should not appear in the result, wherefore
they are not part of the subterm that is enclosed by a groupingconstruct. For example, a construct term
might group resulting instances based on the position of a row in an HTML table while not including this
position (i.e. the integer number) in the result. While thisresult could be achieved by using several rules
(one for creating the result and one for filtering out superfluous parts), this solution is very cumbersome. For
this reason, the grouping constructsall andsome may be accompanied by agroup by clause containing
the (additional) variables by which the instances are grouped. Such clauses have the form

all <subterm> group by { <variables> }

or

some <n> <subterm> group by { <variables> }

where<n> is the maximum number of instances forsome, <subterm> is the subterm of which instances
are created, and<variables> is a comma-separated list of variables. All these variablesare considered
to be part of the free variables of the subterm enclosed by thegrouping construct and thus used for grouping,
regardless of whether they appear in<subterm> or not..

Example 4.28 (Explicit Grouping)
Consider an HTML table, the cells containing arbitrary values. The following query term retrieves all cell
values, together with row and column number:

desc table {{
position var Row tr {{

position var Col td { var Value }
}}

}}

Now assume that the table should be “transposed”, i.e. rows and columns are exchanged. The following
construct term creates such a transposed table. Since the positions are necessary for grouping but should
not be included in the resulting data term, it usesgroup by for this purpose:

table [
all tr [

all td [ var Value ] group by { var Row }
] group by { var Col }

]

The construct term is evaluated as follows: For each different binding ofCol (Col is the only free variable
in the scope of the outerall ), an instance oftr [ ... ] is created. Within each instance, the innerall
creates an instance oftd [ ... ] for each different binding ofRow(within the set of substitutions having
the same binding forCol ).

Sorting: order by

The grouping constructsall and some create sequences of subterms in arbitrary order (although they
should try to return results in the same order in which the corresponding subterms appear in the original
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sources, if possible). In order to sort the resulting sequence according to the bindings for certain variables,
the grouping constructsall andsome may be augmented by asorting specification. Sorting specifications
are very similar to explicit grouping and have the form

all <subterm> order by ( <comparison>) [ <variables> ]

or

some <n> <subterm> order by ( <comparison>)[ <variables> ]

where<n> is the maximum number of instances forsome, <subterm> is the subterm of which instances
are created, and<variables> is a comma-separated list of variables.<comparison> is the name of
the comparison function to be used in sorting. Comparison functions take as arguments two lists of terms
(representing two different substitutions for the variables in<variables>) and return a value indicating
whether the first list is less than, equal to, or greater than the second list. The current prototype runtime
system (cf. Appendix A) supports the two exemplary comparison functionslexical andnumeric (both
in ascending order); further comparison functions may be programmed natively in the implementation
language of the prototype (i.e. Haskell).

The list of variables influences the grouping in two ways: (1)instances are grouped as if the variables
occurred in agroup by clause (i.e. are considered part of the variables free for the grouping construct)
and (2) the instances are sorted on the bindings of the variables in the list using the specified compar-
ison function. In the two exemplary functions, sorting is performed primarily with respect to the first
variable in the list and more specific for each of the following variables. For instance, a variable list
[var Last,var First] would specify to sort primarily by the last names, and withininstances with the
same last name sort by the first name.

Example 4.29
Sort the list of books by the book titles in ascending lexicalorder:

results {
all result { all var Author , var Title } order by (lexical) [ var Title ]

}

Example 4.30
Consider the following query term (evaluated against the XML document representing the data of bookstore
A in Section 2.4.2):

bib {{
book {{

var Title → title {{ }}
var Author → author {{ var First → first {{ }}, var Last → last {{ }} }}

}}
}}

The following construct term creates a list of authors for each book title. Authors are sorted by last
name and then by first name. Note that grouping is performed onthe variableAuthor , as well as the
variablesLast andFirst .

results {
all result {

all var Author order by (lexical) [ var Last , var First ],
var Title

}
}
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Comparison with GROUP BY and Aggregations in SQL

Xcerpt’s grouping constructs are very similar toGROUP BYclauses in SQL [6], which allow to group results
with the same bindings on the specified variables into a combined representation. In SQL,GROUP BYis
usually used in conjunction with an aggregation function over some of the variables not used for grouping.
However, grouping in Xcerpt differs from grouping in SQL in several aspects:

• grouping is part of theconstructioninstead of thequery

• grouping without aggregation functions is necessary, as Xcerpt, unlike SQL, allows complex tree
structures instead of flat tuples.

• grouping constructs have ascope; therefore, it is in most cases not necessary to explicitly specify
the variables used for grouping. Instead, all free variables in the scope (i.e. enclosed subterm) are
implicitly used.

• grouping constructs can benested; a nested grouping construct is very similar to an aggregation
function that creates a term sequence.

In relational databases, nesting of grouping constructs would create results that are in non-first normal form,
i.e. tuples that are not flat, which is usually not permitted.In Xcerpt, nesting is possible (and desirable)
because the data is tree-structured in the first place.

Example 4.31
Consider a relationScores(Student,ExerciseNr,Score) used for storing exercise results of students.
To keep the example simple, it is assumed that the first attribute in a tuple (Student ) holds the student
name. The following table represents the data from Section 2.4.1):

Scores Student ExerciseNr Score

Donald Duck 1 15
Donald Duck 2 7
Mickey Mouse 1 3
Mickey Mouse 3 14
Goofy 2 13

To sum up the totals for each student in SQL, one usually groups on the attributeStudent and aggregates
(for each student) over the attributeScore . The attributeExerciseNr is ignored:

SELECT Student, sum ( Score ) FROMScores GROUP BYStudent

In Xcerpt, the same result would be created with the following construct term using nested grouping
constructs and an aggregation function (aggregations in Xcerpt are introduced in Section 4.6.3 below). Note
that althoughgroup by is used in this construct term, it could be omitted because the variableStudent
already appears inside the outerall and thus is used implicitly for grouping:

totals {
all score {

name { var Student },
total-score { sum ( all var Score ) }

} group by { var Student }
}
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4.6.3 Functions and Aggregations

In addition to arranging data in a new structure, it is often desirable to perform some sort of computation to
create new content. For example, a bookstore might want to present books with the value added tax added
to all prices, or calculate totals for the items contained ina customer’s virtual shopping cart. For this reason,
construct terms in Xcerpt may containfunctions(i.e. computations with a fixed number of arguments) and
aggregations(i.e. computations with a variable number of arguments). Both functions and aggregations
take the form

<fname> ( <arguments> )

where<fname> is the function or aggregation name and<arguments> is a comma-separated list of
arguments (variables or other non-grouping subterms). In the case of aggregations,<arguments> may
also contain the grouping constructsall andsome.

Example 4.32 (Shopping Cart: Adding the VAT and Computing Totals)
Consider the XML document representing the data of bookstore A (in Section 2.4.2). The following con-
struct term might be used to create an HTML presentation of books in a shopping cart were prices are
shown both without and with value added tax (in this case: 16%). The last row computes totals for all
prices.

table [
th [ td [ "Title" ], td [ "Price Net" ], td [ "VAT" ], td [ "Total" ] ],
all tr [

td [ var Title ],
td [ var Price ],
td [ mult ( var Price , 0.16 ) ],
td [ mult ( var Price , 1.16 ) ]

],
tr [

td [ "Totals" ],
td [ sum ( all var Price ) ],
td [ sum ( all mult ( var Price , 0.16 ) ) ],
td [ sum ( all mult ( var Price , 1.16 ) ) ],

]
]

Since a type system is not in the scope of this thesis, the current implementation assumes implicit
type casting in functions and aggregations. For example, the functionmult (for multiplication) implic-
itly assumes that all parameters are numbers. In order to provide a comprehensive set of functions and
aggregations, a type system would however be beneficial.

The current implementation supports a number of exemplary functions and aggregations, which are
summarised in Table 4.1. For some frequently used functions, this table also gives an abbreviated, infix
notation that may be used instead of the more verbose generalform. Beyond these, a wide range of
functions are conceivable. The documentXQuery 1.0 and XPath 2.0 Functions and Operators[114] gives
an overview over functions that are desirable in Web query languages.

4.6.4 Optional Subterms: optional

Recall from Section 4.3.1 that the constructoptional in query terms allows to express that certain sub-
terms of a query term need only be matched if a corresponding subterm exists in the data term against
which the query term is evaluated. In case the optional subterm contains variables, it might happen that
some of the substitutions resulting from the evaluation of the query do not contain bindings for these vari-
ables (as the corresponding subterm did not participate in the matching). As a consequence, construct terms
containing such variables need to make provisions for such cases. This is expressed by marking subterms
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Name Abbreviated Default Description

Functions
add(n,m) n + m — adds the two numeric argumentsn andm
sub(n,m) n - m — subtracts the two numeric argumentsn andm
mult(n,m) n * m — multiplies the two numeric argumentsn andm
div(n,m) n / m — divides the two numeric argumentsn andm
concat(n,m) n ++ m — concatenates the two string argumentsn andm
glb(n,m) — — calculates the greatest lower bound of two termsn andm

wrt. simulation order
lub(n,m) — — calculates the least upper bound of two termsn andmwrt.

simulation order

Aggregations
count(...) — 0 count the number of arguments
sum(...) — 0 compute the sum of all (numeric) arguments
avg(...) — NaN compute the average of all (numeric) arguments
min(...) — +in f compute the minimum of all (numeric) arguments
max(...) — −in f compute the maximum of all (numeric) arguments
join(...) — "" join all string arguments to a single string
first(...) — exception return the first argument
reverse(...) — empty return the arguments in reverse order

Table 4.1: Exemplary functions and aggregations availablein construct terms. All functions and aggrega-
tions perform an implicit type casting to the type given (e.g. “numeric” or “string”). The default value for
aggregation functions is used in case the argument list is empty; exception indicates a runtime error and
empty the empty list. For normal functions, default values are notapplicable.

containing variables that are possibly unbound asoptional. Like in query terms, such subterms take the
form

optional <subterm>

but it is also possible to add a default value to be used if no instance can be created as in

optional <subterm> with default <default>

where<subterm> is the subterm containing the optional variables. In case atleast one of the variables in
<subterm> is not bound (i.e. no ground instance can be created), the first form simply omits the optional
subterm, whereas the second form substitutes the subterm<default> for <subterm>. <default>
may be any construct term.

Example 4.33
Consider the XML document representing the student database of Section 2.4.1. The following query
term retrieves the student name and optionally his inscription number (contained in the subterm labelled
matrnr ) from this document. Note the use ofoptional to indicate optional selections.

students {{
student {{

name { var Name },
optional matrnr { var MatrNr }

}}
}}
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Assume that a teacher wants to create an HTML table listing all student names with inscription numbers,
leaving columns empty for each substitution that does not contain a binding for the variableMatrNr . The
corresponding construct term would look as follows:

table [
all tr [

td [ var Name ],
td [ optional var MatrNr ]

]
]

By using a default specification, it us also possible to insert the string"unknown" instead of simply leaving
the columns empty for those substitutions that do not contain a value forMatrNr , as in the following
construct term:

table [
all tr [

td [ var Name ],
td [ optional var MatrNr with default "unknown" ]

]
]

The optional does not necessarily prefix the variable immediately, but may instead enclose a whole
subterm containing optional variables; the following construct term does not generate a second column if
there is no inscription number available, instead of leaving the second column empty:

table [
all tr [

td [ var Name ],
optional td [ var MatrNr ]

]
]

Grouping Constructs and Optional Subterms

As mentioned above, the grouping constructsall andsome require the existence of at least one instance of
the enclosed subterms, because a query only succeeds if there exists at least one binding for its variables.
With optional , this restriction can be lifted: query terms with optional subterms might match while not
yielding any bindings for the variables occurring in the grouping construct. Withoptional in the construct
term, it is thus possible to express possibly empty groupings:

Example 4.34 (Grouping and Optional)
The following query term selects student names and scores ofsubmitted exercises. The subterm labelled
exercises is markedoptional in order to also select students without any exercise submissions.

students {{
student {{

name { var Name },
optional exercise {{ score { var Score } }}

}}
}}
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Given the set of answer substitutions of this query term, thefollowing construct term computes the sum of
all exercises for each student. If no exercise has been submitted, the sum is 0:

scores {
all student {

name { var name },
total { sum ( optional all var Score with default 0 ) }

}
}

In case no exercise has been submitted (i.e. there exists no binding for the variableScore for a student),
there exists no instance forall var Score and the default value of 0 is used as the only argument to
the aggregation functionsum(...) . Otherwise, a sequence of scores is created and summed up using
sum(...) . Since the default value ofsum(...) happens to be 0 if the number of arguments is zero (cf.
Table 4.1), thewith default clause may also be omitted in this case. Alternatively, the construct term
could be written as

scores {
all student {

name { var name },
total { optional sum ( all var Score ) with default 0 }

}
}

In this case, the aggregation functionsum(...) is not evaluated if there is no instance forall var Score ;
the value 0 is substituted without any further computation.

In practise, it is irrelevant whether theoptional encloses the grouping construct (as in the examples
above) or vice versa; both approaches are reasonable.

4.7 Construct-Query Rules (or Views)

An Xcerptquery program(or simplyprogram) consists of one or moreconstruct-query rules. Construct-
query rules (short:rules) relate a construct term to a query (i.e. anandor or connected set of query terms).
Xcerpt rules areif-thenrules, i.e.if a query succeeds,thena result is created. The syntax of rules in Xcerpt
loosely resembles SQL and is similar to the syntax used in XML-QL and XMAS (cf. Section 3.3.4). Rules
have the form

CONSTRUCT
<construct term>

FROM
<query>

END

where<query> is a query as defined in Section 4.5 and<construct term> is a single construct
term. Rules arerange restricted: all variables occurring in<construct term> must also occur and
yield bindings in<query> (cf. Section 6.2). Also, all rules in a program are understood as if they were
variable disjoint, i.e. the scope of a variable is limited toa rule (“standardisation apart”, cf. page 137). If
<query> can be evaluated successfully, a rule is said to beapplicable.

Intuitively, a rule specifies how to transform the source data (which possibly is located at several Web
sites) into a different representation. The query (or “query part”) specifies how to select data items from
different source documents, the construct term (or “construct part”) specifies how to reassemble these data
items in a new combined structure, yielding new data terms. Arule can thus be seen as aviewupon source
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data, very much like the views in query languages for relational database systems. However, in contrast
to views in such languages, an Xcerpt rule is not applicable if no data items exist, because the query part
cannot be evaluated.

Example 4.35
The following rule creates a unified view upon the book databases of the two book stores introduced
in Section 2.4.2, summarising the prices for books that appear in both databases. The query part con-
sists of anand-connection of two query terms evaluated against the two XMLdocuments representing
the book databases. The construct part reassembles the booktitles and prices in both book stores in a
books-with-prices subterm.

CONSTRUCT
books-with-prices [

all book-with-prices [
title [ var T ], price-a [ var Pa ], price-b [ var Pb ]

]
]

FROM
and {

in {
resource [ "file:bib.xml" ],
bib [[

book [[
title [ var T ], price [ var Pa ]

]]
]]

},
in {

resource [ "file:reviews.xml" ],
reviews [[

entry [[
title [ var T ], price [ var Pb ]

]]
]]

}
}

END

More formally, a rule (together with the queried resources)is a specification of a set of data terms (for
more details, see Chapter 7). These are calledresultsof the rule induced by the answer substitutions of the
query. Whether or not this set is materialised depends on theconcrete implementation and the needs of the
application. Note, however, that in general a materialisation is not possible, because the number of induced
data terms might be infinite due to (recursive) rule chaining(see below).

4.7.1 Rule Chaining

As in logic programming languages like Prolog or Datalog, Xcerpt rules can query the results (instances)
of other rules, a process usually referred to asrule chaining. Recursive rule chaining is possible, in which
case a rule queries the results of a previous application of itself. Rule chaining distinguishes Xcerpt from
most of the languages introduced in Section 3.3.4: althoughthe languages UnQL, XML-QL, and XMAS
all are rule-based, neither of them supports rule chaining.Rule Chaining serves several purposes:

• It allows to break down complex queries in smaller components that are easier to grasp and more
declarative.
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• It allows to structure queries in logical components (“separation of concerns”). For example, a query
might be composed of several rules that query different resources and create a unified intermediate
format (“mediators”), and a rule that queries data in this intermediate format and creates an XML
document suitable for presentation in a browser. Further rules might be used to create different
presentation formats for mobile devices or paper editions suitable for printing.

• It allows to build complex queries that require recursion. This includes, in particular, reasoning with
Semantic Web data: a frequently needed operation is e.g. thecomputation of the transitive closure of
a relation.

Several application scenarios for rule chaining can be found in Chapter 5. In Xcerpt, any query that is not
associated with an external resource is considered to referto the results of other rules within the program.

Example 4.36
Recall the rule used in Example 4.35 above, which creates a unified representation of books in two book
stores. The following Xcerpt rule further queries this unified representation to create an HTML document
suitable for presentation in a browser (cf. also the more detailed description of this example in Section
5.1.5):

CONSTRUCT
table [

tr [ td [ "Title" ], td [ "Price at A" ], td [ "Price at B" ] ],
all tr [ td [ var Title ], td [ var PriceA ], td [ var PriceB ] ]

]
FROM

books-with-prices [[
book-with-prices [[

title [[ var Title ]],
price-a [[ var PriceA ]],
price-b [[ var PriceB ]]

]]
]]

END

Likewise, the following (very similar) rule queries the same unified representation to create a WML docu-
ment suitable for a mobile device (e.g. cellular phone):

CONSTRUCT
wml [

all card [
"Title: " , var Title ,
"Price A: " , var PriceA ,
"Price B: " , var PriceB

]
]

FROM
books-with-prices [[

book-with-prices [[
title [[ var Title ]],
price-a [[ var PriceA ]],
price-b [[ var PriceB ]]

]]
]]

END
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Operationally, rule chaining can be seen as very similar to procedure or function calls (or perhaps “rou-
tines”) in other programming or query languages. Rule languages in general allow to evaluate rules in two
directions, so-called “forward chaining” and “backward chaining”.

• Forward chaining isrule driven. Rules are evaluated iteratively against the current set ofdata terms
until saturation is achieved (the so-calledfixpoint). Forward Chaining is useful for instance for
materialising views and for view maintenance, and is widelyused in deductive databases []. If a
query program contains recursive rules, forward chaining could result in an infinite fixpoint, i.e. the
evaluation does not terminate. Also, if forward chaining isused to answer a query, most of the
derived data is usually irrelevant to the query – forward chaining is not goal driven.

• Backward chaining isgoal driven. Beginning with a query (composed of one or several query terms),
program rules are selected if they are relevant for “proving” a query term. The query term in question
is then replaced by the query part of the selected rule. Backward chaining is useful when the expected
result is small in comparison with the number of possible results of the program. On the other
hand, naı̈ve backward chaining may not terminate even in cases where the fixpoint is guaranteed
to terminate. Backward chaining is mainly used in expert or knowledge base systems and in logic
programming languages like Prolog [71].

In a Web environment, both forward and backward chaining aredesirable. A forward chaining approach
is e.g. useful when creating a static Web site (consisting ofseveral Web pages) from an input document
containing the content and an Xcerpt program used as a “stylesheet” for adding layout and structure suitable
for presentation in a Web browser, i.e. “materialising the HTML view” on the input data. On the other hand,
backward chaining is necessary when querying large collections of documents, in particular the Web itself,
where it is in practise not possible to begin with the complete set of data terms. In fact, if the considered
set of data terms is the complete Web, its contents might evenbe unknown at the beginning.

Whereaspattern matching(as introduced in Section 4.4) is sufficient for a forward chaining evaluation,
a backward chaining evaluation requiresunification, as query terms need to be “matched” with construct
terms and variables in both terms need to be bound. Xcerpt uses a non-standard unification algorithm called
simulation unification, which is introduced in Chapter 8. Chapter 8 also describes abackward chaining
algorithm for Xcerpt programs, and [25] compares differentapproaches to backward chaining in Xcerpt.
A forward chaining algorithm is not investigated in this thesis.

4.7.2 Goals

Xcerpt programs may contain a particular form of rules called goals. The first instance of the construct
term of a goal is considered to be aresult of a program. Goals serve as the starting point of a backward
chaining evaluation, but are otherwise very similar to the normal rules introduced in this Section. They
have the form

GOAL
out {

resource [ <resource specification> ],
<construct term>

}
FROM
<query>

END

where<construct term> and<query> are defined as for normal rules. A goal is always associated
with an output resource(which uses the same syntax as the input resources introduced in Section 4.5)
specifying the resource to which the result is written in case the goal is evaluated successfully. If no output
resource is given, it is implicitly assumed that the result shall be written to standard output, e.g. the current
console. In this case, goals have the form
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GOAL
<construct term>

FROM
<query>

END

The instances of goals cannot be queried by the queries of other rules. Goals thus do not participate in rule
chaining, except for being the starting point of the (backward chaining) evaluation. Every program needs
to contain at least one goal.

Example 4.37
Consider the two rules of Example 4.36. The following two goals may be used to write their results to the
files prices.html (in HTML format) andprices.wml (in WML format):

GOAL
out {

resource [ "file:prices.html" , "html" ],
html [

head [ title [ "Price Comparison" ] ],
body [ var Content ]

]
}

FROM
var Content → table {{ }}

END

GOAL
out {

resource [ "file:prices.wml" , "wml" ],
var Content

}
FROM

var Content → wml {{ }}
END
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Xcerpt Use Cases

5.1 Restructuring Data

5.1.1 List of Authors vs. List of Titles

The following two examples are taken from the use caseXMP of theXML Query Use Cases[34] (queries
Q3 and Q4). Consider the document representing the bibliography database of bookstore A in Section
2.4.2 (Figure 2.5). In the first example, the task is to list “for each book in the bibliography the title and
authors, grouped inside aresult element”; the second example lists “for each author in the bibliography
the author’s name and the titles of all books by that author, grouped inside aresult element”. The
following two Xcerpt rules create these results using nested all constructs.

CONSTRUCT
results [

all result [
var Title ,
all var Author

]
]

FROM
in {

resource [ "file:bib.xml" ],
bib [[

book [[
var Title → title {{ }},
var Author → author {{ }}

]]
]]

}
END

CONSTRUCT
results [

all result [
all var Title
var Author ,

]
]

FROM
in {

resource [ "file:bib.xml" ],
bib [[

book [[
var Title → title {{ }},
var Author → author {{ }}

]]
]]

}
END

Note that the two Xcerpt rules are mostly identical, except for the position of the innerall construct. In
both cases, the query part consists of a single query term associated with the resourcefile:bib.xml , i.e.
an XML document namedbib.xml and located in the local file system. This query term binds thevariables
Title andAuthor to corresponding pairs oftitle /author elements inbib.xml . These bindings are used
in the construct term to construct the result:

• In the first example (on the left), the primary grouping is performed on the book titles, i.e. one
instance of aresult element is created for each different binding ofTitle . Nested grouping is
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then performed on the variableAuthor , simply listing all different bindings (for a given instance of
Title ).

• In the second example (on the right), the primary grouping isinstead performed on the book authors,
i.e. one instance of aresult element is created for each different binding ofAuthor . The nested
grouping then lists all bindings ofTitle for each such instance.

Interestingly, these two examples differ considerably forthe language XQuery (whereas in Xcerpt, the only
difference is the position of the nestedall construct). The following two XQuery queries are taken from
theXML Query Use Casesand yield similar results to the two Xcerpt queries above1:

<results>
{

for $b in doc("file:bib.xml")/bib/book
return

<result>
{ $b/title }
{ $b/author }

</result>
}
</results>

<results>
{

let $a := doc("file:bib.xml")//author
for $last in distinct-values($a/last),

$first in distinct-values($a[last=$last]/first)
order by $last, $first
return

<result>
<author>

<last>{ $last }</last>
<first>{ $first }</first>

</author>
{

for $b in doc("file:bib.xml")/bib/book
where some $ba in $b/author

satisfies ($ba/last = $last
and $ba/first=$first)

return $b/title
}

</result>
}
</results>

It is easy to observe that the left query is much simpler than the right query (which requires the use
of nested subqueries), although the queried data is identical. A reason for this might be that while the
result of the first query is similar in structure to the queried data, the second query requires considerable
restructuring. Arguably, separation of querying and construction in Xcerpt better conveys the structure of
both, the result and the queried data.

5.1.2 Resolving ID/IDREF references

While Xcerpt provides its own reference mechanism (see Section 4.2), it is also straightforward to use and
dereference ID/IDREF references using a variable that occurs in a query term both at the position of the ID
and at the position of the IDREF. Suppose there exists an XML document representing a large text (e.g. this
PhD thesis, see Section 2.4.3). References to the bibliography might be represented using ID/IDREF. The
following query selects all authors cited in a section entitled “Xcerpt Terms” by dereferencing ID/IDREF
references incite elements to the respectiveentry elements in the bibliography and retrieving the authors
contained in them:

CONSTRUCT
authors {

all var Author
}

FROM
in {

resource [ "file:report.xml" ],

1the ordering of results may be different as ordering is not required in the task description
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report {{
desc section {{

title { "Xcerpt Terms" },
desc cite {

attributes { ref { var Ref } }
}

}},
desc bibliography {{

entry {{
attributes { id { var Ref } },
var Author → author {{ }}

}}
}}

}}
}

END

Note the use of the specialattributes subterm to represent XML attributes in Xcerpt. In the first
subterm ofreport , the variableRef is bound successively to all identifiers of citations referred to the sec-
tions with title “Xcerpt Terms”; the same variable is used inthe second subterm to select the corresponding
bibliography entries, for which all authors are successively bound to theAuthor variable.

In combination with the subterm negationwithout , it is possible to verify whether an XML document
contains references to non-existing identifiers. The following Xcerpt rule illustrates this on the PhD thesis
example (compare also with the query above). It queries the text for all citations (retrieving them in the
variableRef ) and checks whether the bibliography does not contain a corresponding entry. Note that the
second occurrence of the variableRef is part of a negated subterm.

CONSTRUCT
unresolved_citations {

all var Citation
}

FROM
in {

resource [ "file:report.xml" ],
report {{

desc var Citation → cite {
attributes { ref { var Ref } }

},
desc bibliography {{

without entry {{
attributes {{ id { var Ref } }}

}}
}}

}}
}

END

5.1.3 Completing an HTML table

Xcerpt’s grouping constructsall andsome can be used to perform powerful computations. Consider an
HTML table containing numeric values (e.g. a spreadsheet represented in an HTML document), like the
following (very simple) table:
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<html>
<head><title>A simple table</title></head>
<body>

<table>
<tr>

<td>1</td><td>2</td>
</tr>
<tr>

<td>3</td><td>4</td>
</tr>

</table>
</body>

</html>

A typical task could be to query this table and create a new table with the totals for each row and column
added. Due to Xcerpt’s grouping constructs, this query can be expressed using a single rule:

CONSTRUCT
table [

all tr [
all td [ var Value ],
td [ sum ( all var Value ) ]

] group by { var Row },
tr [

all td [
sum ( all var Value )

] group by { var Col },
td [ sum ( all var Value ) ]

]
]

FROM
in {

resource [ "http://www.example.com/table.html" , "html" ],
html {{

desc table {{
position var Row tr {{

position var Col td {{ var Value }}
}}

}}
}}

}
END

Note the use of the constructgroup by (cf. Section 4.6.2) and the use of the aggregation functionsum
(cf. Section 4.6.3). The query is evaluated as follows (compare with Example 4.28 on page 96): the query
term selects all values of cells in the table, together with the respective row and column number (using
the constructposition ). The construct term creates a table by adding one row (tr element) for each row
in the original table (by grouping on the variableRow), and an additional row for the totals at the end of
the table. In each row, all table cells of the respective row in the original table are inserted, and a new
cell is added summing up the values of all cells (using the aggregation functionsum). In the final row, a
new cell is created for each column (by grouping on the variable Col , and each of these cells contains the
totals of the whole column (using the aggregation functionsum over all values that have the same column
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number). Finally, the last cell of the last row is created by simply aggregating over all possible values
without consideringCol or Row.

An equivalent result can be achieved using the following tworules. Whereas the first rule adds a
column containing the totals of eachrow, the second column adds a row containing the totals of each
column. Both rules interact via rule chaining, i.e. the result of one rule application is queried by the other.
As a consequence, it is not necessary to calculate the total value of all cells separately. Interestingly, the
order in which the rules are applied is not relevant, both evaluation orders yield the same result (they are
confluent). Note that the example is not complete: one of the rules needs to specify the resource from
which the source document is to be retrieved.

CONSTRUCT
table [

all tr [
all td [ var Value ],
td [ sum ( all var Value ) ]

] group by { var Row },
]

FROM
desc table {{

position var Row tr {{
position var Col td {{ var Value }}

}}
}}

END

CONSTRUCT
table [

all tr [
all td [ var Value ],

] group by { var Row },
tr [

all td [
sum ( all var Value )

] group by { var Col },
]

]
FROM

desc table {{
position var Row tr {{

position var Col td {{ var Value }}
}}

}}
END

5.1.4 List of Students

Consider the XML document representing the student database of Section 2.4.1. The following query term
retrieves student information (i.e. name, optionally student id, and all exercises, if available) from this
document. Note the use ofoptional to indicate optional selections.

students {{
student {{
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name { var Name },
optional matrnr { var MatrNr },
optional exercise {{

number { var Excercise },
optional score { var Score }

}}
}}

}}

Assume that a teacher wants to create a Web site listing this information in an HTML table. He would
probably use a construct term like the following:

table [
all tr [

td [ var Name ],
td [ optional var MatrNr with default "unknown" ],
td [

optional ul [
all li [

"Exercise " , var Excercise ,
", Score " , optional var Score with default "not yet available"

]
]

]
]

]

The result is constructed as follows: for each binding ofName, a table row is created containing the name
in the first column. If there exists a binding for the variableMatrNr as well, the second column contains
this binding; otherwise, it contains the value"unknown" . The third column creates an unordered HTML
list, if at least one binding forExercise exists (i.e. there exists an instance for theul [ ... ] subterm).
For each submitted exercise (binding of the variableExcercise ), this list contains an entry. If a binding
for Score is also available, it is included in the result; if not, the string "not yet available" is issued.

A sample result for the XML document of Section 2.4.1 thus looks as follows:

table [
tr [

td [ "Donald Duck" ],
td [ "123456789" ],
td [

ul [
li [ "Excercise " , "1" , ", Score " , "15" ],
li [ "Excercise " , "2" , ", Score " , "3" ],
li [ "Excercise " , "3" , ", Score " , "not yet available" ]

]
]

],
tr [

td [ "Mickey Mouse" ],
td [ "987654321" ],
td [

ul [
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li [ "Excercise " , "1" , ", Score " , "3" ],
li [ "Excercise " , "3" , ", Score " , "14" ]

]
]

],
tr [

td [ "Goofy" ],
td [ "unknown" ],
td [

ul [
li [ "Excercise " , "2" , ", Score " , "13" ],
li [ "Excercise " , "3" , ", Score " , "not yet available" ]

]
]

]
]

5.1.5 Separation of Concerns

Xcerpt rule chaining provides programmers with a means to structure complex query programs. A common
way to structure a program is “separation of concerns”, e.g.separating program logic or querying from
presentation. Consider for example a complex query programthat queries two online bookstores (cf.
Section 2.4.2) and provides a summary over the prices for books in both book stores (XML Query Use
Cases, XMP-Q5, [34]). An Xcerpt rule creating an HTML representation could look as follows (cf. also
Section 4.7.1):

CONSTRUCT
html [

head [ title [ "Price Overview" ] ],
body [

table [
tr [ td [ "Title" ], td [ "Price at A" ], td [ "Price at B" ] ],
all tr [ td [ var T ], td [ var Pa ], td [ var Pb ] ]

]
]

]
FROM

and {
in {

resource [ "file:bib.xml" ],
bib [[

book [[
title [ var T ],
price [ var Pa ]

]]
]]

},
in {

resource [ "file:reviews.xml" ],
reviews [[

entry [[
title [ var T ],
price [ var Pb ]
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]]
]]

}
}

END

The query part of this rule consists of two query terms evaluated against the two data terms representing
the bookstore databases. Note that both contain the variable T for binding the book title (thus both query
terms need to match with books of the same title), whereas they differ in the variables used for binding the
price.

Now assume that besides the HTML representation, it is also desirable to provide a representation
suitable for mobile devices, e.g. in the format WML (wireless markup language2). This would require
an additional Xcerpt rule with the same query part but different construct term. Assuming that the query
part is complex, this approach is error prone and results in programs that are difficult to maintain as it
contains many redundancies, and it is also more difficult to grasp the meaning of query programs. Using
rule chaining, it is, however, possible to reuse the “complex” query part by separating it from the presen-
tation and creating an intermediate representation for thedata (in the example below: for each book, a
book-with-prices term containingtitle , price-a andprice-b subterms for the title, the price in the
first bookstore and the price in the second bookstore). This “simpler” representation can then be queried
by the two rules that create HTML and WML representations:

GOAL
out {

resource [ "file:prices.html" , "html" ],
html [

head [ title [ "Price Overview" ] ],
body [

table [
tr [ td [ "Title" ], td [ "Price at A" ], td [ "Price at B" ] ],
all tr [ td [ var Title ], td [ var PriceA ], td [ var PriceB ] ]

]
]

]
}

FROM
books-with-prices [[

book-with-prices [[
title [[ var Title ]],
price-a [[ var PriceA ]],
price-b [[ var PriceB ]]

]]
]]

END

GOAL
out {

resource [ "file:prices.wml" , "xml" ],
wml [

all card [
"Title: " , var Title ,
"Price A: " , var PriceA ,
"Price B: " , var PriceB

2http://www.wapforum.org/DTD/wml_1.1.xml
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]
]

}
FROM

books-with-prices [[
book-with-prices [[

title [[ var Title ]],
price-a [[ var PriceA ]],
price-b [[ var PriceB ]]

]]
]]

END

CONSTRUCT
books-with-prices [

all book-with-prices [
title [ var T ],
price-a [ var Pa ],
price-b [ var Pb ]

]
]

FROM
and {

in {
resource [ "file:bib.xml" ],
bib [[

book [[
title [ var T ],
price [ var Pa ]

]]
]]

},
in {

resource [ "file:reviews.xml" ],
reviews [[

entry [[
title [ var T ],
price [ var Pb ]

]]
]]

}
}

END

5.2 Querying the Web

Queries in the examples above considered mostly static content stored at one place and didn’t take into
account the dynamic and distributed nature of data on the Web. This Section illustrates on two scenarios
how Xcerpt can be used to write queries to such Web data. The first scenario implements a Web service
that generates a dynamic personal portal page, integratingnews and weather information from the Web.
The second scenario describes a (simple) Web crawler that can be used to traverse Web pages by following
hyperlinks. For both approaches, backward chaining is preferable over forward chaining: in the first case,
the queried data changes very frequently, which would require to update the portal even if noone is currently
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viewing it; in the second case, the queried data is in the worst case the complete Web, which is obviously
too large for a forward chaining evaluation.

5.2.1 Personal Portal Page: News and Weather3

The task of this scenario is to create a simplepersonal portal pageWeb service that integrates information
from various Web sources, like news or weather. To this aim, this Section first describes rules for retrieving
news and weather information from dynamically updated Web pages and then combines this information in
an integrated portal page. The news and weather services areused as exemplary scenarios; other services
are conceivable that can be queried and integrated in the same manner.

A salient aspect of this use case is that the queries are evaluated against other Web services; the queried
data is highly dynamic, which requires to dynamically evaluate the queries when a user visits the personal
portal page in a browser. Furthermore, the use of several rules for querying the various resources illustrates
separation of concernsand provides a modular program design.

Querying Headlines of a News Ticker

Many media companies (like newspapers, magazines or television broadcasters) provide a so-callednews
ticker (or news feed) on their Web pages, which is constantly updated with the latest news and contains
highly dynamic data. A common format used for representing news tickers is an XML application called
RDF site summary(sometimes also calledrich site summary) or RSS.4 A typical RSS document could look
as follows (the following excerpt is a news feed from the Swedish dailyDagens Nyheter):

<rss version="0.91">
<channel>

<title>Dagens Nyheter</title>
<link>http://www.dn.se/</link>
<description>

De viktigaste nyheterna fr ån Sveriges st örsta morgontidning.
</description>
<language>sv-se</language>
<image>

<title>Dagens Nyheter</title>
<url> http://www.dn.se/content/2/c4/13/99/logoDagens Nyheter.gif</url>
<link>http://www.dn.se/</link>
<width>144</width>
<height>18</height>

</image>
<item>

<title>D ödligt gift i amerikanska senaten.</title>
<link>http://www.dn.se/DNet/jsp/polopoly.jsp?d=145& amp;a=229799</link>
<description>

Det d ödliga giftet ricin har p åtr äffats i ett postrum i den amerikanske
senaten i Washington. Ingen person har skadats.

</description>
</item>
<item>

<title>Ingen f ågelinfluensa i Tyskland</title>
<link>http://www.dn.se/DNet/jsp/polopoly.jsp?d=145& amp;a=229844</link>
<description>

Tester fr ån Hamburg visar att de tv å kvinnor som misst änktes vara
smittade av f ågelinfluensan, som h ärjar i Asien, inte bar p å smittan.

</description>
</item>
<item>

<title>S å påverkas du av partiernas familjepolitik</title>
<link>http://www.dn.se/DNet/jsp/polopoly.jsp?d=145& amp;a=229781</link>
<description>

Med sin nya familjepolitik n ärmar sig kristdemokraterna folkpartiet
och centern. L äs DN:s genomg ång av de olika partiernas familjepolitiska
f örslag.

</description>
</item>

</channel>
</rss>

3This use-case is available athttp://demo.xcerpt.org/cgi-bin/portal.xcerpt
4http://purl.org/rss/1.0/
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Querying this RSS document with Xcerpt is straightforward.The following Xcerpt rule provides an
HTML view summarising the information contained in it. Notethat the result of this rule is adiv element
that may be used in other rules to build a more complex page; itis not a complete HTML document itself.

CONSTRUCT
div [

attributes { id { "news" } },
h1 [ "Channel:" , var Channel ],
all div [

div [ attributes { class { "headline" } }, var Title ],
div [ attributes { class { "abstract" } }, var Description ],
div [ a [ attributes { href { var Link } }, "More ..." ] ]

]
]

FROM
in {

resource [ "http://www.dn.se/DNet/jsp/polypoly.jsp?d=1399" ],
rss [[

channel [[
title [[ var Channel ]],
item [[

title [[ var Title ]],
link [[ var Link ]],
description [[ var Description ]]

]]
]]

]]
}

END

With additional styling information (e.g. given in CSS), a result of this rule might look as in Figure
5.1 (snapshot taken on 09/06/2004). Since the data is highlydynamic, backward chaining is preferable for
evaluation, i.e. the data is queried when the result is requested.

Querying Weather Information

Similarly, many weather services provide their information online in form of XML “feeds” that can be
queried by Xcerpt. The following is a snapshot taken fromhttp://www.weatherroom.com , which pro-
vides a wealth of information for display on the personal portal:

<WeatherFeed xmlns="http://www.weatherroom.com">
<Current>

<Location> Munich / Riem, Germany </Location>
<RecordedAt> Munich / Riem, Germany </RecordedAt>
<Updated> 950 AM GMT+1 WED JUN 9 2004 </Updated>
<Conditions> Fair </Conditions>

<Image>http://www.weatherroom.com/images/fcicons/fa ir.gif</Image>
<Visibility>Mi</Visibility>
<Temp>25◦C</Temp>
<Humidity>51%</Humidity>
<Wind>W 10 MPH</Wind>
<Barometer>30.21 in.</Barometer>

<Dewpoint>14 ◦C</Dewpoint>
<HeatIndex>26 ◦C</HeatIndex>
<WindChill>25 ◦C</WindChill>
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Figure 5.1: Exemplary result of transforming an RSS feed to HTML with Xcerpt

<Sunrise>4:13 AM GMT+1</Sunrise>
<Sunset>8:11 PM GMT+1</Sunset>
<MoonPhase>Last Quarter Moon</MoonPhase>

</Current>

<Forecast>
<Date>+1 WED JUN 09 2004</Date>
<Time>0500 AM GMT+1 WED</Time>
<Afternoon> <Conditions>Partly Cloudy</Conditions> </A fternoon>
<Evening> <Conditions>Partly Cloudy</Conditions> </Eve ning>
<Overnight> <Conditions>Fair</Conditions> </Overnight >
<Morning> <Conditions>Fair</Conditions> </Morning>

</Forecast>

<Copyright>This feed is copyright 2004 weatherroom.com.< /Copyright>
</WeatherFeed>

Similar in style to the “news ticker” rule, the following Xcerpt rule creates an HTMLdiv element
containing the current conditions (e.g. “Fair” or “Partly Cloudy”), the current temperature, and the current
wind conditions from the “weather feed”. Obviously, other information could be retrieved as well (like the
weather forecast).

CONSTRUCT
div [

attributes { id { "weather" } },
h1 { "Weather for " , var Loc },
div [

table [
tr [ td [ "Conditions" ], td [ var Conditions ] ],
tr [ td [ "Temperature" ], td [ var Temp ] ],
all tr [ td [ "Wind" ], td [ var Wind ] ]

]
],
div [

img { attributes { src { var Image } }
]
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]
FROM

in {
resource [ "http://www.weatherroom.com/xml/ext/EDDM" , "xml" ],
WeatherFeed {{

Current {{
Location { var Loc },
Temp { var Temp },
Conditions { var Conditions },
Image { var Image },
Wind { var Wind }

}}
}}

}
END

Creating a Combined Representation: The Personal Portal Page

Using rule chaining, the information from the news and weather query can be integrated easily into a
common HTML page by using a single goal. The query of the goal contains two query terms used for
querying the results of the two rules described above into the variablesNews andWeather . The construct
term (head) of the goal provides the appropriate HTML framework. The element labelledstyle contains
additional styling information e.g. expressed usingCascading Style Sheets(CSS, [115]), which is not given
in the example.

GOAL
html [

head [
title [ "Personal Portal" ]
style [ ... ]

],
body [

h1 [ "Personal Portal" ],
var News,
var Weather

]
]

FROM
and {

var News → div {{ attributes {{ id { "news" } }} }},
var Weather → div {{ attributes {{ id { "weather" } }} }}

}
END

Combined with the two other rules, this goal can be used to implement a dynamic Web service that is
evaluated every time a user points his browser to the portal page and requests “fresh” data from the dynamic
resources. Figure 5.2 shows a sample evaluation of this program (on 09/06/2004).

5.2.2 Web Crawler

A Web crawler (sometimes also called “spider” in analogy to “Web”) is a program that visits Web pages
and recursively follows hyperlinks to other Web pages. Web crawlers are e.g. used by search engines to
index existing Web pages. Other applications include searching for a certain piece of information in a
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Figure 5.2: A sample evaluation of the “portal” program.

larger collection of Web pages, e.g. a complete Web site or even several Web sites. A rule-based language
with recursion, like Xcerpt, is a natural choice for implementing a Web crawler. In the following, several
examples based on a basic Web crawler are illustrated. For obvious reasons, only a backward chaining
approach is feasible for evaluating such a crawler.

Note that the crawler, as it is implemented here, does not function on the current prototype (cf. Ap-
pendix A), as the latter does not support variables in resource specifications (for technical reasons) and
provides no means to memoise sites that have already been visited (which, in case of cyclic hyperlinks,
anticipates termination).

A Basic Web Crawler

The following Xcerpt program consisting of two rules illustrates the scheme for the traversal of hyper-
links on a very basic crawler, which only retrieves the URIs contained as hyperlinks in the pages it visits,
grouped inside acrawler subterm. The first rule simply queries all hyperlinks (a subterms) on the page
http://www.xcerpt.org , and serves as the base case for the evaluation. The second rule implements the
recursive case: it first recursively calls the crawler for the URIs of all hyperlinks in visited pages and then
queries these URIs again for hyperlinks, grouping them (andthe URIs retrieved from the recursive call)
inside thecrawler subterm. Note that this crawler is notgrouping stratifiable(cf. Section 6.4.1) and thus
currently not covered by the formal semantics given in Chapter 7.

CONSTRUCT
crawler {

all link { var Link }
}

FROM
in {

resource [ "http://www.xcerpt.org" ],
desc a {{

attributes {{ href { var Link } }}
}}

}
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END

CONSTRUCT
crawler {

all link { var Link }
all link { var RecLink }

}
FROM

and [
crawler {{

link { var RecLink }
}},
in {

resource [ var RecLink ],
desc a {{

attributes {{ href { var Link } }}
}}

}
]

END

This crawler is very basic in several aspects, as it does not retrieve the content of visited Web pages and
thus does not allow to search for anything beyond the URIs of visited pages. Also, it provides no means to
check for cyclic structures of hyperlinks and thus might notterminate in such cases.

A Content Aware Crawler

The basic crawler can be extended to a more sophisticated crawler that also retrieves the content of Web
pages (starting athttp://www.xcerpt.org ) in a straightforward manner as follows. Note that instead of
the links contained in a page, the crawler now simply retrieves the complete content of pages, which is
searched fora subterms in the recursive call (in the second rule). The result is a list of Web pages each
wrapped inside apage subterm.

CONSTRUCT
crawler {

page {
from { "http://www.xcerpt.org" },
content { var Content }

}
}

FROM
in {

resource [ "http://www.xcerpt.org" ],
var Content → html {{ }}

}
END

CONSTRUCT
crawler {

all var RecPage,
all page {

from { var Link },
content { var Content }
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}
}

FROM
and {

crawler {{
var RecPage → page {{

content {{
desc a {{ attributes {{ href { var Link } }} }}

}}
}}

}},
in {

resource [ var Link ],
var Content → html {{ }}

}
}

END

Searching a Web of Pages

The content-aware crawler may be used to implement various retrieval tasks. For example, the following
goal retrieves the URIs of all Web pages that contain anh1 element containing the word “XML” and that are
reachable from the sitehttp://www.xcerpt.org by chaining with the rules of the content-aware crawler:

GOAL
results {

all var URI
}

FROM
crawler {{

page {{
from { var URI },
content {{

desc h1 {{ /.*XML.*/ }}
}}

}}
}}

END

Representing a Web of Pages as Nested Xcerpt Terms

The content-aware crawler simply creates a list of Web pagesand ignores the “hyperlink graph” that con-
nects these pages. It might, however, be desirable to represent this graph as a nested Xcerpt term, e.g.
to easily search over the hyperlink structure. The following additional rules convert the result of the
content-aware crawler into such a nested tree structure (a graph structure would be conceivable, but is
more complicated). The first rule retrieves all “leaves” (i.e. such subterms that do not contain a hyperlink).
The second rule recursively retrieves (nested) pages (beginning with the “leaves”) and queries the content-
aware crawler for all pages that refer to these pages. A nested structure is constructed in the head of this
rule.

CONSTRUCT
pages {
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var Page
}

FROM
crawler {{

var Page → page {{
content {{

without desc a {{ }}
}}

}}
}}

END

CONSTRUCT
pages {

page {
from { var From },
content { var Content },
pages {

all var Page
}

}
}

FROM
and {

pages {{
var Page → page {{

from { var Link }
}}

}},
crawler {{

page {{
from {{ var From }}
content {{

var Content → desc a {{ attributes {{ href { var Link } }} }}
}}

}}
}}

}
END

Using the nested structure constructed by these rules, it ispossible to express queries to the hyperlink
structure of the crawled Web pages. For example, the following goal retrieves pages that are reachable by
pages containing the word “XML”:

GOAL
result {

all var URI
}

FROM
pages {

desc page {{
content {{ desc /.*XML.*/ }},
pages {{
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desc page {{
from { var URI }

}}
}}

}
}

END

5.3 Semantic Web Reasoning

The Semantic Web aims at enriching Web data with meta-data (and even meta-meta-data), allowing re-
trieval of data while respecting available “semantic” information. A query language for such data needs
to be able to query both standard (XML) data and meta-data, and furthermore needs to provide reasoning
capabilities that go beyond simple retrieval (cf. “Reasoning Capabilities”, Section 1.3.8). In the current
state of the Semantic Web, meta-data is usually expressed insome kind of ontology language (e.g. OWL,
[118]), which essentially allows to describe a hierarchy ornetwork of concepts and properties of these
concepts. The two most common reasoning tasks are to determine subconcepts/superconcepts (e.g. to infer
that “fiction book” is a subconcept of “book”), and to test whether a given object (i.e. Web resource) is
an instance of a particular concept (e.g. to infer that a certain book about the “Viking Age” is a “history
book”).

This section illustrates the use of Xcerpt for querying XML data together with Semantic Web data.
To this aim, a small example called theClique of Friends(Section 5.3.1) is first used to illustrate some
basic reasoning (mainly thetransitive closureof a relation) for the Semantic Web. This example does not
use any particular Semantic Web language itself. Building on these concepts, a more complex scenario
is introduced (Section 5.3.2), which illustrates queryinga collection of books in the presence of a simple
book ontology defined in the language OWL [118].

5.3.1 Clique of Friends

Consider a collection of address books where each address book has an owner and a set of entries, some
of which are marked as “friend” to indicate that the person associated with this entry is considered a friend
by the owner of the address book. In XML, this collection of address books can be represented in a
straightforward manner as follows:

<address-books>
<address-book>

<owner>Donald Duck</owner>
<entry>

<name>Daisy Duck</name>
<friend/>

</entry>
<entry>

<name>Scrooge McDuck</name>
</entry>

</address-book>

<address-book>
<owner>Daisy Duck</owner>
<entry>

<name>Gladstone Duck</name>
<friend/>

</entry>
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<entry>
<name>Ratchet Gearloose</name>
<friend/>

</entry>
</address-book>

</address-books>

In this example, the collection contains two address books,the first owned by “Donald Duck” and
the second by “Daisy Duck”. Donald’s address book has two entries, one for “Scrooge”, the other for
“Daisy”, and only “Daisy” is marked as “friend”. Daisy’s address book again has two entries, both marked
as “friend”.

The clique-of-friendsof Donald is the set of all persons that are either direct friends of Donald (i.e.
in the example above only “Daisy”) or friends of a friend (i.e. “Gladstone” and “Ratchet”), or friends of
friends of friends (none in the example above), and so on. As afirst step towards this clique of friends, the
following Xcerpt rule defines the relationfriend-of as a view over the address book collection.5

CONSTRUCT
friend-of [ var X, var Y ]

FROM
in {

resource [ "file:address-books.xml" ],
address-books {{

address-book {{
owner { var X },
entry {{

name { var Y },
friend {}

}}
}}

}}
}

END

Note that it would be easy to define the relationfriend-of as reflexive by simply using curly braces
instead of square brackets in the construct term.

Defining the transitive closure of the relation requires a recursive rule, but is pretty straightforward
otherwise: a personY is a friend-of-friend of some personX, if Y is either afriend-of X or there
exists a personZ that is afriend-of X , such thatY is a friend-of-friend of Z:

CONSTRUCT
friend-of-friend [ var X, var Y ]

FROM
or {

friend-of [ var X, var Y ],
and {

friend-of [ var X, var Z ],
friend-of-friend [ var Z, var Y ]

}
}

END

5Note that, in contrast to other logic programming approaches, interpreting the term labelledfriend-of as a relation is only
valid with respect to the application at hand; in general,friend-of is just a term.
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Finally, theclique-of-friends is simply the collection of allfriend-of-friend relationships. It is
constructed in a goal as follows:

GOAL
clique-of-friends {

all var FOF
}

FROM
var FOF → friend-of-friend {{ }}

END

Although this example does not make use of Semantic Web data,the relationship to reasoning is ob-
vious. The book ontology below uses very similar rules for defining a relationsubclass-of that may be
used to collect sub- or superconcepts.

5.3.2 Ontology Reasoning: The Book Ontology

Consider a book store (like the two book stores of Section 2.4.2) that provides an online catalogue contain-
ing the books it offers. Searching a book usually requires searching the book titles and maybe abstracts
of the content. If a customer wants to search by topic rather than by title (e.g. “history books”), this kind
of search usually misses many of the relevant entries and yields a large number of false positives. For
example, the book entitled “Folket i Birka” (Swedish: “The People of Birka”, a historical novel for chil-
dren illustrating the life of people in a Viking Age town) is only found when searching for “Birka”, which
already requires much knowledge over the domain of interest. A “semantic” query would be able to in-
clude the book “Folket i Birka” when searching for books about the “Viking Age” or “History Books for
Children” without requiring to include more specific searchparameters.

The Book Ontology

Using the Semantic Web, such semantic queries become feasible. The online book store might provide
an ontology describing the relations between different categories of books, and the properties of these
categories. The following example uses the Web Ontology LanguageOWL [118] for describing a simple
part of this book ontology:

<rdf:RDF xmlns:owl = "http://www.w3.org/2002/07/owl#"
xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax- ns#"
xmlns:rdfs = "http://www.w3.org/2000/01/rdf-schema#" >

<owl:Class rdf:ID="Book"/>

<owl:Class rdf:ID="Novel">
<rdfs:label>Novel</rdfs:label>
<rdfs:subClassOf rdf:resource="#Book"/>

</owl:Class>

<owl:Class rdf:ID="History">
<rdfs:label>History Book</rdfs:label>
<rdfs:subClassOf rdf:resource="#Book"/>

</owl:Class>

<owl:Class rdf:ID="Classic_History">
<rdfs:label>Book about Classic History</rdfs:label>
<rdfs:subClassOf rdf:resource="#History"/>
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Novel
Historical Classic

Novel

Book

History

Mediaeval Modern

Figure 5.3: Part of a book ontology for an online book store. Solid lines indicate subconcepts, dotted lines
intersection of concepts.

</owl:Class>

<owl:Class rdf:ID="Mediaeval_History">
<rdfs:label>Book about Mediaeval History</rdfs:label>
<rdfs:subClassOf rdf:resource="#History"/>

</owl:Class>

<owl:Class rdf:ID="Modern_History">
<rdfs:label>Book about Modern History</rdfs:label>
<rdfs:subClassOf rdf:resource="#History"/>

</owl:Class>

<owl:Class rdf:ID="Historical_Novel">
<rdfs:label>Historical Novel</rdfs:label>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Novel"/>
<owl:Class rdf:about="#History"/>

</owl:intersectionOf>
</owl:Class>

</rdf:RDF>

This ontology describes the following hierarchy of concepts (cf. Figure 5.3):

• aNoveland aHistory Bookis aBook

• books aboutClassic History, Mediaeval History, andModern HistoryareHistory books.

• Historical Novelis the intersection ofHistory BookandNovel(both referenced byrdf:about ). Note
that intersection is stronger than simply being the subconcepts of two concepts.

Note that OWL ontologies may be serialised in XML in many different manners, e.g. using nestedowl:Class
definitions.

Subclass Checking with Xcerpt

Using the rules for transitive closure of theClique of Friends, checking subclasses in this hierarchy of con-
cepts is straightforward. The following Xcerpt program defines a relationsubclass-of that relates con-
cepts with all parent concepts based on the serialisation ofthe book ontology above. The first rule defines
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a relationimmediate-subclass-of , which provides a simplified view on the ontology data and relates a
concept (variableX) with its immediate parent concepts (variableY). The second rule definessubclass-of
as the transitive closure overimmediate-subclass-of (note the similarity with thefriend-of-friend
rule in the previous section). Note also the use of XML namespaces in this program.

ns-prefix owl = "http://www.w3.org/2002/07/owl#"
ns-prefix rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
ns-prefix rdfs = "http://www.w3.org/2000/01/rdf-schema#"

CONSTRUCT
immediate-subclass-of [ var X, var Y ]

FROM
in {

resource [ "file:books.owl" ],
rdf:RDF {{

var X → owl:Class {{
rdfs:subClassOf {{

attributes {{ rdf:resource { /#( var YRef →.*)/ } }}
}}

}},
var Y → owl:Class {{

attributes {{ rdf:ID { var YRef } }}
}}

}}
}

END

CONSTRUCT
subclass-of [ var X, var Y ]

FROM
or {

immediate-subclass-of [ var X, var Y ],
and {

immediate-subclass-of [ var X, var Z ],
subclass-of [ var Z, var Y ]

}
}

END

Checking for all parent concepts or child concepts of a specific concept is now easy. For example, the
following goal retrieves all child concepts of the concept with rdfs:label “History Book” by chaining
with the rules above:

ns-prefix owl = "http://www.w3.org/2002/07/owl#"
ns-prefix rdfs = "http://www.w3.org/2000/01/rdf-schema#"

GOAL
subconcepts {

all var Concept
}

FROM
subclass-of [

var Concept ,
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owl:Class {{
rdfs:label { "History Book" }

}}
]

END

Annotating Books with Meta-Data

To add “semantic” meta-data to the XML document used for representing the book store database, it is
necessary to annotate the data as follows. Each book is givena uniquerdf:ID , and relationships between
books (identified by the value ofrdf:ID and concepts in the ontology are established (usingrdf:type ).
Changes to the original document are indicated by red colour:

<bib xmlns:owl = "http://www.w3.org/2002/07/owl#"
xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax- ns#" >

<book year="1995" rdf:ID="vikinga_blot" >
<title> Vikinga Blot </title>
<authors>

<author>
<last> Ingelman-Sundberg </last>
<first> Catharina </first>

</author>
</authors>
<publisher> Richters </publisher>
<price> 5.95 </price>

</book>
<book year="1998" rdf:ID="boken_om_vikingarna" >

<title> Boken Om Vikingarna </title>
<authors>

<author>
<last> Ingelman-Sundberg </last>
<first> Catharina </first>

</author>
</authors>
<publisher> Prisma </publisher>
<price> 22.95 </price>

</book>
<book year="1999" rdf:ID="folket_i_birka" >

<title> Folket i Birka på Vikingarnas Tid </title>
<authors>

<author>
<last> Wahl </last>
<first> Mats </first>

</author>
<author>

<last> Nordqvist </last>
<first> Sven </first>

</author>
<author>

<last> Ambrosiani </last>
<first> Björn </first>

</author>
</authors>
<publisher> BonnierCarlsen </publisher>
<price> 39.95 </price>

</book>
<book year="1997" rdf:ID="vikingar_i_österled" >

<title> Vikingar i Österled </title>
<editor>

<last> Larsson </last>
<first> Mats </first>
<affiliation> Lunds universitet </affiliation>

</editor>
<publisher> Atlantis </publisher>
<price> 49.95 </price>

</book>

<owl:Thing rdf:about="#vikinga_blot">
<rdf:type rdf:resource="#Mediaeval_History"/>
<rdf:type rdf:resource="#Novel"/>

</owl:Thing>

<owl:Thing rdf:about="#boken_om_vikingarna">
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<rdf:type rdf:resource="#Mediaeval_History"/>
</owl:Thing>

<owl:Thing rdf:about="#folket_i_birka">
<rdf:type rdf:resource="#Mediaeval_History"/>
<rdf:type rdf:resource="#Novel"/>

</owl:Thing>

<owl:Thing rdf:about="#vikingar_i_österled">
<rdf:type rdf:resource="#Mediaeval_History"/>

</owl:Thing>

</bib>

Although the constructowl:Thing looks strange, it is required by the OWL specification when de-
scribing resources defined elsewhere. Note that a book is only associated with the most specific concepts
it belongs to: the book “Folket i Birka” has therdf:ID folket i birka and belongs to the concepts
Mediaeval History andNovel , but not explicitly to the conceptsHistory or Book .

Ontology Reasoning: Querying by Topic

Using the book ontology, the Xcerpt rules for checking subconcepts, and the extended book document, it
is now possible to perform “semantic” queries as described in the introduction. Consider a customer that is
interested in “History Books”, i.e. all books belonging to either the concept itself, or to any subconcept. In
Xcerpt, a query for such books can be expressed by the following rule (namespace prefixes are omitted for
brevity but are defined as above):

CONSTRUCT
history_books {

all var Book
}

FROM
and {

in {
resource [ "file:bib.xml" ],
bib {{

var Book → book {{
attributes {{ rdf:ID { var ID } }}

}},
owl:Thing {{

attributes {{ rdf:about { /#( var ID →.*)/ } }},
rdf:type {{

attributes {{ rdf:resource { /#( var Class →.*)/ } }},
}}

}}
}

},
subclass-of [

owl:Class {{
attributes {{ rdf:ID { var Class } }}

}},
owl:Class {{

rdfs:label { "History Book" }
}}

]
}

END
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This rule queries the extendedbib.xml document for all books, and retrieves the respective classes
they belong to (by querying theowl:Thing subterms describing therdf:ID of the books). By querying
the results of the rule defining the relationsubclass-of , it is then verified whether the book is indeed a
“History Book”.

The rule above can be generalised for arbitrary instance tests in a straightforward manner. The following
Xcerpt rule defines a relationbelongs-to that explicitly associates a book with all concepts (“classes”) it
belongs to. Note that both variablesClass andSuperClass are grouped inside theclasses subterm, as
some books might yield more than one binding for the variableClass .

CONSTRUCT
belongs-to [

var Book
classes {

all var Class ,
all var SuperClass

}
]

FROM
and {

in {
resource [ "file:bib.xml" ],
bib {{

var Book → book {{
attributes {{ rdf:ID { var ID } }}

}},
owl:Thing {{

attributes {{ rdf:about { /#( var ID →.*)/ } }},
rdf:type {{

attributes {{ rdf:resource { /#( var Class →.*)/ } }},
}}

}}
}

},
subclass-of [

owl:Class {{
attributes {{ rdf:ID { var Class } }}

}},
var SuperClass

]
}

END

Note that this rule is not capable of inferring that a concrete book that is a “Novel” about “Medieaeval
History” is also a “Historical Novel”, as it lacks support for OWL’s intersection construct.

Ontology Reasoning: Intersection

Recall that the ontology used in this Section also contains the concept “Historical Novel”, which is defined
as the intersection of “History Book” and “Novel”. Whereas querying for “History Book” is rather straight-
forward, querying for “Historical Novel” requires more complex rules taking into account the intersection
of concepts.

The following Xcerpt rule builds upon the genericbelongs-to relation to also include concepts that
contain intersections. For each book, it creates abelongs-to-extended term containing the book and all
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concepts (contained in the subterm labelledclasses ), including those defined by the intersection of other
concepts:

CONSTRUCT
belongs-to-extended {

var Book,
classes { all var Class , var ISClass }

}
FROM

and {
belongs-to [ var Book, classes {{ var Class }} ],
in {

resource [ "file:books.owl" ],
rdf:RDF {{

var ISClass → owl:Class {{
owl:intersectionOf {{ }}

}}
}}

},
not {

and {
in {

resource [ "file:books.owl" ],
rdf:RDF {{

var ISClass → owl:Class {{
owl:intersectionOf {{

owl:Class {{
attributes {{ rdf:about { var CRef } }}

}}
}}

}},
var SomeClass → owl:Class {{

attributes {{ rdf:ID { var CRef } }}
}}

}}
},
belongs-to [ var Book, classes {{ without var SomeClass }} ],

}
}

}
END

This rather complex rule is evaluated as follows. The first two query terms of the conjunction in
the query part retrieve books with associated concepts (variablesBook andClass ), and possible candidate
concepts defined by intersection (variableISClass ). The last part of this conjunction is a negated subquery
that checks whether all of the concepts used in the definitionof ISClass (bound to the variableSomeClass
by dereferencing using the variableCRef) are associated with the book bound toBook , i.e. there does
not exist a concept ofISClass bound toSomeClass that is not contained in the concepts associated with
Book . Note that, due to range restrictedness, it is necessary to query both the ontology and thebelongs-to
relation twice; otherwise, the variablesBook andISClass would not yield bindings.
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CHAPTER

SIX

Range Restrictedness, Standardisation Apart, and Stratification

This Chapter discusses syntactic restrictions to which Xcerpt programs in this thesis are considered to
conform. These restrictions either simplify the formal semantics in Chapter 7, or avoid programming
mistakes, or both. All of them are purely syntactical properties that they can be verified statically when
programs are parsed.

Range Restrictedness1 (Section 6.2) is a restriction on the kinds of admissible rules and goals. Rules/-
Goals that are range restricted do not contain variables in the construct part that are not “justified” (i.e.
bound by a non-negated query term) in the query part. Range restricted programs can be evaluated in both
a backward chaining and a forward chaining fashion, whereasprograms that are not range restricted often
are difficult to treat in forward chaining algorithms, because results of a rule are not necessarily ground.

Stratification(Section 6.4) is a further restriction on programs that contain the grouping constructsall
andsome or the negation constructsnot andwithout . In stratified programs, negation is only allowed
if it does not affect recursive rule evaluations. Stratification avoids many of the problems that come with
non-monotonic negation.

As this thesis does not intend to cover the wide areas of non-monotonic negation and different ap-
proaches to forward chaining, stratification and range restrictedness are suitable assumptions for the for-
malisation of Xcerpt as it is presented here. Other, less rigid, approaches are feasible and not excluded by
Xcerptper se.

6.1 Preliminaries

In subsequent chapters, the following notations are used tosimplify the discussion over the semantics of
Xcerpt programs:

• Programsare sets of rules (and goals), usually denoted byP = {R1, . . . ,Rn}.

• Rulesare denoted byR= tc← Q, wheretc is the construct term of the rule andQ the query part; the
set of rules of a programP is usually denoted byR⊆ P

• Goalsare denoted byG = tc←g Q, wheretc is the construct term of the rule andQ the query part;
the set of goals of a programP is usually denoted byG⊆ P

• Queriesof the formand{Q1,..., Qn} are sometimes denoted byQ1∧·· ·∧Qn or by
∧

1≤i≤nQi ; like-
wise, queries of the formor {Q1,..., Qn} are sometimes denoted byQ1∨·· · ∨Qn or by

∨

1≤i≤nQi

and queries of the formnot Q are sometimes denoted by¬Q.

• Resourcesare considered to be internalised, i.e. it is assumed that any data term referred to by an
input resource specification of the formin {... } is part of the program; this assumption simplifies
the formal treatment below and can be implemented in a straightforward (but inefficient) manner.

1Many publications, e.g. [71] and [98], refer torange restrictedprograms asallowedor safeprograms
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• The setT denotes the set of all terms,Tq ( T the set of all query terms,Tg ( Tq the set of all ground
query terms, andTd ( Tg the set of all data terms.

In most parts of the formalisation, rules and goals are not distinguished unless explicitly mentioned; this
simplification is useful as rules and goals are very similar.Also, parts of the formalisation use a simplified
term representation, where strings and regular expressions are simply treated as compound terms with
empty content and total term specification. E.g. the string"XML" is represented as"XML"{} .

6.2 Range Restrictedness

Intuitively, range restrictedness means that a variable occurring in a rule head also must occur at least once
in the rule body. This requirement simplifies the definition of the formal semantics of Xcerpt, as it allows
to assume that all query terms are unified with data terms instead of construct terms (i.e. variable free
and collection free terms). Without this restriction, it isnecessary to consider undefined or infinite sets
of variable bindings, which would be a difficult obstacle fora forward chaining evaluation. Besides this
formal reason, range restricted programs are also usually more intuitive, as they disallow variables in the
head that are not justified somewhere in the body.

The following sections give a formal, syntactic criterion for range restrictedness, which considers
negated queries and optional subterms as described in Sections 4.3.4, 4.3.1 and 4.5.3, as well as disjunctions
in rule bodies.

6.2.1 Polarity of Subterms

So as to determine whether a rule is range restricted, variable occurrences in query and construct terms are
associated with the polaritiespositive(+) or negative(−), and the attributesoptional (?) ornot optional
(!) for such variables that are contained within an optionalsubtree and thus are not bound in all valid
matchings. Intuitively, anegativevariable occurrence is adefiningoccurrence, whereas apositivevariable
occurrence is aconsumingoccurrence. Since most terms are considered to be not optional, the attribute !
is omitted in most examples.

The polarity of variable occurrences in a term can be determined by recursively attributing all subterms
of a term.

Definition 6.1 (Polarity of Subterms)
1. Lett be a query term with polarityp and optionalityo.

• if t is of the formwithout t ′, thent ′ is of polarity+ (regardless ofp) and optionalityo

• if t is of the formoptional t ′, thent ′ is of polarityp and optionality ?.

• if t is of one of the formsl{{t ′1, . . . ,t
′
n}}, l{t ′1, . . . ,t

′
n}, l [[t ′1, . . . ,t

′
n]] or l [t ′1, . . . ,t

′
n] (n≥ 0), then

t ′1, . . . , t ′n are of polarityp and optionalityo.

• if t is of the formdesc t ′ thent ′ is of polarityp and optionalityo.

• if t is of the formvar X→ t ′ thent ′ is of polarityp and optionalityo.

2. Lett be a construct or data term with polarityp and optionalityo.

• if t is of the formoptional t ′, thent ′ is of polarityp and optionality ?.

• if t is of one of the formsf{t ′1, . . . ,t
′
n} or f [t ′1, . . . ,t

′
n] (n≥ 0), thent ′1, . . . , t ′n are of polarityp

and optionalityo.

• if t is of the formsall t ′ or some t ′, thent ′ is of polarityp and optionalityo.

• if t is of the formop(t ′1, . . . ,t
′
n), with op a function or aggregation identifier, thent ′1, . . . , t ′n are

of polarity p and optionalityo.

The root of a query term is usually of negative polarity (and thus define variable bindings), as query
terms usually occur in rule bodies. The root of a construct ordata term is usually of positive polarity.
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Example 6.1 (Polarities within a Term)
The following figure gives the polarities for a query term (the polarity of the root node is thus-) querying
a student database for such students that have not submittedexerciseE. Some students might not have an
student id (“matrnr”), indicated by the keywordoptional .

-students {{
-student {{
-name { -var N },
-optional -?matrnr { -?var MNr },
-exercises {{
-without +exercise {{ +nr { +var E } }}

}}
}}

}}

Note that both variablesN andMNr occur negatively (and thus define variable bindings), whilevariable
E occurs positively (and thus does not define a variable binding). Furthermore, variableMNr is attributed
as optional.

In a rule, the construct term in the head always has positive polarity and the query part has negative
polarity and both are, by default, not optional. If negationconstructs occur, the polarity changes according
to Definition 6.1. Furthermore, if parts of a query are negated by not , the polarity of these parts is again
positive:

Definition 6.2 (Polarity in Rules)
1. If R= tc←Q is a rule or goal withtc a construct term andQ a query part, then the polarity oftc is

+ and the polarity ofQ is−.

2. LetQ be a query part with polarityp.

• if Q is of the formnot Q′, thenQ′ is of polarity+ (regardless ofp)

• if Q is of the formsand{Q1, . . . ,Qn}, and[Q1, . . . ,Qn], or{Q1, . . . ,Qn} or or[Q1, . . . ,Qn], then
Q1, . . . ,Qn are of polarityp

• if Q is of the formin{R,Q′}, with R a resource specification andQ′ a query, thenQ′ is of
polarity p andR is of polarity+ (regardless ofp)

• if Q is of the formt (a query term), thent is of polarityp.

Note that the polarity of negated subterms and queries isalwayspositive, regardless of the level of
nesting. The rationale behind this is that, since negation in Xcerpt isnegation as failureand not the negation
of classic logic, additional negations do not completely revert previous negations. Variable occurrences
that are in the scope of at least one negation construct are always consuming occurrences, since negation
as failure requires to perform auxiliary computations.

Example 6.2 (Polarities in a Rule)
Consider the following example of a rule, which is intended to create a list of students which have not
submitted exercise 2.

CONSTRUCT
+not_submitted {
+all +student {
+name { +var N },
+matrnr {
+optional +?var MNr

with default +"N.N."
}

}
}

FROM
-students {{
-student {{
-name { -var N },
-optional -?matrnr { -?var MNr },
-exercises {{
-without +exercise {{ +nr { +2 } }}

}}
}}

}}
END
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The variablesN andMNr occur both positively and negatively. The variableMNr is in addition at-
tributed as optional, as it is contained in a subterm that is optional.

6.2.2 Range Restrictedness

Range restrictedness requires that in a rule, for each consuming occurrence of a variable, there exists at
least one defining occurrence. Furthermore, a variable for which all defining occurrences are optional also
needs to be optional on all consuming occurrences. This restriction is straightforward to understand, as it
just requires that “each variable in the head or in a negated query needs to be bound elsewhere”.

This intuitive definition of range restrictedness is complicated by the possibility of disjunctions in the
rule body, in which case a variable occurring positively in the rule head needs to occur negatively ineach
disjunct. Since disjunctions can also be nested, it is useful to define adisjunctive rule normal form:

Definition 6.3 (Disjunctive Rule Normal Form)
1. A rule or goaltc←Q is in disjunctive rule normal form, iff the query partQ is in disjunctive normal

form, wheretc is a construct term, possibly associated with an output resource.

2. A query partQ is in disjunctive normal form, iff it has the formQ1∨·· ·∨Qn (n≥ 0) such that each of
theQi has the formtq

1∧·· ·∧tq
m∧¬tq

m+1 · · ·∧¬tq
m+k (m≥ 0,k≥ 0) with tq

j being query terms, possibly
associated with input resources.

Note that, although rules are disjunctive like in other logic programming languages, the disjunctions
cannot be factored out by splitting a rule in two, as the rule head might contain theall construct which
collects all alternative bindings and is thus obviously influenced by the disjunctions in the rule body.

Proposition 6.4
Every rule can be transformed into disjunctive rule normal form.

Proof Sketch.Transformation is straightforward and follows mostly the known transformation rules for formulas in
first order languages. Resource specifications can be distributed to query terms by simply making explicit their scope
using a recursive traversal over the formula.

ut

Range restrictedness requires that each variable that occurs positively in one of the disjuncts occurs
also negatively in the same disjuncts. Range restrictedness is formalised by the following definition:

Definition 6.5 (Range Restrictedness)
Let R be a rule or goal and letR′ = tc←Q1∨·· · ∨Qn (n≥ 0) be the disjunctive rule normal form ofR. R
is said to berange restricted, iff

1. for each disjunctQi (1≤ i ≤ n) holds that each variable occurring with positive polarityin eithertc

or Qi also occurs at least once with negative polarity inQi .

2. each variable attributed asoptionaland withnegative polarityin at least one of theQi (1≤ i ≤ n), and
without another non-optional, negative occurrence inQi , is also attributed as optional in all positive
occurrences inQi andtc.

A programP is calledrange restricted, if all rulesR∈ P are range restricted.

Example 6.3 (Range Restrictedness)
Consider the following rule, which is a slight modification of Example 6.2 and is intended to retrieve such
students that have not submitted exerciseE. The rule is not range restricted as the variableE occurs only
with positive polarity, and the variableMNr is not attributed as optional in the rule head:
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CONSTRUCT
+not_submitted {
+all +student {
+name { +var N },
+matrnr {

+var MNr
}

}
}

FROM
-students {{
-student {{
-name { -var N },
-optional -?matrnr { -?var MNr },
-exercises {{
-without +exercise {{ +nr { +var E } }}

}}
}}

}}
END

An interesting example of a somewhat strange but nonetheless range restricted program is the following
rule, in which two query terms mutually define one variable while consuming another:

Example 6.4
CONSTRUCT
+f{ +var X, +var Y }

FROM
-and {
-g{ -var X, -without +k{ +var Y } },
-h{ -var Y, -without +l{ +var X } },

}
END

Note that the first query term has a negative (defining) occurrence of the variableX and a positive
(consuming) occurrence of the variableY, while the second term has a negative (defining) occurrence of
the variableY and a positive (consuming) occurrence of the variableX. Although this example looks
strange, it is, by definition, range restricted.

It might be argued that such programs are not range restricted because the defining occurrences of the
variables are in a mutual lock and that the query part of this rule thus cannot be evaluated. However, such
programs do not have the problems that range restrictednessaims to solve: they can be evaluated in a
forward chaining manner, and all variable bindings are finite and justified by a query.

6.3 Standardisation Apart (or Rectification)

In Xcerpt, rules are standardised apart (orrectified). Informally, this means that rules are considered to
be variable disjoint and all variables occurring in a rule are restricted to a single rule instance, i.e. each
recursive application of the rule uses “different” or “fresh” variables. In an implementation, standardisation
apart can easily be achieved by simply renaming the variables for each instance using fresh, otherwise
unused variable names. In the formalisation below, standardisation apart is realised by treating every rule
as universally closed.

Standardisation apart is an important property for rule-based languages, as it ensures a certain amount
of “locality”: otherwise, in each rule it would be necessaryto consider all variable occurrences in the
complete program, which yields programs that are very difficult to maintain. Furthermore, recursion is
only reasonably defined if each instance of a rule in a recursive rule chain uses different variables.

6.4 Stratification for Grouping Constructs and Negation

Stratification is a technique first proposed by Apt, Blair, and Walker [8] to define a class of logic programs
where non-monotonic features like Xcerpt’s grouping constructs or negation can be defined in a declarative
manner. The principal idea of stratification is to disallow programs with a recursion over negated queries
or grouping constructs and thereby precluding undesirableprograms. While this requirement is very strict
(e.g. the Web crawler of Section 5.2.2 is not stratifiable), its advantages are that it is straightforward to
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understand and can be verified by purely syntactical means without considering terms that are not part of
the program. Several refinements over stratification have been proposed, e.g.local stratification[87] that
allow certain kinds of recursion, but these usually requiremore “knowledge” of the program or the queried
resources.

Xcerpt programs in this thesis are considered to be stratifiable2. Furthermore, the notion of stratifica-
tion is not only used for proper treatment of negation, it also extends to rules with grouping constructs,
because a recursion over grouping constructs usually defines undesirable behaviour. In this section, this
new, so-calledgrouping stratificationis introduced first (Section 6.4.1). Subsequently,negation stratifica-
tion is introduced in accordance with the definition given in [8] (Section 6.4.2), and both stratifications are
combined to so-calledfull stratificationof Xcerpt programs (Section 6.4.3).

6.4.1 Grouping Stratification

The grouping constructsall andsome are powerful constructs that are justified by many practicalappli-
cations (cf. Chapter 5). However, using them in recursive rules allows to define programs with no useful
meaning. Consider for example the program

f{all var X}← f{{var X}}
f{a}

The meaning of such programs is often unclear and unintendedby the program author. Besides this issue,
rules with grouping constructs usually require that all rules they depend on are completely evaluated, be-
causeall expresses to collectall possible results, and a too early evaluation of a grouping construct might
yield terms that do not properly reflect the meaning of the grouping constructs. Consider the program

f{all var X}← g{{var X}}
g{var Y}← h{{var Y}}
g{a}
h{b}

Obviously, the evaluation of the first rule depends on the evaluation of the second rule, and because the first
rule expresses to collect all subterms of ag, it is necessary to defer the evaluation of the first rule until the
second rule is evaluated, although the rule body of the first rule would already match withg{a}.

In this thesis, the solution to both issues is to disallow recursion of rules with grouping constructs,
and to require that all rules on which a rule with grouping constructs depends can be evaluated first. This
property can be verified syntactically bystratifyinga program with so-calledgrouping stratification. If a
program is notgrouping stratifiable, it might (but not necessarily does) contain problematic rules.

Informally, the grouping stratification is rather straightforward: for a program, create a dependency
graph between rules, i.e. a multi-graph where vertices represent rules and edges represent the possibility
that one rule calls the other, and mark those edges where a rule with grouping construct in the rule head
depends on any other rule. A program is calledstratifiable, if it is possible to partition the dependency graph
into disjunctive layers (so-calledstrata) such that the rules in each layer only have unmarked dependencies
to other rules in the same layer or lower layers, and marked dependencies to rules in strictly lower layers.
In this way, only such rules may contain grouping constructswhere the results required for satisfying the
query part can be completely fixed beforehand. Note that thisdefinition of stratification differs slightly
from the traditional definition (as given e.g. in [8]) in thatit defines dependencies between rules rather than
between terms. The rationale for this is twofold: first, the space that is partitioned is the set of rules, and
not the set of terms; second, grouping constructs affect therule as a whole and not individual terms.

In the following,P = P1 ] . . . ]Pn denotes thepartitioningof a setP into disjoint subsetsP1, . . . ,Pn.
Furthermore, the following definition uses the notion ofsimulation unificationdefined in Chapter 8 to de-
fine dependencies between rules, because Xcerpt does not differentiate between term labels and predicates
(cf. Section 7.2). Also, simulation unification allows to take into account variables or regular expressions
occurring in term labels. Note that using unification still does not correspond to alocal stratificationas
proposed by [87].

2Rather than calling a programstratifiedas in the original definition, we call itstratifiableas it is not necessary to compute the
stratification during (backward chaining) evaluation.
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Definition 6.6 (Grouping Stratification)
Given a programP consisting of rules/goals{R1, . . . ,Rm} (m≥ 1).

1. A ruleR= tc←Q dependson a ruleR′ = tc′ ← Q′, if there exists a query termtq in Q such thattq

simulation unifies intc′ , i.e. simulation unification oftq in tc yields a non-empty substitution setΣ

2. P is calledgrouping stratifiable, if there exists a partitioning (n≥ 1)

P = P1 ]·· ·] Pn

of P such that for every stratumPi (1≤ i ≤ n) and every ruleR∈ Pi holds:

• if the rule head ofR contains no grouping constructs andR depends on a ruleR′ thenR′ ∈
⋃

j≤i Pj , i.e.R′ is either in the same stratum asRor in a lower stratum thanR

• if the rule head ofRcontains grouping constructs andRdepends on a ruleR′ thenR′ ∈
⋃

j<i Pj ,
i.e.R′ is in a strictly lower stratum thanR

The partitionP= P1 ]·· ·] Pn is called agrouping stratificationof P, and thePi are calledgrouping strata
of P.

Example 6.5
Consider the two programs above.

1. First we have

f{all var X}← f{{var X}}
f{a}

This program is not grouping stratifiable, because the rule depends on itself and obviously cannot be
in a lower stratum than itself.

2. The second example is

f{all var X}← g{{var X}}
g{var Y}← h{{var Y}}
g{a}
h{b}

This program is grouping stratifiable into two strataP2 andP1 as follows:

P2 f{all var X}← g{{var X}}
P1 g{var Y}← h{{var Y}}

g{a}
h{b}

Note that the definition of dependency (item 1 in the definition above) only considers isolated unifica-
tions of a query term with a construct term and does not respect that a recursive chain of rules might be
inconsistent and thus unproblematic. Consider for examplethe program

f{all var X}← and{g{var X},k{var X}}
g{g{var Y}}← f{{var Y}}
g{a}
k{a}

Although the program is not grouping stratifiable (because of the grouping construct in the first rule, the
second rule would be in a lower stratum than the first, but as itdepends on the first rule, it also needs to
be at least in the same or in a higher stratum), it has a valid answer f{a}, because the second rule only
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“produces” terms of the formg{g{. . .}}, whereas the query part of the first rule only successfully queries
g{a}, because the query fork{var X} otherwise fails.

A refined approach (not investigated in this thesis) could extend the definition above such that depen-
dencies are not treated as isolated relations between two rules, but instead as chains of rules, where the
substitution sets returned by the simulation unifications in a chain are verified for consistency (which in
practice results in a partial evaluation of the program). Recursive chains with inconsistent substitution sets
could then be admitted. Note that this refinement is similar to local stratificationas proposed by [87].

Note furthermore that treatment of external resources, although in principle precluded in this and sub-
sequent chapters, is easy: rules or data terms identified by external resources are always considered to be
in a stratum lower than any other rule or data term of the program.

6.4.2 Negation Stratification

Negation as Failure (NaF, cf. [40]), like Xcerpt’snot , is common in rule-based programming languages
(e.g. Prolog and Datalog). In NaF, a negated query succeeds if the query itself fails finitely (i.e. can be
proven to be not provable). NaF is desirable for a Web query language, because it is close to the intuitive
understanding of negation: for instance, it is natural to assume that a train not listed in a train timetable
does not exist, instead of requiring that every non-existent train is explicitly listed in the timetable.

Although NaF has a purely operational meaning, it is desirable to provide a declarative semantics as
well, because the latter is usually easier to understand than the evaluation algorithm. Unfortunately, like
recursion over grouping constructs, negation as failure allows for programs whose meaning is unclear.
Consider for instance the following Xcerpt program:

f{a}← not f{a}

Backward chaining evaluation of this rule does not terminate: for provingf{a}, it is necessary to show (in
an auxiliary computation) thatf{a} does not hold, which again requires to evaluate the rule, andso on.

Declaratively, the meaning of this rule is problematic. When representing rules by implication as in
traditional logic programming, this rule is simply equivalent to f{a}∨¬¬ f{a}, which simplifies tof{a}.
This interpretation does not reflect the operational behaviour (which is the definition for negation as failure)
described in the previous paragraph. Other approaches havebeen considered (like Clarke’s completion or
default negation) that interpret the symbol← differently, but all of these have similar problems.

In this thesis, Xcerpt programs are therefore assumed to be also negation stratifiable, a syntactic re-
striction that excludes such programs that involve problematic use of negation as in the example above.
Negation stratification in Xcerpt programs is defined in the usual manner (as e.g. in [8]). In stratifiable
programs, both recursion and negation are allowed, but a recursion “through negation” is disallowed.

Note that (negation) stratification is one of many approaches suggested for negation in logic program-
ming and deductive databases. In contrast to most other approaches (likewell-founded semanticsor stable
model semantics), stratification has the advantage that it is a property thatis decidable, can be determined
statically, and considers only the examined program, whereas most other approaches also require the data
on which the program operates. This latter requirement is impractical for Web query languages, as it would
require to consider the complete Web when compiling Xcerpt programs.3

As stratification is a rather rigid requirement and also excludes programs that are unproblematic and
desirable, it might also be interesting to investigate different, more sophisticated approaches to negation,
e.g.local stratification[87] or paraconsistent interpretations[26, 28] in future work. However, all of these
approaches first need to be evaluated for their practical applicability.

Similar to grouping stratification, negation stratification divides a program (represented as a set of
rules) intostrata. The main idea is to disallow recursion over negated queries, but allow any other kind of
recursion. A ruleR is said to depend negatively on another ruleR′, if the rule body ofRcontains a negated
query term (i.e. a query term contained in one or morenot constructs) that simulation unifies with the head
of R′. Likewise, a ruleR is said to depend positively on another ruleR′, if the rule body ofR contains a
non-negated query term that simulation unifies with the headof R′. Note that double negation of a query

3In a sense, one could say that after 20 years of research on non-monotonic negation, we have to return to the beginnings dueto
the particularities of the Web.
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term also yields a negative dependency, becausenot implements negation as failure and the query term
thus does not yield variable bindings. If a ruleR positively depends on a ruleR′, thenR′ may be in the
same layer asR or in any lower layer. If a ruleR depends negatively on a ruleR′, thenR′ must be in a
strictly lower layer thanR. Again, this definition differs from the traditional definition of stratification in
that it considers dependencies between rules rather than between terms. The justification for this decision
is similar to the reasons given in the previous section.

Again, the following definition uses thesimulation unificationdescribed in Chapter 8. Recall also, that
P = P1 ] . . . ] Pn denotes thepartitioningof a setP into disjoint setsPi.

Definition 6.7 (Negation Stratification)
Given a programP consisting of rules/goals{R1, . . . ,Rm} (m≥ 1).

1. LetR= tc←Q andR′ = tc′ ←Q′ be rules.

• R depends positivelyon R′, if there exists a query termtq where all variable occurrences have
negative polarity inQ such thattq simulation unifies intc′ , i.e. simulation unification oftq in tc

yields a non-empty substitution setΣ

• R depends negativelyon R′, if there exists a query termtq in Q such that at least one variable
occurs positively intq, andtq simulation unifies intc′ , i.e. simulation unification oftq in tc

yields a non-empty substitution setΣ

2. P is callednegation stratifiable, if there exists a partitioning (n≥ 1)

P = P1 ]·· ·] Pn

of P such that for every stratumPi (1≤ i ≤ n) and every ruleR∈ Pi holds:

• if R depends positively on a ruleR′ thenR′ ∈
⋃

j≤i Pj , i.e.R′ is either in the same stratum asR
or in a lower stratum thanR

• if R depends negatively on a ruleR′ thenR′ ∈
⋃

j<i Pj , i.e.R′ is in a strictly lower stratum than
R

The partitionP = P1 ]·· ·] Pn is called anegation stratificationof P, and thePi are callednegation strata
of P.

Example 6.6 (Negation Stratification)
1. The following program (consisting of a single rule) cannot be stratified, as the rule negatively de-

pends on itself:

f{a}← not f{a}

2. The following program can be stratified into three strata from bottom to top:

P3 p{}← and{not q{},s{}}
P2 q{}← r{}

r{}← s{}
P1 s{}

Sebastian Schaffert 141



6.4. STRATIFICATION FOR GROUPING CONSTRUCTS AND NEGATION

6.4.3 Full Stratification: Combining Grouping Stratificati on and Negation Strati-
fication

Grouping stratification and negation stratification can be combined in a straightforward manner. The group-
ing strata further divide the negation strata (or vice versa) such that the respective properties also hold. As
before, this definition uses the simulation unification described in Chapter 8, andP= P1 ] . . . ] Pn denotes
a partitioningof a setP into disjoint setsPi .

Definition 6.8 (Full Stratification)
Given a programP consisting of rules/goals{R1, . . . ,Rm} (m≥ 1).

1. LetR= tc←Q andR′ = tc′ ←Q′ be rules.

• R dependson R′ if there exists a (negated or non-negated) query termtq in Q such thattq

simulation unifies intc′

• R depends positivelyonR′ if there exists a non-negated query termtq in Q such thattq simula-
tion unifies intc′

• R depends negativelyonR′ if there exists a negated query termnot tq in Q such thattq simula-
tion unifies intc′

2. P is calledfully stratifiable(or simplystratifiable), if there exists a partitioning (n≥ 1)

P = P1 ]·· ·] Pn

of P such that for every stratumPi (1≤ i ≤ n) and for every ruleR∈ Pi holds:

• if R depends negatively on a ruleR′, or the head ofR contains grouping constructs andR
depends positively or negatively onR′, thenR′ ∈

⋃

j<i Pj , i.e. R′ is in a strictly lower stratum
thanR

• if the head ofR contains no grouping constructs andR depends positively on a ruleR′ then
R′ ∈

⋃

j≤i Pj , i.e.R′ is in the same or in a lower stratum thanR

The partitionP = P1 ]·· ·] Pn is called afull stratificationof P, and thePi are calledstrataof P.
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CHAPTER

SEVEN

Declarative Semantics: A Model Theory for Xcerpt

This chapter introduces a model theory for grouping stratifiable Xcerpt programs without negation. In-
tuitively, the definition of interpretations and models is straightforward: an interpretation is a set of data
terms and specifies what data terms exist; a model is then simply an interpretation that consists of the terms
that are “produced” by the rules in a program.

The model theory for Xcerpt programs follows the classical Tarski-style semantics for first order logic
rather closely, but needs to take into account the particularities of Xcerpt terms and programs. As a first
step, Section 7.2 introducesterm formulas, which depart from the formulas in first order logic in that they
do not differentiate between relation symbols and term symbols, because Xcerpt only considers “data” and
not “statements”. Next, a notion ofsubstitution setsis described in Section 7.3. Substitution sets take
the role of substitutions in first order logic and logic programming and are required to properly convey the
meaning of the grouping constructsall andsome. Interpretations and satisfaction of term formulas are then
defined in Section 7.4. This definition makes use of theground query term simulationrelation described in
Section 4.4 to take into account query terms with incompleteterm specifications (e.g. unordered or partial
terms). In Section 7.5, a fixpoint semantics for stratifiableXcerpt programs is suggested, first for programs
without negation, and then for arbitrary Xcerpt programs. Finally, Section 7.6 contains some concluding
remarks on the model theory and fixpoint semantics introduced here.

7.1 Preliminaries

Like in Chapter 6, the following notations are used throughout subsequent sections to simplify the discus-
sion of the semantics of Xcerpt programs:

• Programsare sets of rules (and goals), usually denoted byP = {R1, . . . ,Rn}.

• Rulesare denoted byR= tc← Q, wheretc is the construct term of the rule andQ the query part; the
set of rules of a programP is usually denoted byR⊆ P

• Goalsare denoted byG = tc←g Q, wheretc is the construct term of the rule andQ the query part;
the set of goals of a programP is usually denoted byG⊆ P

• Queriesof the formand{Q1,..., Qn} are sometimes denoted byQ1∧·· ·∧Qn or by
∧

1≤i≤nQi ; like-
wise, queries of the formor {Q1,..., Qn} are sometimes denoted byQ1∨·· · ∨Qn or by

∨

1≤i≤nQi

and queries of the formnot Q are sometimes denoted by¬Q.

• Resourcesare considered to be internalised, i.e. it is assumed that any data term referred to by an
input resource specification of the formin {... } is part of the program; this assumption simplifies
the formal treatment below and can be implemented in a straightforward (but inefficient) manner.

• The setT denotes the set of all terms,Tq ( T the set of all query terms,Tg ( Tq the set of all ground
query terms, andTd ( Tg the set of all data terms.
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In most parts of the formalisation, rules and goals are not distinguished unless explicitly mentioned; this
simplification is useful as rules and goals are very similar.Also, parts of the formalisation use a simplified
term representation, where strings and regular expressions are simply treated as compound terms with
empty content and total term specification. E.g. the string"XML" is represented as"XML"{} .

The model theory described below requires programs to be grouping stratifiable (cf. Definition 6.8),
as the meaning of such programs are in every case reasonable.Furthermore, negation (as failure) is not
further investigated in this thesis, but standard logic programming approaches might be applicable (as e.g.
described in [9, 98]).

7.2 Terms as Formulas

Classical logic distinguishes between

• terms, which are composed of function symbols and serve as data structures representing objects of
the application domain at hand, and

• atomic formulas, which are composed of relation symbols andterms and represent statements about
objects of the application domain.

Statements represented by formulas have truth values, objects represented by terms have no truth value.
In contrast, XML and Web data does not need this distinction,because it has no (formal) semantics and
merely holds semistructured data. Therefore, Xcerpt terms(corresponding to Web data) are considered as
being atomic formulas representing the statement that the respective terms “exist”. A salient aspect of this
representation is the possibility to specify integrity constraints for data terms. These are briefly introduced
in thePerspectives, Section 9.6.

7.2.1 Term Formulas

Atomic formulas are composed of Xcerpt query, construct, and data terms, and of the two special terms
⊥ and> (denoting falsity and truth). As an intuition, such atomic formulas are statements about the
existence or satisfiability of a term. Compound formulas canbe constructed in the usual manner using
the connectives∨, ∧, ⇒, ⇔, and¬, and the quantifiers∀ and∃. Instead of quantifying each variable
separately, the construct∀∗ may be used to universally quantify all free variables in a formula. Also,
instead of writingF1∨ ·· · ∨Fn, we sometimes write

∨

1≤i≤nFi , and instead of writingF1∧ ·· · ∧Fn, we
sometimes write

∧

1≤i≤nFi.
In the following, formulas built in this manner shall be called Xcerpt term formulas, or simply term

formulas. If a term formula consists only of query terms, it is also calledquery term formula, if it consists
only of construct terms, it is calledconstruct term formula.

Example 7.1
The following example shows a term formula built up from query terms, implications and quantifiers. It
represents an integrity constraint that requires all booksin the bib.xml document to have at least one
author:

∀ B . bib{{ var B → book{{ }} }} ⇒
∃ A . bib{{ var B → book{{ authors{{ var A }} }} }}

7.2.2 Xcerpt Programs as Formulas

Like in traditional logic programming, rules in Xcerpt are implications. However, Xcerpt rules with group-
ing constructs have a particular semantics that cannot be represented as implications in the usual manner.
We therefore keep the denotationtc←Q to represent rules.

In addition to the usual quantifiers∀ and∃, the grouping constructsall andsome that may be part
of a construct term may bind variables in a formula within a specific scope, usually the head and body
of a rule. As these constructs are contained within the term structure, their scope is not immediately
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apparent. It is thus useful to introduce new symbols� · � that are used to indicate the scope ofall
the grouping constructs contained in them. In practice, it is neither desirable nor useful to have scopes
extending over different subformulas for the grouping constructs contained in a single construct term, thus
a single scope for all grouping constructs suffices. The grouping constructs of a construct term always refer
to the variables of a single rule and thus all have the same scope.

Example 7.2
Consider for example the program (in formula notation)

g{a,b,c}
f{ all var X} ← g{{ var X}}

The scope of theall construct in the rule head is made explicit using� ·� in the following manner:

g{a,b,c} ∧ � f{ all var X} ← g{{ var X}} �

As usual, formulas representing programs are always considered to be universally closed, even if quan-
tifiers are not explicitly given.

Example 7.3
Consider the following Xcerpt program (in the notation introduced in Section 6.1 and with internalised
resources):

f{ all var X, var Y} ← and{ g{{ var X}}, h{{ e{ var X, var Y} }} }
g[ var X ] ← h{{ e[ var X] }}
h[ e[a,1], e[b,1], e[c,1], e[d,2] ]

The formula representation of this program is as follows:

∀ Y � f{ all var X, var Y} ← g{{ var X}} ∧ h{{ e{ var X, var Y} }} � ∧
∀ X � g[ var X ] ← h{{ e[ var X] }} � ∧
h[ e[a,1], e[b,1], e[c,1], e[d,2] ]

The variableX in the first rule is in the scope of theall construct in the rule head, while the variableY
is in the scope of the universal quantification represented by ∀Y. Note that the scope of theall is restricted
to the first rule and the occurrences ofX in the second rule are not affected (thus∀X in the second rule).

7.3 Substitutions and Substitution Sets

7.3.1 Preliminary Notions

A first intuitive notion of substitutions has already been given in Section 4.4. This notion was rather
straightforward and similar to the usual definition of substitutions, since Section 4.4 only considered query
and data terms. However, variable restrictions occurring in query terms have to be taken into account. As
a variable might be restricted, not every substitution is applicable to every query term.

Also, Xcerpt construct terms extend the usual terms by grouping constructs that group several substitu-
tions within a single ground instance by using the constructsall andsome. For instance, given a construct
term f{all var X} and three alternative substitutions{X 7→ a}, {X 7→ b} and{X 7→ c}, the resulting data
term is f{a,b,c}.

In order to define such groupings, it is therefore necessary to provide a construct that represents all
possible alternatives and can be applied to a construct term. This is called asubstitution setbelow. Substi-
tution sets are used in Section 7.4 which defines satisfaction for Xcerpt term formulas and later in Section
8.2.1 to define the notion of asimulation unifier. In the following, substitutions are denoted by lowercase
greek letters (likeσ or π), while substitution sets are denoted by uppercase greek letters (likeΣ or Π).
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Substitutions

A substitutionis a mapping from the set of (all) variables to the set of (all)construct terms. In the following,
lower case greek letters (likeσ or τ) are usually used to denote substitutions. As usual in mathematics, a
substitution is a mapping of infinite sets. Of course, finite representations are usually used, as the number
of variables occurring in a term is finite. Substitutions areoften conveniently denoted as sets of variable
assignments instead of as functions. For example, we write

{
X 7→ a,Y 7→ b

}
to denote a substitution

that maps the variableX to a and the variableY to b, and any other variable to itself. In general, a
substitution provides assignments for all variables, but “irrelevant” variables are not given in the description
of substitutions.

If a substitution isapplied to a query termtq, all occurrences of variables for which the substitution
provides assignments are replaced by the respective assignments (see Section 7.3.2 below). The resulting
term is called aninstanceof tq and the substitution. Not every substitution can be appliedto every query
term: variable assignments in the substitution have to respect variable restrictions occurring in the pattern
for a substitution to be applicable (see also 7.3.2). If a substitution σ respects the variable restrictions
in a query termtq, it is said to bea substitution for tq. For example, the substitution

{
X 7→ f{a}

}
is a

substitution forvar X → f{{}}, but not forvar X → g{{}}. Note that a substitution cannot be applied to
a construct term, because construct terms may contain grouping constructs that group several instances of
subterms together. Instead, substitution sets are used forthis purpose (see below).

A substitutionσ is called agrounding substitutionfor a termt, if σ(t) is a ground query term. Con-
sequently, a grounding substitution is always a mapping from the set of variable names to the set of data
terms (i.e. ground construct terms). A substitutionσ is called anall-grounding substitution, if it maps
every variable to a data term. Naturally, every all-grounding substitution is a grounding substitution for
every query term to which it is applicable. Note that the reverse does not hold: a grounding substitution is
grounding wrt. some termt and does not necessarily assign ground terms to variables not occurring int.

A substitutionσ1 is a subsetof a substitutionσ2 (i.e. σ1 ⊆ σ2), if σ1(X) ∼= σ2(X) for every variable
nameX with σ1(X) 6= X (i.e. σ1 does not mapX to itself), where∼= denotes simulation equivalence (cf.
Section 4.4.4). Correspondingly, two substitutionsσ1 andσ2 are considered to beequal(i.e. σ1 = σ2),
if σ1 ⊆ σ2 andσ2 ⊆ σ1. For example,

{
X 7→ f{a,b}

}
and

{
X 7→ f{b,a}

}
are equal. This definition is

reasonable because the data terms resulting from applying two such substitutions are treated equally in the
model theory described below.

The compositionof two substitutionsσ1 and σ2, denoted byσ1 ◦ σ2 is defined as(σ1 ◦ σ2)(t) =
σ1(σ2(t)) for every query termt. Note that the assignments inσ2 take precedence, becauseσ2 is applied
first. Consider for exampleσ1 = {X 7→ a,Y 7→ b} andσ2 = {X 7→ c}, and a termt = f{var X,var Y}.
Applying the compositionσ1◦σ2 to t yields(σ1 ◦σ2)(t) = f{c,b}.

The restriction of a substitutionσ to a set of variable namesV, denoted byσ|V , is the mapping that
agrees withσ onV and with the identical mapping on the other variables.

Substitution Sets

A substitution setis simply a set containing substitutions. In the following,upper case greek letters (likeΣ
andΦ) are usually used to denote substitution sets.

Substitution sets can beappliedto a queryor construct term (cf. Sections 7.3.2 and 7.3.3). The result
of this application is in general a set of terms called theinstancesof the substitution set and the term. A
substitution setΣ is only applicable to a query termtq, if all substitutions inΣ are applicable totq. In this
case,Σ is calleda substitution set for tq. Since construct terms do not contain variable restrictions, every
substitution set except for the empty set is a substitution set for a construct term. There exists no query or
construct termt such that the empty substitution set{} is a substitution set fort.

A substitution setΣ for a termt is called agrounding substitution set, if all instances oft andΣ are
ground query terms or data terms. A substitution setΣ is called anall-grounding substitution set, if all
σ ∈ Σ are all-grounding substitutions.

Thecompositionof two substitution setsΣ1 andΣ2, denoted asΣ1 ◦Σ2, is defined as

Σ1◦Σ2 =
{

σ1◦σ2 | σ1 ∈ Σ1,σ2 ∈ Σ2
}
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Consider for example the substitution setsΣ1 =
{
{X 7→ a}

}
andΣ2 =

{
{Y 7→ b},{Y 7→ c}

}
. Then

Σ1 ◦Σ2 =
{
{X 7→ a,Y 7→ b},{X 7→ a,Y 7→ c}

}
.

Therestrictionof a substitution setΣ to a set of variablesV, denoted byΣ|V , is the set of substitutions
in Σ restricted toV.

Similarly, theextensionof a substitution setΣ restricted to a set of variablesV to a set of variablesV ′

with V ⊆ V ′, extends every substitutionσ in Σ to substitutionsσ ′ by adding all possible assignments of
variables inV ′ \V to data terms. For example, the extension of the restricted substitution set

{
{X 7→ a}

}

to the set of variables{X,Y} is the (infinite) set
{
{X 7→ a,Y 7→ a},{X 7→ a,Y 7→ b}, . . .

}

Note that in practice, it would be desirable to define substitution sets asmulti-setsthat may contain
duplicate elements: if an XML document contains two personsnamed “Donald Duck”, then it should be
assumed that these are different persons with the same name.Providing a proper formalisation with multi-
sets is, however, not in the scope of this thesis, as subsequent definitions and proofs would be much more
complicated without adding an interesting aspect to the formalisation.

Maximal Substitution Sets

So as to properly convey the meaning ofall , it is not sufficient to consider arbitrary substitution sets. The
interesting substitution sets are those that aremaximalfor the satisfaction of the query partQ of a rule. As
satisfaction is not yet formally defined, this property shall for now simply be calledP.

Intuitively, the definition of maximal substitution sets isstraightforward: a substitution setΣ satisfying
P is a maximal substitution set, if there exists no substitution setΦ satisfyingP such thatΣ is a proper
subset ofΦ. However, this informal definition does not take into account that there might be substitution
sets that differ only in that some substitutions contain bindings that are irrelevant because they do not occur
in the considered term formulaQ. Maximal substitution sets are therefore formally defined as follows:

Definition 7.1 (Maximal Substitution Set)
Let Q be a quantifier free query term formula with set of variablesV, let P be a property, and letΣ be a set
of substitutions such thatP holds forΣ. Σ is called amaximal substitution set wrt. P and Q, if there exists
no substitution setΦ such thatP holds forΦ andΣ|V is a proper subset ofΦ|V (i.e.Σ|V ( Φ|V ).

7.3.2 Application to Query Terms

Since query terms do not contain the grouping constructsall andsome, applying substitutions and substi-
tution sets is straightforward. Application of a single substitution yields asingleterm where some variable
occurrences are substituted, while application of a substitution set yields asetof terms where some vari-
ables are substituted.

Definition 7.2 (Substitutions: Application to Query Terms)
Let tq be a query term.

1. The application of asubstitutionσ to tq, writtenσ(tq) is recursively defined as follows:

• σ(var X) = t ′ if (X 7→ t ′) ∈ σ

• σ(var X → s) = t ′ if (X 7→ t ′) ∈ σ andσ(s)� t ′

• σ( f{t1, . . . ,tn}) = σ( f ){σ(t1), . . . ,σ(tn)}

• σ( f [t1, . . . ,tn]) = σ( f )[σ(t1), . . . ,σ(tn)]

• σ( f{{t1, . . . ,tn}}) = σ( f ){{σ(t1), . . . ,σ(tn)}}

• σ( f [[t1, . . . ,tn]]) = σ( f )[[σ(t1), . . . ,σ(tn)]]

• σ(without t) = without σ(t)

• σ(optional t) = optionalσ(t)

for somen≥ 0.
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2. The application of asubstitution setΣ to tq is defined as follows:

Σ(tq) =
{

σ(tq) | σ ∈ Σ
}

Note that not every substitution can be applied to a query term tq. If a variable intq is restricted as in
var X → s, then a substitution can only be applied if it provides bindings forX that are compatible to
this restriction. Likewise, a substitution set is only applicable to a query termtq, if all its substitutions are
applicable totq.

Since query terms never contain grouping constructs, the cardinality of Σ(t) always equals the cardi-
nality of Σ. In particular, ifΣ = /0, thenΣ(t) = /0, even ift is a ground query term. Since an interpretation
with an empty substitution set would be a model for any formula, substitution sets in the following are con-
sidered to be non-empty. In case no variables are bound, substitution sets are usually defined asΣ = { /0}.

7.3.3 Application to Construct Terms

Applying a single substitution to a construct term is not reasonable as the meaning of the grouping con-
structsall andsomeis unclear in such cases. In the following, the application is thus only defined for
substitution sets. On substitution sets, the grouping constructs group such substitutions that have the same
assignment on thefree variablesof a construct term. For each such group, the application of the substitu-
tion Σ yields a different construct term. A variable is consideredfree in a construct term if it is not in the
scope of a grouping construct. The set of free variables of a construct termtc is denoted byFV(tc). Recall
also that∼= denotes simulation equivalence between two ground terms.

Definition 7.3 (Grouping of a Substitution Set)
Given a substitution setΣ and a set of variablesV = {X1, . . . ,Xn} such that allσ ∈ Σ have bindings for all
Xi ,1≤ i ≤ n.

• The equivalence relation'V⊆ Σ×Σ is defined as:σ1'V σ2 iff σ1(X)∼= σ2(X) for all X ∈V.

• The set of equivalence classesΣ/'V with respect to'V is called thegrouping ofΣ on V.

• Each of the equivalence classesJσK ∈ Σ/'V is accordingly defined asJσK =
{

τ ∈ Σ | τ 'V σ}.

Informally, each equivalence classJσK ∈ Σ/'V contains such substitutions that have the same assign-
ment for each of the variables inV.

Example 7.4
Given the substitution setΣ =

{
σ1,σ2,σ3

}
with

σ1 = {X1 7→ a,X2 7→ b},σ2 = {X1 7→ a,X2 7→ c}, andσ3 = {X1 7→ c,X2 7→ b}

The grouping ofΣ onV = {X1} is

• Jσ1K = Jσ2K =
{
{X1 7→ a,X2 7→ b},{X1 7→ a,X2 7→ c}

}

• Jσ3K =
{
{X1 7→ c,X2 7→ b}

}

The application of a substitution set to a construct term (possibly containing grouping constructs) is
defined in terms of this grouping. Given a substitution setΣ, the applicationΣ(tc) to a construct term
tc with free variablesFV(tc) yields exactly|Σ/'FV(tc)

| results, one for each different binding of the free
variables intc.

Example 7.5
Given a termt = f{X1,g{all X2}}, i.e.FV(t) = {X1}. Consider again

Σ =
{
{X1 7→ a,X2 7→ b},{X1 7→ a,X2 7→ c},{X1 7→ c,X2 7→ b}

}

from Example 7.4. The result of applyingΣ to t is

Σ(t) =
{

f{a,g{b,c}}, f{c,g{b}}
}
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The following definition specifies how a substitution set is applied to a construct termtc. The defini-
tion is divided into two parts: In the first part, it is assumedthat all substitutions in the substitution setΣ
contain the same assignments for the free variables oftc (variables occurring within the scope of grouping
constructs are unrestricted). As the quotientΣ/'FV(tc)

in this case obviously only contains a single equiva-
lence class, the application of this restrictedΣ to tc yields only a single term, which simplifies the recursive
definition. In the second part of Definition 7.4, this restriction is lifted.

Since the construction of data terms requires to construct new lists of subterms, the following defini-
tion(s) use the notion ofterm sequencesintroduced in Section 4.4.2. Recall that a sequence is a binary
relation between a set of integers and a set of terms, and usually denoted byS= 〈x1, . . . ,xn〉 for somen and
termsxi . Recall furthermore the definitions ofsubsequencesandconcatenation(Definition 4.5 on page 81).

Defining the semantics oforder by furthermore requires a functionsortf (V)(·, ·), whereV is a se-
quence of variables, that takes as arguments a grouping of a substitution set onV and returns a sequence
of substitution sets ordered according tof (V) and the variables inV. f (V) is a total ordering on the set of
substitution sets that assign ground terms to the variablesin V comparing variable bindings for the variables
in V. 1

Definition 7.4 (Substitutions: Application to Construct Terms)
1. Let Σ be a substitution set and lettc be a construct term such that all free variables oftc have the

same assignment in all substitutions ofΣ, i.e. Σ/'FV(tc)
= {JσK}. The restricted application ofΣ to

tc, writtenJσK(tc), is recursively defined as follows:

• JσK(var V) = 〈σ(V)〉2

• JσK( f{t1, . . . ,tn}) = 〈JσK( f ){JσK(t1)◦ · · · ◦ JσK(tn)}〉 for somen≥ 0

• JσK( f [t1, . . . ,tn]) = 〈JσK( f )[JσK(t1)◦ · · ·◦ JσK(tn)]〉 for somen≥ 0

• JσK(all t ) = Jτ1K(t)◦ · · · ◦ JτkK(t) where{Jτ1K, . . . ,JτkK}= JσK/'FV(t)

• JσK(all t group by V) = Jτ1K(t)◦ · · · ◦ JτkK(t) where{Jτ1K, . . . ,JτkK} = JσK/'FV(t)∪V

• JσK(all t order by f V) = Jτ1K(t)◦ · · · ◦ JτkK(t)

where〈Jτ1K, . . . ,JτkK〉= sort( f (V),JσK/'FV(t)∪V
)

• JσK(some k t) = Jτ1K(t)◦ · · · ◦ JτkK(t) where{Jτ1K, . . . ,JτkK} ⊆ JσK/'FV(t)

• JσK(some k t group by V) = Jτ1K(t)◦ · · · ◦ JτkK(t) where{Jτ1K, . . . ,JτkK} ⊆ JσK/'FV(t)∪V

• JσK(some k t order by f V) = Jτ1K(t)◦ · · · ◦ JτkK(t)

where〈Jτ1K, . . . ,JτkK〉 v sort( f (V),JσK/'FV(t)∪V
)

• JσK(optional t) =

{
JσK(t) if the ground instanceJσK(t) exists
〈〉 otherwise

• JσK(optional t with de f ault t′) =

{
JσK(t) if the ground instanceJσK(t) exists
JσK(t ′) otherwise

whereJτK1, . . . ,JτKk are pairwise different substitution sets.

2. Let tc be a term, and letFV(tc) be the free variables intc. The application of asubstitution setΣ to
tc is defined as follows:

Σ(t) =
{
tc′ | JσK ∈ Σ/'FV(tc)

∧ 〈tc′〉= JσK(tc)
}

Although not explicitly defined above, integrating aggregations and functions in this definition is
straightforward.

1As the substitution set is grouped onV, all substitutions inJσK (respectivelyJτK) provide identical bindings for variables inV.
2Note thatσ is the representative of the equivalence classJσK
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Example 7.6
Consider the substitution set

Σ =
{
{X 7→ f{a},Y 7→ g{a}}, {X 7→ f{a},Y 7→ g{b}}, {X 7→ f{b},Y 7→ g{a}}

}

and the construct termst1 = h{all var X,var Y} andt2 = h{var X,all var Y}. GroupingΣ according to
the free variablesFV(t1) = {Y} in t1 andFV(t2) = {X} in t2 yields

Σ/'FV(t1)
=

{{
{X 7→ f{a},Y 7→ g{a}},{X 7→ f{b},Y 7→ g{a}}

}
,
{
{X 7→ f{a},Y 7→ g{b}}

}}

Σ/'FV(t2)
=

{{
{X 7→ f{a},Y 7→ g{a}},{X 7→ f{a},Y 7→ g{b}}

}
,
{
{X 7→ f{b},Y 7→ g{a}}

}}

The ground instances oft1 andt2 by Σ are thus

Σ(t1) =
{

h{ f{a}, f{b},g{a}}, h{ f{a},g{b}}
}

Σ(t2) =
{

h{ f{a},g{a},g{b}}, h{ f{a},g{b}}
}

7.3.4 Application to Query Term Formulas

In the following, it is often interesting to study ground instances not only of terms but also of compound
formulas. The following definition defines the application of substitution sets to formulas consisting only
of query terms (so-calledquery term formulas); construct terms are problematic, as they group several
substitutions and thus do not behave “synchronously” with query terms in the same formula. Fortunately,
the formalisation of Xcerpt programs does not need to consider formulas containing construct terms. The
only exception are program rules, which are treated separately anyway.

Applying a substitution set to a query term formula is straightforward: as each substitution in a substi-
tution set represents a different alternative, the application of the substitution set to a query term formula
simply yields a conjunction of all different instances.

Definition 7.5 (Substitutions: Application to Query Term Formulas)
Let F be a quantifier-free term formula where all atoms are query terms (aquery term formula).

1. The application of asubstitutionσ to F , writtenσ(F), is recursively defined as follows:

• σ(F1∧F2) = σ(F1)∧σ(F2)

• σ(F1∨F2) = σ(F1)∨σ(F2)

• σ(¬F ′) = ¬σ(F ′)

• σ(¬F ′) = ¬σ(F ′)

2. The application of asubstitution setΣ to F, writtenΣ(F), is defined as follows:

Σ(F) =
∧

σ∈Σ
σ(F)

7.4 Interpretations and Entailment

The definition of satisfaction of Xcerpt term formulas, and in particular of Xcerpt programs, is similar to
the approach taken in classical first order logic, but differs in several important aspects: term formulas
do not differentiate between relations and terms, and the incompleteness of query terms and the grouping
constructs in construct terms have to be taken into account.Section 7.4.1 gives an intuitive meaning of
interpretations for Xcerpt term formulas. Satisfaction isthen defined in Section 7.4.2 in terms of the
simulation relationintroduced earlier in Section 4.4. Based on this definition of satisfaction, entailment
between formulas can be defined in the classical manner.
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7.4.1 Interpretations

As terms are considered to be formulas themselves, interpretations – informally – convey whether “a term
exists” or “a term does not exist”. Thus, a first approximation defines an interpretation as a set of data
terms (which are also ground query terms). A ground atom (i.e. a ground query term) is then satisfied
if it is contained in the set, or it simulates into a term that is contained in the set. Since Xcerpt data
terms represent Web pages, this definition is natural and close to the application, and thus well suited for
reasoning on the Web. Such a definition may be unusual from a Classical Logic perspective, but is rather
common in logic programming for it is close to Herbrand interpretations.

Furthermore, an interpretation provides a grounding substitution set which provides assignments to all
free variables in the formulas considered. Interpretations are thus formally defined as follows:

Definition 7.6 (Interpretation)
An interpretation Mis a tupleM = (I ,Σ) whereI is a set of data terms andΣ 6= /0 is a grounding substitution
set.

The set of data termsI conveys what data terms (Web pages) are considered to exist.The substitution
setΣ is necessary to properly treat formulas containing free variables, and allows to provide a recursive
definition of satisfaction below. As formulas are usually always (explicitly or implicitly) universally closed,
Σ can be seen as a mere technicality of the definition and is irrelevant for the general notion of satisfaction.
For this reason, the following Sections often somewhat imprecisely equate interpretations with the set of
data termsI .

Note thatΣ 6= /0. Otherwise,Σ(t) would yield an empty set of terms even in caset is a ground query term.
As the application of a substitution set to a query term formula yields a conjunction over all substitutions,
application of /0 would yield an empty conjunction, i.e.>. To define a substitution set that merely maps
each term to itself it has to be specified asΣ =

{
/0

}
, where the empty substitutionσ corresponds to the

identity function.
It is important to note that the interpretations consideredhere are very specific in that they only consider

termsas objects, instead of arbitrary objects. They are thus similar to Herbrand interpretations in traditional
model theory. However, this restriction is reasonable, as term formulas do not intend to represent arbitrary
objects.

7.4.2 Satisfaction and Models

Although similar to the definition of satisfaction in classical logic, satisfaction for Xcerpt term formulas
differs in several important aspects, in particular the satisfaction of atoms (i.e. terms) and of program
rules. A term (atomic formula) is considered to be satisfied if (and only if) its ground instance simulates
in some term of the interpretation. Considering the Web as aninterpretation, this means that a query term
“succeeds” (is satisfied) if there exists a Web page (data term) such that the ground instance of the query
term simulates into this data term.

Unlike in traditional logic programs, rules in Xcerpt are not treated as (classical) implications (⇒
below), because the grouping constructsall andsome require that the query part of a rule is not only
satisfied, but that it is also satisfied in the maximal manner,i.e. the substitution set yielding the ground
instance of the construct term must include all possible substitutions for which the query part is satisfied.
Otherwise, interpretations would include answer terms fora rule that differ from the intuitive understanding
of the constructsall andsome (see Example 7.8 below). The definition of satisfaction for Xcerpt rules
uses the notion of maximal substitution sets defined above inDefinition 7.1.

With the exception of term and rule satisfaction, the following definition follows the classical definition
of satisfaction. Note in particular, that the negation usedin this definition isclassicalnegation and not
negation as failure (as the query negation in Xcerpt programs).

Definition 7.7 (Satisfaction, Model)
1. LetM = (I ,Σ) be an interpretation (i.e. a set of data termsI and a substitution setΣ), and lett be a

construct or query term.

The satisfaction of a term formulaF in M, denoted byM |= F , is defined recursively over the structure
of F :
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M |=> holds
M |=⊥ does not hold
M |= t iff for all t ′ ∈ Σ(t) there exists a termtd ∈ I such thatt ′ � td

M |= ¬F iff M 6|= F
M |= F1∧·· ·∧Fn iff M |= F1 and . . . andM |= Fn

M |= F1∨·· ·∨Fn iff M |= F1 or . . . orM |= Fn

M |= F ⇒G iff M |= ¬F ∨G
M |= ∀x.F iff for all t ∈ I holds thatM′ = (I ,Σ′) |= F ,

whereΣ′ =
{

σ ◦ {x 7→ t} | σ ∈ Σ
}

M |= ∃x.F iff there exists at ∈ I such thatM′ = (I ,Σ′) |= F ,
whereΣ′ =

{
σ ◦ {x 7→ t} | σ ∈ Σ

}

M |= ∀∗� tc←Q� iff M′ = (I ,Σ′) |= tc for a maximal grounding substitution setΣ′ for Q
with M′ |= Q

2. If a formulaF is satisfied in an interpretationM, i.e.M |= F , thenM is called amodelof F .

Note that the maximality requirement in the last part of (1) refers to the satisfaction ofQ in M and
ensures that grouping constructs in the head of the rule are substituted properly.

The standardisation apart of Xcerpt rules (cf. Section 6.3)allows to replaceΣ by Σ′ in the model
definition for∀∗� t ←Q�. Otherwise, the substitutions inΣ andΣ′ would have to be merged toΣ◦Σ′.

Example 7.7 (Satisfaction of Term Formulas)
Let M = (I ,Σ) be an interpretation with

I :=
{

f [a,b], f [a,c],b
}

Σ :=
{
{X 7→ a, Y 7→ b},{X 7→ a, Y 7→ c}

}

The following statements hold forM:

1. M |= f [a,b], because for eacht ∈ Σ( f [a,b]) =
{

f [a,b]
}

exists at ′ ∈ I with t � t ′

2. M 6|= f [a,d], because fort = f [a,d] ∈ Σ( f [a,d]) =
{

f [a,d]
}

does not exist at ′ ∈ I with t � t ′.

3. M |= f{a,b}, because for eacht ∈ Σ( f{a,b}) =
{

f{a,b}
}

exists at ′ ∈ I with t � t ′

4. M |= f{{var X,var Y}}, because

• σ1 = {X 7→ a, Y 7→ b} andσ1( f{{var X,var Y}})� f [a,b], and

• σ2 = {X 7→ a, Y 7→ c} andσ2( f{{var X,var Y}})� f [a,c]

5. M |= ∃Z. f{{var Z}}, becauseM′ = (I ,Σ′) with
Σ′ =

{
{X 7→ a, Y 7→ b, Z 7→ a},{X 7→ a, Y 7→ c, Z 7→ a}

}

is a model forf{{var Z}}

6. M 6|= ∀Z. f{{var Z}}, because there exists a termf [a,b] as substitution forZ such thatM 6|= f{{ f [a,b]}}

7. M |= ∀Z.var Z, because for allt ∈ I holds thatM′ = (I ,Σ′) with Σ′ =
{
{X 7→ a, Y 7→ b, Z 7→

t},{X 7→ a, Y 7→ c, Z 7→ t}
}

is a model forvar Z3

For a programP, a model is intuitively an interpretation that contains allthe data terms that are “pro-
duced” byP (and possibly also further data terms unrelated toP).

Example 7.8 (Satisfaction of Xcerpt Programs)
Let P be the following Xcerpt program (in compact notation):

3This result might be surprising from a classical perspective, but it is self-evident when considering terms as formulas: universal
quantification quantifies over all existing terms, and obviously all these are satisfied in any interpretation.
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p{ all var X} ← q{{ var X}}
q{a,b,c}

• the interpretationM1 = (I1,{ /0}) with I1 =
{

q{a,b,c}, p{a,b,c}
}

is a model forP, i.e.M1 |= P.

• the interpretationM2 = (I2,{ /0}) with I1 =
{

q{a,b,c}, p{a,b}
}

is no model forP, i.e. M1 6|= P,
becausep{a,b} is not the ground instance ofp{all var X} by themaximalsubstitution set for which
q{{var X}} is satisfied

• the interpretationM3 = (I3,{ /0}) with I3 =
{

q{a,b,c}, p{a,b,c}, p{a,b}
}

is a model forP, i.e.
M3 |= P, becausep{a,b,c} ∈ I ; the additionalp{a,b} is not produced byP, but irrelevant for the
satisfaction ofP in M3.

Note that “terms” with infinite breadth are precluded by the definition of terms and can thus never
appear in an interpretation. Programs where a rule “defines”such terms do not have a model. For example,
the program

f{all var X}← g{var X}
g{g{var Y}}← g{var Y}
g{a}

does not have a model, because the first rule defines a “term” ofthe form f{a,g{a},g{g{a}}, . . .}. To avoid
non-terminating evaluation of such programs, it is desirable to find sufficient requirements to preclude such
programs syntactically. This is however out of the scope of this thesis.

7.5 Fixpoint Semantics

A classical approach to describing the semantics of logic programs is the so-calledfixpoint semantics,
first proposed by Van Emden and Kowalski [103]. In the fixpointsemantics, a model is constructed by
iteratively trying to apply program rules (using an operator calledTP) to a set of data terms and adding
their results until a fixpoint is reached, i.e. no new data terms can be added. This smallest fixpoint is then a
model of the program (assuming that programs do not contain negation).

Example 7.9
Consider again the program

f{all var X}← g{{var X}}
g{a}

By definition, the starting point is alwaysI0 = /0. In the first iteration, no rules are applicable, but the data
terms are added to the set. Thus,

I1 = TP( /0) =
{

g{a}
}

The next iteration allows to apply the program rule. Thus,

I2 = TP(I1) =
{

g{a}, f{a}
}

Further application of rules does not add new terms, thusI2 is the smallest fixpoint. It is easy to see
that I2 is also a “reasonable” model of the program. Note that there are other fixpoints besidesI2, e.g.
{

g{a}, f{a}, f{b}
}
, all of them supersets ofI2.

The following section proposes a fixpoint semantics for Xcerpt programs with grouping constructs but
without negation, and shows that the fixpoint of the program is also a model of a program. Since the fixpoint
semantics is the most precise characterisation of Xcerpt programs available, it is also used as the reference
for the verification of the backward chaining algorithm. Programs with negation are not considered in this
thesis, but their treatment should be very similar to the treatment of negation in other logic programming
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languages. Since Xcerpt programs are negation stratifiable, a similar approach to the approach taken by
Apt, Blair, and Walker [8] appears promising.

This thesis slightly diverges from the traditional definition of the fixpoint operatorTP in that it defines
TP as a function whose result contains not only the new terms butalso those given as argument. Thus, it
is sufficient to simply letTP saturate in iterative applications instead of using a complex notion of pow-
ers of the formTP ↑n. Arguably, this approach is more straightforward, becauseit reflects the intuitive
understanding of program evaluation.

Recall thatω denotes the first ordinal number, i.e. the smallest number that is larger than any natural
number. Thus,Tω

P denotes the application ofTP “until a fixpoint is reached” (whether it be finite or infinite).
The fixpoint operator is defined as follows:

Definition 7.8 (Fixpoint Operator TP, Fixpoint Interpretation)
Let P be an Xcerpt program.

1. The fixpoint operatorTP is defined as follows:

TP(I) = I ∪
{
td | there exists a ruletc←Q in P and substitution setΣ

such thatΣ is the maximal set with(I ,Σ) |= Q andtd ∈ Σ(tc),
or td is a data term inP

}

2. The fixpoint ofTP is denoted byMP = Tω
P ( /0) and called the fixpoint interpretation ofP.

A problem with this first definition is that it can yield interpretations that contain unjustified terms in
case the program contains grouping constructs, because rules with grouping constructs require the rule
body to be satisfied maximally, but not all required information might be available in the iteration ofTP

where the rule is applied.

Example 7.10
Consider the following Xcerpt program (cf. Example 6.5):

f{all var X}← g{{var X}}
g{var Y}← h{{var Y}}
g{a}
h{b}

Applying the fixpoint operatorTP yields the following results:

T1
P ( /0) =

{
g{a},h{b}

}

T2
P ( /0) =

{
g{a},h{b},g{b}, f{a}

}

MP = T3
P ( /0) =

{
g{a},h{b},g{b}, f{a}, f{a,b}

}

However, f{a} should not occur, because it is not the result of the maximal substitution forg{{var X}}.
Obviously, applying the first rule already inT2

P is too early.

Therefore, we refine the notion of fixpoint interpretations to fixpoint interpretations for stratifiable pro-
grams. Constructing fixpoints for Xcerpt programs containing grouping constructs is based on the grouping
stratification of such programs and simply applies the fixpoint operator stratum by stratum, beginning with
the lowest stratum and ending with the highest. The following definition follows closely a definition by
Apt, Blair, and Walker [8]:

Definition 7.9 (Fixpoint Interpretation for Stratifiable Pr ograms)
Let P be a program with grouping stratificationP = P1]·· ·]Pn (n≥ 1). The fixpoint interpretationMP is
defined by

M1 = Tω
P1

( /0)

M2 = Tω
P2

(M1)
...
Mn = Tω

Pn
(Mn−1)

with MP = Mn.
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Note that this definition ofMP is in principle applicable to all kinds of stratification, i.e. grouping
stratification, negation stratification, and full stratification.

Example 7.11
Consider the following Xcerpt program stratifiable into twostrataP1 andP2 (cf. Example 6.5):

P2 f{all var X}← g{{var X}}
P1 g{var Y}← h{{var Y}}

g{a}
h{b}

Applying the fixpoint operatorTP1 for the stratumP1 yields the following sets:

T1
P1

( /0) =
{

g{a},h{b}
}

M1 = T2
P1

( /0) =
{

g{a},h{b},g{b}
}

M1 = T2
P1

is a fixpoint for this stratum. Further application of the fixpoint operatorTP2 for the stratumP2 to
this set then results in:

M2 = T1
P2

(M1) =
{

g{a},h{b},g{b}, f{a,b}
}

it is easy to see thatM2 = T1
P2

(M1) is a model ofP, and thatM2 does not contain unjustified terms.

We now show that the fixpoint of a program is also a model. Note,however, that the inverse statement
does not hold:

Theorem 7.10
Let P be a grouping stratified program without negation. Then the fixpointMP of P is a model ofP.

Proof. SupposeMP is not a model ofP. Then there exists a termt not inMP that is required byMP andP. There are
two cases for this:

• t is a data term inP. By definition ofTP, t is then inMP.  

• t is a ground instance of a rule inP, i.e. there exists a ruletc←Q in P and a substitution setΣ that is a maximal
substitution withMP |= Σ(Q) such thatt ∈ Σ(tc). By definition ofTP, it holds thatΣ(tc)⊆MP.  

ut

7.6 Remarks

The model theory and fixpoint semantics described above provide a rather straightforward declarative se-
mantics for Xcerpt programs. However, this semantics is unsatisfactory in that it only covers a limited set
of Xcerpt programs (namely those that are grouping stratifiable), does not cover negation (as failure), and
does not provide a theory of minimal model as is usually done in traditional logic programming. Solutions
to the restrictions imposed by stratification and to negation might be found in other approaches that have
been investigated in logic programming. Minimal models have been investigated extensively in the course
of this thesis, but a satisfactory definition has not yet beenfound. Under satisfactory we understand a
characterisation of Xcerpt programs that exactly covers the semantics given by fixpoint interpretations, but
which is not just fixpoint interpretations wrapped in different clothes. Furthermore, this characterisation
still needs to be easy to understand. Characterisations that do not adhere to these properties would not add
anything to the semantics of Xcerpt programs.
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CHAPTER

EIGHT

Operational Semantics: Backward Chaining and Simulation Unification

This chapter describes an algorithm for the evaluation of Xcerpt programs using a backward chaining strat-
egy. The algorithm is defined in terms of a simple constraint solver (described in Section 8.1). Constraint
solving is a method that allows a rather efficient evaluationby excluding irrelevant parts of the solution
space as early as possible, and has been applied to many practical problems (cf. [51]). Constraint solving
is advantageous because

• it uses declarative simplification rules that are easy to understand,

• it allows to reduce the search space by detecting inconsistencies early,

• it tries to avoid complex computations (like creating answer terms) as long as possible, and

• it allows to easily add user-defined theories specified in terms of additional simplification rules to the
evaluation engine.

This constraint solver differs from traditional constraint solvers in that it needs to treat disjunctions between
constraint formulas and negation, but the approach taken here is rather straightforward.

The evaluation algorithm is defined in two parts: first, an algorithm calledsimulation unificationis
introduced. Simulation unification is a novel kind of (non-standard) unification that allows to treat the
particularities of Xcerpt terms properly and is based on thenotions of ground query term simulation and
answers of Chapter 4. It has first been proposed in [24] and is further refined here. Based on simulation
unification, abackward chainingalgorithm is then described that eventually determines answer terms as
defined in Chapter 7. Salient aspects of this backward chaining algorithm are the treatment of the grouping
constructsall and some, and the unusually high level of branching in the proof treesthat result from
incomplete term specifications. While evaluation rules forprograms with negation and optional subterms
are given, these are not verified against the declarative semantics, as the fixpoint theory described in Chapter
7 currently does not cover negation.

This chapter is structured as follows: Section 8.1 introduces the constraint solver and data structures
used in this chapter, and defines the meaning of a constraint store in form ofsolution sets. Section 8.2
describes the simplification rules that constitute simulation unification algorithm and shows the correctness
of this algorithm against an abstract formalisation of mostgeneral simulation unifiers. Finally, Section 8.3
describes the rules for a backward chaining evaluation. A soundness and weak completeness result for this
algorithm is also given.

8.1 A Simple Constraint Solver

The evaluation of Xcerpt programs is described in terms of a constraint solver that applies so-calledsimpli-
fication rulesto a constraint store consisting of conjunctions and disjunctions of constraints. The purpose
of the constraint solver is to determine variable bindings for variables occurring in query and construct
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terms, which ultimately yield substitutions that can be used to create the answer terms of a program. A
simplification rule in this thesis has the following form:

C1
...

Cn

D

whereC1, . . . ,Cn (n≥ 1) are atomic constraints (the condition) andD is either an atomic constraint, or a
conjunction or disjunction of constraints (the consequence). If a simplification rule is applied, then the con-
junctionC1∧·· · ∧Cn in the constraint store is replaced by the constraintD. Note that these simplification
rules are similar to the simplification rules in the languageConstraint Handling Rules[50], albeit with a
different notation.

The constraint solver is non-deterministic to a high degreein that the order in which simplification
rules are applied is not significant. This approach might be advantageous, as it gives much freedom to the
evaluation engine to e.g. perform optimisations (cf. Section 9.5.4).

This constraint solver differs from common approaches in that the result of a rule may contain dis-
junctions, whereas usually only conjunctions are admitted. Such constraint solvers have been studied in
constraint programming research, e.g. in [126]. The approach taken in this thesis is rather simplistic, as it
after each application of a simplification rule creates the disjunctive normal form (DNF) of the constraint
store. Simplification rules are independently applied to the different conjuncts of the DNF. This approach
is rather inefficient in implementations, and various optimisations can be considered. A straightforward
optimisation would be to not create the DNF aftereachsimplification step, but instead only if it is “neces-
sary”, because no other simplification rules apply. However, such optimisations are not further investigated
in this thesis, as the focus is on Web query languages and not on constraint programming.

Furthermore, the constraint solver needs to be able to treatnegation. As both negation constructsnot
and without describe negation as failure, the negation behaves differently to classic negation in some
cases (cf. Example 8.4). The treatment of negation is described in the formula simplification rules in
Section 8.1.3, and in the consistency verification rules 3, 4, and 5 in Section 8.1.4 below.

8.1.1 Data Structures and Functions

Constraints

The main data structure of the evaluation algorithm is theconstraint storewhich may contain several types
of constraints, including other (sub-)constraint stores.For the purpose of this thesis, constraints are defined
by the following grammar (defined in a variant ofExtended Backus-Naur Form):

<constraint> := <conjunction> | <disjunction>
| ’True’ | ’False’
| ’(’ <constraint> ’)’
| <sim-constraint>
| <dep-constraint>
| <query-constraint> .

<conjunction> := <constraint> (’ ∧’ <constraint>)+ .
<disjunction> := <constraint> (’ ∨’ <constraint>)+ .
<negation> := ’ ¬’ <constraint> .
<sim-constraint> := <query-term> ’ �u’ <construct-term> .
<dep-constraint> := ’(’ <constraint> ’ |’ <constraint> ’)’ .
<query-constraint> := ’ 〈’ <query-term> ’ 〉’ ’ {’ <data-term-list>? ’ }’ .
<dbterm-list> := <data-term> (’,’ <data-term>)* .

It is easy to observe that a constraint store usually consists of arbitrary conjunctions, disjunctions, and
negations of constraints. As usual, conjunctions always take precedence over disjunctions unless explicitly
specified by parentheses. A brief description of the other kinds of constraints is given below:
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Truth Values. The truth values “True” and “False” have their expected meaning in a constraint store.
Simplification of the constraint store can eliminate them inall cases except when they are the only remain-
ing constraint.

Simulation Constraint. A simulation constraint – writtent1�u t2 for some construct, data, or query
term t1 and some construct or data termt2 – is a binary constraint which requires that variables are only
bound to data terms such that there is a ground query term simulation between the ground instances of
t1 and t2. The termt1 is called the left hand side of the simulation constraint andt2 is called the right
hand side of the simulation constraint in subsequent sections. So as to distinguish the simulation constraint
from the ground query term simulation, but nonetheless emphasise the relationship between the two, the
symbol�u is used (withu for “to be unified”). Note that the right hand side of a simulation constraint is
always necessarily a construct or data term, because the simplification rules in the simulation unification
and backward chaining algorithms never put a query term to the right hand side.

Most simulation constraints can be further reduced by applying the simulation unification algorithm on
them until at least one of the sides consists merely of a variable. If a simulation constraint is of the form
X �u t whereX is a variable,t is also called anupper boundof X. Likewise, if a simulation constraint is
of the formt �u X, t is called anlower boundof X.

Query Constraint. A query constraint is a constraint consisting of a valid Xcerpt query (i.e. either a
query term, an and/or-connection of queries, a negated query, or an input resource specification containing
a query). Query constraints are used to represent queries that are not yet evaluated and are unfolded during
the evaluation (if necessary). For some queryQ, the query constraint is denoted by〈Q〉.

A query constraint may optionally have a set of associated data terms which results from resolving and
parsing an external resource (elimination of thein construct). If a query constraint〈Q〉 is associated with
the data terms{t1, . . . ,tn}, this is denoted by〈Q〉{t1,...,tn}.

Dependency Constraint. A meta-constraint stating a dependency between two constraints. If C and
D are constraints, the dependency constraint(C | D) requires thatC may only be evaluated if the evaluation
of D did not fail (otherwise, the complete constraint fails). ThusD usually needs to be completely evaluated
beforeC can be processed. The substitutions resulting from the evaluation ofD are applied toC if they
exist (i.e. under the condition that D is neitherFalsenorTrue).

The justification for the dependency constraint are the requirements of the grouping constructsall and
some, which require to consider all alternative solutions for the query part of a rule. Ifall or some appears
in the head of a rule which is evaluated, the unification of a query with the head cannot be completed before
the rule is fully evaluated.

Functions

substitutions(CS): The ultimate step of the algorithm, after no more rules are applicable or necessary,
is always to generate a set of substitutions from the constraint store. In this step,CS is put in DNF, all
constraints of the formX �u t (whereX is a variable andt is a construct term1) are replaced byX = t and
for each conjunct ofCSa separate substitution is generated from these replacements. Note that

• substitutions(True) is the set of all all-grounding substitutions

• substitutions(False) = {}, i.e. there exists no substitution.

Thus, neither a result ofTrue nor a result ofFalseare desirable for a query containing variables. For-
tunately, the evaluation algorithm never yieldsTrue in case a variable occurs in a query, and only yields
Falseif the evaluation fails.

1due to the way rules are evaluated, the right hand side of a simulation constraint is always a construct term
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apply(Σ,t): Applying a set of substitutionsΣ to a term is implemented recursively over the term struc-
ture. The implementation of this function can be derived from Definitions 7.2 and 7.4 in a straightforward
manner.

retrieve(R): Given a resource descriptionR, the functionretrieve(R) returns a set of those terms
that are represented by this resource provided that the datacan in some way be parsed into Xcerpt’s term
representation. A resource description may for example contain a URI for identifying the resource and a
format specification to indicate which parser to use. The current prototype (cf. Chapter A) provides support
for XML, HTML and Xcerpt syntax, but different formats are more or less straightforward to implement
(e.g. Lisp S-expressions, RDF statements or relational databases).

restrict(V,C): restricts the constraint storeC to only such (non-negated) simulation constraints where
the lower bound is a variable occurring inV. This function is used for evaluating query negation below.

deref(id): Dereferences the term reference identified byid and returns the subterm associated with
the identifierid.

vars(Q): Returns the set of all variables occurring non-negated in a queryQ.

8.1.2 Solution Set of a Constraint Store

As the evaluation algorithm aims at determining an (all-grounding) substitution set for certain variables,
each constraint store conceptually represents a (all-grounding) substitution set in which each substitution
provides assignments for all conceivable variable names. This set is called thesolution setof the constraint
store, and represents the possible answers that the evaluation of the constraint store yields. Depending on
the constraint store, this solution set is restricted to substitutions fulfilling certain conditions. For example,
the constraintX �u f{a} requires that all substitutions in the solution set providean assignment for the
variableX that is compatible (i.e.simulates) with f{a}. Likewise, the constraintf{{}} �u X requires that
the solution set only contains substitutions that provide an assignmentt for X such thatf{{}} � t.

In the following, we will consider only the solution set of a fully solved constraint store. Such a
constraint store contains only simulation constraints where one side of the inequation is a variable, of
conjunctions or disjunctions of constraints, and of the boolean constraintsTrue andFalse. This notion
of solution sets will be used in the formalisation of simulation unifiers later in this chapter. Recall that
all-grounding substitutions are substitutions that map every possible variable to a data term.

Definition 8.1 (Solution Set of a Constraint Store)
Let CSbe a completely solved constraint store, i.e. consisting only of simulation constraints where one
side is a variable, conjunctions, disjunctions, and the boolean constraintsTrueandFalse. The solution set
Ω(CS) is a grounding substitution set recursively defined as follows:

• Ω(True) is the set of all all-grounding substitutions (cf. Section 7.3)

• Ω(False) =
{}

, i.e. the empty set

• Ω(X �u t) is the set of all all-grounding substitutionsσ such thatσ(X)∼= σ(t)

• Ω(t �u X) is the set of all all-grounding substitutionsσ such thatσ(t)� σ(X)

• Ω(C1∧C2) = Ω(C1)∩Ω(C2)

• Ω(C1∨C2) = Ω(C1)∪Ω(C2)

• Ω(¬C) = Ω(True)\Ω(C)
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The rationale behind using sets of all-grounding substitutions is that a constraint store in general merely
restricts the possible answers. Further constraints mightadd new variables that would have to be consid-
ered. Using infinite substitutions also simplifies working with the solution set, because it suffices to use
simple set operations instead of introducing a new “substitution theory”. For example, merging of two
all-grounding substitution sets merely requires the intersection of both.

Note that the solution set of a constraint storeCSis in general always infinite, because each substitution
contains assignments for an infinite number of variables. However, restricting this set to only finitely many
variablesV (i.e. those variables occurring inCS), yields a finite set in case every such variable occurs in
each conjunct of the disjunctive normal form ofCSon the right side of a simulation constraint.

The following result is important because it relates the abstract notion of solution set to the actually
computed substitutions. It follows trivially from the definition of solution sets and the definition of the
functionsubstitutions(·). Recall thatΣ|V is the substitution setΣ restricted to the variables inV.

Corollary 8.2
LetCS= C1∨·· ·∨Cn be a constraint store in disjunctive normal form, andV the set of variables occurring
in CS. If in every conjunctCi , each variableX ∈ V occurs in a simulation constraint of the formX �u t
wheret is a data term, thensubstitutions(CS) = Ω(CS)|V .

Note that as Xcerpt programs are range restricted, this corollary holds for every full evaluation of an
Xcerpt program.

8.1.3 Constraint Simplification

The usual simplification rules for formulas apply, for example:

• False∧C reduces toFalsefor any constraintC, False∨C reduces toC for any constraintC

• True∧C reduces toC for any constraintC, True∨C reduces toTrue for any constraintC

• ¬(C∧D) simplifies to¬C∨¬D, ¬(C∨D) simplifies to¬C∧¬D

• ¬¬¬C simplifies to¬C

• ¬False= Trueand¬True= False

Note, however, that constraints of the form¬¬C (whereC is not of the form¬C′) may not be simplified
to C, because the range restrictedness disallows variable bindings also for variables that are negated twice
or more times.

8.1.4 Consistency Verification Rules

Before a variable can be bound to a term, it is necessary that the constraints for this variable areconsistent.
There are two kinds of consistency verification rules,consistencyandtransitivity, divided into four rules
to distinguish the cases with and without negation. The fifthrule described here reduces certain kinds of
negated simulation constraints.

All consistency verification rules are considered to be partof the constraint solver and are needed both
for the simulation unification and the backward chaining algorithm. It is assumed that they are always
applied if possible and that the constraint store can alwaysbe treated as consistent.

Rule 1: Consistency

The consistencyrule guarantees that upper bounds for a variable are consistent. This verification rule
implements the solution set definition ofΩ(C∧D) = Ω(C)∩Ω(D) and ensures that a conjunct does not
induce two assignments for a variable that are not simulation equivalent.

X �u t1
X �u t2
X �u t1∧ t1�u t2∧ t2�u t1
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Note that botht1 andt2 are necessarily construct or data terms. Thus, the constraint�u is applicable,
which requires a construct or data term on the right hand side.

Example 8.1 (Consistency Rule)
1. consider the two simulation constraintsX �u f{var Y} andX �u f{a}; applying the consistency

rule yieldsX �u f{var Y}∧a�u Y∧Y�u a (after mutual unification), which limits the bindings for
Y to a.

2. consider the two simulation constraintsX �u f{a} andX �u f{b}; applying the consistency rule
determines that they are inconsistent, becausef{a} and f{b} do not simulate.

Rule 2: Transitivity

The transitivity rule replaces variable occurrences of a variableX in the upper bounds of a variable by the
upper bound ofX. This rule is justified by the simulation pre-order defined inCorollary 4.10 and is needed
to ultimately create ground terms as bindings for all variables. In the following, the notationt[t ′/X] denotes
“replace all occurrences ofX in t by t ′”.

t1 �u t ′1 such thatt ′1 contains the variableX
X �u t2
X �u t2 ∧ t1 �u t ′1[t2/X]

Note that the first constraint is consumed by this rule. This might appear somewhat unusual, as further
applications of the transitivity rule might yield new constraints. However, if some constraint of the form
X �u t ′2 is added, it needs to be compatible with the constraintX �u t2 (which is still in the conjunction)
and would thus not yield differing information.

Example 8.2 (Transitivity Rule)
1. consider the simulation constraintsX �u Y andY �u a; applying the transitivity rule yields the

additional constraintX �u a and removesX �u Y.

2. consider the simulation constraintsX �u f{var Y} andY �u a; applying the transitivity rule yields
the additional constraintX �u f{a} and removesX �u f{var Y}.

It would be possible to define a similar transitivity rule forthe lower bounds in a simulation constraints.
This is, however, not necessary, as the lower bounds do not yield variable bindings and thus need not be
ground.

8.1.5 Constraint Negation

Negated constraints represent exclusion of certain variable bindings, and may result from the evaluation
of the constructswithout (subterm negation),optional (optional subterms), andnot (query negation).
For example, the constraint¬(X � f{a,b}) disallows bindings forX that are simulation equivalent with
f{a,b}. Note that, although these constructs implement negation as failure, constraint negation is the
ordinary negation of classical logic. The usual transformation rules apply, namely¬(C∧D) = ¬C∨¬D,
¬(C∨D) = ¬C∧¬D, ¬True= False, and¬False= True. Note, however, that¬¬C 6= C, becauseC is
not allowed to define variable bindings (cf.range restrictedness, Section 6.2).

The following three additional consistency verification rules are used in the constraint solver to treat
constraint negation. All three rules assume that the negation appears immediately in front of an atomic
constraint. This assumption is safe when the constraint store is in disjunctive normal form. The rules
continue the numbering scheme of the previous consistency verification rules. Therefore, the first rule has
number 3.
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Rule 3: Consistency with Negation

To detect inconsistencies between a non-negated and a negated simulation constraints, the consistency rule
needs to be modified to yield inconsistency in case a non-negated constraint for a variable is consistent
with a negated constraint for the same variable. The following rule means that if a simulation constraint
provides an upper bound for a variable (which represents a candidate binding for the variable), then there
must not be a negated simulation constraint that excludes this upper bound:

X �u t1
¬(X �u t2)
X �u t1∧¬(t1 �u t2∧ t2�u t1)

Example 8.3 (Consistency Rule with Negation)
Consider the constraint store

X �u f{a,b}∧¬(X �u f{b,a})∧¬(X �u g{a})

Applying the consistency rule with negation yields

X �u f{a,b}∧¬( f{a,b} �u f{b,a}∧ f{b,a} �u f{a,b})∧¬(X �u g{a})

the DNF of which is

X �u f{a,b}∧¬( f{a,b} �u f{b,a})∧¬(X �u g{a})∨
X �u f{a,b}∧¬( f{b,a} �u f{a,b})∧¬(X �u g{a})

and after further decomposition steps

X �u f{a,b}∧¬(True)∧¬(X �u g{a})∨
X �u f{a,b}∧¬(True)∧¬(X �u g{a})

which ultimately yieldsFalse, i.e. no valid bindings.

Note that although subterm and query negation can never yield variable bindings themselves, there
might be variables that only appear in negated simulation constraints but nowhere else in a non-negated
simulation constraint, e.g. as the result of decompositionwith without or optional . These are treated by
Rule 5 below.

Rule 4: Transitivity with Negation

Like the consistency rule, the transitivity rule needs to beadapted to cover negation properly. The following
rule specifies that if there is a negated simulation constraint where the upper boundt ′1 contains a variable,
and this variable is bounded in a non-negated simulation constraint, then substituting the upper bound for
the variable in the first constraint must not yield a simulation.

¬(t1 �u t ′1) such thatt ′1 contains the variableX
X �u t2
¬(t1 �u t ′1) ∧ X �u t2 ∧ ¬(t1 �u t ′1[t2/X])

Likewise, if there is a non-negated simulation constraint where the upper bound contains a variable
occurring in a negated simulation constraint, then substituting the upper bound for the variable in the first
constraint must not yield a simulation.

t1 �u t ′1 such thatt ′1 contains the variableX
¬(X �u t2)
t1 �u t ′1 ∧ ¬(X �u t2) ∧ ¬(t1 �u t ′1[t2/X])

Note that unlike rule 2, transitivity with negation may not remove any of the original constraints, be-
cause information would be lost.
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Rule 5: Negation as Failure

The last rule is necessary for cases where a variable only appears in a negated simulation constraint, but
nowhere else in a non-negated simulation constraint of the constraint store. Due to the range restrictedness
of Xcerpt rules, such constraints can never be produced directly in the treatment ofnot or without (range
restrictedness enforces that each variable occurring in a negated part also appears elsewhere in a non-
negated part). They may, however, be the consequence of applications of rules 3 and 4, and might be
produced when decomposing a query term containing the constructoptional (see Section 8.2.2 below).

Such constraints are reduced toFalse. The rationale behind this is that, in case the variable does
not occur elsewhere outside a negation, the simulation constraint inside the negation represents a solution
for a negated query or subterm, and therefore the negated constraint must fail. In case the variable does
also appear elsewhere outside a negation rules 3 and 4 are applicable (which again might yield negated
simulation constraints).

¬(X �u t) such thatX does not appear in a non-negated simulation constraint
False

Constraints of the form¬Trueand¬Falseare treated by the formula simplification described above.
Example 8.9 shows a case where this consistency rule is needed. An interesting application of this rule
involves double negation:

Example 8.4 (Negation as Failure Rule)
Consider the simulation constraint¬¬(X �u t) such thatX does not occur elsewhere in a non-negated
simulation constraint. Applying Rule 5 to this constraint yields ¬False= True (and notX �u t as
one might expect). The rationale for this is that the negation used is negation as failure and not classical
negation, and variables within a simulation constraint that are negated twice do not define variable bindings
(see also the definition ofrange restrictednessin Chapter 6).

8.1.6 Program Evaluation

Program evaluation starts at the program goals, and tries todetermine answer terms by evaluating the query
parts for each goal in a backward chaining fashion. Given a programP, the general scheme of program
evaluation is as follows (the backward chaining algorithm itself is described in Section 8.3 below):

Algorithm 8.1

proceduremain():
foreachgoalt←Q ∈ P do:

let Subst:= solve(〈Q〉 /0)
print apply(t,Subst)

Of course, printing the result in the scheme above has to respect a possible output resource associated
with the head of a goal. The backward chaining algorithm itself is called with the functionsolve(C)
(whereC is a constraint) which returns a list of substitutions that result from solving the constraint given
as parameter. The general scheme of the functionsolveis as follows (cf. the functionsubstitutions( ·)
above):

Algorithm 8.2

function solve(Constraint C):
while a rule can be applied to Cdo:

select some constraint D in C and some rule R applicable to D
let D’ := apply rule R to D
replace D by D’ in C
put C in disjunctive normal form and verify consistency

return substitutions(C)
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Note that “rule” in the algorithm above denotes a simplification rule of the constraint solver and not
an Xcerpt rule. Rules from all three parts may be interleavedand the decision on the selection of rule
applications is deliberately left open (i.e. the algorithmdescribed here is non-deterministic), as long as
the selection is “fair” (i.e. each possible rule is applied within finitely many steps). This non-determinism
allows for interesting considerations about selection strategies that have not been investigated much in logic
programming (cf. Section 9.5.4).

8.2 Simulation Unification

Simulation Unification, as previously described in [24], is an algorithm that, given two termst1 andt2,
determines variable substitutions such that the ground instances oft1 andt2 simulate. Like standard uni-
fication (cf. [91]), simulation unification issymmetricin the sense that it can determine (partial) bindings
for variables in both terms. Unlike standard unification, itis howeverasymmetricin the sense that it does
not make the two terms equal, but instead ensures a ground query term simulation, which is directed and
asymmetric. The outcome of Simulation Unification is a set ofsubstitutions calledsimulation unifier.

Simulation Unification consists mainly of decomposition rules that operate recursively and in parallel
on the two unified terms (Section 8.2.2). When all terms are completely decomposed, the result is a
constraint store containing conjunctions and disjunctions of simulation constraints where the left or the
right side is a variable. These yield variable bindings by replacing simulation constraints of the form
X �u t by X = t. The consistency verification rules described above ensurethat all simulation constraints
are consistent and can be interleaved at any point.

8.2.1 Simulation Unifiers

In Classical Logic, a unifier is a substitution for two termst1 andt2 that, applied tot1 andt2, makes the
two terms identical. Thesimulation unifiersintroduced here follow this basic scheme, with two extensions:
instead of equality, simulation unifiers are based on the (asymmetric) simulation relation of Section 4.4
and instead of a single substitution, substitution sets as introduced in Section 7.3 are considered. Both
extensions are necessary, as they recognise the special Xcerpt constructsall andsomeand incomplete term
specifications.

Informally, a simulation unifierfor a query termtq and a construct termtc is a set of substitutions
Σ, such that each ground instancetq′ of tq in Σ simulates into a ground instancetc′ of tc in Σ. This
restriction is too weak for fully describing the semantics of the evaluation algorithm. For example, consider
a substitution setΣ =

{
{X 7→ a,Y 7→ b},{X 7→ b,Y 7→ a}, a query termtq = f{var X} and a construct term

tc = f{var Y}. With the informal description above,Σ would be a simulation unifier oftq in tc, but this is
not reasonable. We therefore also require that the substitutionσ ∈Σ that yieldstq′ also is “used” bytc′ . This
can be expressed by grouping the substitutions according tothe free variables intc (cf. Definition 7.3 on
page 148).

Definition 8.3 (Simulation Unifier)
Let tq be a query term, lettc be a construct term with the set of free variablesFV(tc), and letΣ be an
all-grounding substitution set.Σ is called asimulation unifierof tq in tc, if for eachJσK ∈ Σ/'FV(tc)

holds
that

∀tq′ ∈ JσK(tq) tq′ � JσK(tc)

Recall from Section 7.3 that all substitutions in an all-grounding substitution set assign data terms to
each variable. Intuitively, it is sufficient to only consider grounding substitutions fortq andtc. However,
all-grounding substitution sets simplify the formalisation of most general simulation unifiers below.

Example 8.5 (Simulation Unifiers)
1. Lettq = f{{var X,b}} and lettc = f{a,var Y,c}. A simulation unifier oftq in tc is the (all-grounding)

substitution set

Σ1 =
{
{X 7→ a,Y 7→ b},{X 7→ c,Y 7→ b}

}
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2. Lettq = f{{var X}} and lettc = f{all var Y}. A simulation unifier oftq in tc is the (all-grounding)
substitution set

Σ2 =
{
{X 7→ a,Y 7→ b},{X 7→ a,Y 7→ a}

}

Assignments for variables not occurring in the termstq andtc are not given in the substitutions above.

Simulation unifiers are required to begroundingsubstitution sets, because otherwise the simulation
relation cannot be established. Also, only grounding substitution sets can be applied to construct terms
containing grouping constructs, because a grouping is not possible otherwise. This restriction is less sig-
nificant than it might appear: as rules in Xcerpt are range restricted, the evaluation algorithm always
determines bindings for the variables intc, so that it is always possible to extend the solutions determined
by the simulation unification algorithm to a grounding substitution set by merging with these bindings.

Usually, there are infinitely many unifiers for a query term and a construct term. Traditional logic
programming therefore considers the most general unifier (mgu), i.e. the unifier that subsumes all other
unifiers. Since simulation unifiers are always grounding substitution sets, such a definition is not possible
for simulation unifiers. Instead, we define themost general simulation unifier(mgsu) as the smallest
superset of all other simulation unifiers. Note that the notionmost general simulation unifieris – although
different in presentation – indeed similar to the traditional notion of most general unifiers, because a most
general simulation unifier subsumes all other simulation unifiers.

Definition 8.4 (Most General Simulation Unifier)
Let tq be a query term and lettc be a construct term without grouping constructs such that there exists at
least one simulation unifier oftq in tc. Themost general simulation unifier(mgsu) oftq in tc is defined as
the union of all simulation unifiers oftq in tc.

In Section 8.2.4, we shall see that the simulation unification algorithm described here computes the
most general simulation unifier. Note that the most general simulation unifier is indeed always a simulation
unifier if tc does not contain grouping constructs. This is easy to see because the union of two simulation
unifiers simply adds ground instances oftq andtc where for every ground instancetq′ of tq there exists a
ground instancetc′ of tc such thattq′ � tc′ . This does in general not hold for construct terms with grouping,
but as grouping is not treated inside the unification algorithm, the definition above suffices for the purpose
of formalising the results of this algorithm.

8.2.2 Decomposition Rules

Decomposition rules take a single simulation constraint and try to recursively decompose the two terms
in parallel until no further rules are applicable. Each decomposition step yields one or more subsequent
constraints, often even a large disjunction containing alternatives. This reflects the many different alterna-
tive ground query term simulations that need to be considered in case of partial term specifications. This
section begins with several notations that mostly are similar to those used in Section 4.4.

All decomposition rules are first given without examples, because the examples tend to be very ex-
tensive, and mutually depend on other decomposition rules.Section 8.2.3 illustrates important aspects of
simulation unification on several more extensive examples.

Preliminaries

In the following, letl (with or without indices) denote a label, and lett1 denote query terms andt2 construct
terms (both with or without indices). Furthermore, let⊥ be a special term (not occurring as subterm in any
actual term) with the property that for allt 6=⊥ holds thatt �u ⊥ = False, i.e. no term unifies with⊥. In
the following sections, it is furthermore assumed thatt2 contains neither grouping constructs, functions,
aggregations, nor optional subterms. In practice, this restriction is insignificant, because construct terms
containing one of these constructs are always made ground before computing the simulation unification
(seeDependency Constraintbelow).
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Definition 8.5
Given two termst1 = l{t1

1, . . . ,t1
n} andt2 = l{t2

1, . . . ,t2
m}, the following sets of functionsΠX : 〈t1

1, . . . ,t1
n〉 →

〈t2
1, . . . ,t2

m〉 are defined (cf. Definition 4.6):

• SubT+ ⊆ 〈t1
1, . . . ,t1

n〉 is the sequence of all non-negated subterms oft1 andSubT− ⊆ 〈t1
1, . . . ,t1

n〉 is
the sequence of all negated subterms oft1

• SubT! ⊆ 〈t1
1, . . . ,t1

n〉 is the sequence of all non-optional subterms oft1 andSubT?⊆ 〈t1
1, . . . ,t1

n〉 is the
sequence of all optional subterms oft1

• Π is the set of partial, index injective functionsπ from 〈t1
1, . . . ,t1

n〉 to 〈t2
1, . . . ,t2

m〉 that are total on
SubT+ and onSubT! , each completed byt 7→ ⊥ for all t on whichπ is not defined

• Πmon is the setΠ restricted to all index monotonic functions

• Πbi j is the setΠ restricted to all index bijective functions

• Πpp is the set of all positionpreservingfunctions

• Πpr is the set of all positionrespectingfunctions

• Πm−pr = Πmon∩Πpr, Πb−pr = Πbi j ∩Πpr, Πb−pp = Πbi j ∩Πpp, andΠm−b = Πbi j ∩Πmon

To simplify the rules below, allpartial mappings inΠ are assumed to be completed by mapping all values
on which the mappings are undefined to the special term⊥. In this manner, every mapping inΠ can be
considered to be total in case the distinction is not necessary, whereas in the cases where partial mappings
are considered (optional andwithout ), the distinction is made explicitly.

Example 8.6
Consider the termst1 = f [[a,without b]] andt2 = f [a,b,c]. The set of index monotonic mappings of the
set of subterms oft1 into the set of subterms oft2 (Πmon) is as follows (without b abbreviated as¬b):

{a 7→ a,¬b 7→ ⊥} {a 7→ b,¬b 7→ ⊥} {a 7→ c,¬b 7→ ⊥}
{a 7→ a,¬b 7→ b} {a 7→ b,¬b 7→ c}
{a 7→ a,¬b 7→ c}

Note that all these mappings can be generated in a rather straightforward manner by creating a table
with the termst1

1 · · · t
1
n arranged top-down and the termst2

1 · · · t
2
m arranged left-right and then determining

paths from the first line to thenth line that fulfil certain properties. This technique is called thememoisation
matrix and described for the prototype in Appendix A.7.2.

Root Elimination

Root elimination rules compare the roots of the two terms anddistribute the unification to the subterms.

Brace Incompatibility The first set of rules treat incompatibility between braces and thus all of these
rules reduce the simulation constraint toFalse. For instance, an ordered simulation into an unordered term
is not reasonable, as the order cannot be guaranteed.
Decomposition Ruledecomp.1:

l [t1
1, . . . ,t1

n] �u l{t2
1, . . . ,t2

m} l [[t1
1, . . . ,t1

n]] �u l{t2
1, . . . ,t2

m}
False False
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Left Term without Subterms This set of rules consider all such cases where the left term does not
contain subterms. These cases have to be treated separatelyfrom the general decomposition rules below,
since using the latter would yield the wrong result in such cases. For instance, an emptyor is equvialent
to Falsebut the result should always beTrue in case the left term is only a partial specification. In the
following, let m≥ 0 andk≥ 1:
Decomposition Ruledecomp.2:

l{{ }} �u l{t2
1, . . . ,t2

m} l{{ }} �u l [t2
1, . . . ,t2

m] l [[ ]] �u l [t2
1, . . . ,t2

m]
True True True

l{ } �u l{t2
1, . . . ,t2

k} l{ } �u l [t2
1, . . . ,t2

k ] l [ ] �u l [t2
1, . . . ,t2

k ]
False False False

l{ } �u l{ } l{ } �u l [ ] l [ ] �u l [ ]
True True True

As specified by these rules, a term without subterms but a partial specification (double braces) matches
with any term which has the same label. If the term specification is total, it matches only with such terms
that also do not have subterms.

Decomposition without all, some, without, and optional The general decomposition rules
eliminate the two root nodes in parallel and distributes theunification to the various combinations of sub-
terms that result from ordered/unordered specification andfrom total/partial term specifications. If there
exists no such combination, then the result is an emptyor, which is equivalent toFalse. These term speci-
fications are represented by the different sets of mappingsΠ, Πbi j , Πmon, Πpr, andΠpp. In the following,
let n,m≥ 1.
Decomposition Ruledecomp.3:

l{{t1
1, . . . ,t1

n}} �u l{t2
1, . . . ,t2

m} l{{t1
1, . . . ,t1

n}} �u l [t2
1, . . . ,t2

m]
∨

π∈Πpp

∧

1≤i≤nt1
i �u π(t1

i )
∨

π∈Πpr

∧

1≤i≤n t1
i �u π(t1

i )

l{t1
1, . . . ,t1

n} �u l{t2
1, . . . ,t2

m} l{t1
1, . . . ,t1

n} �u l [t2
1, . . . ,t2

m]
∨

π∈Πbi j∩Πpp

∧

1≤i≤nt1
i �u π(t1

i )
∨

π∈Πbi j∩Πpr

∧

1≤i≤nt1
i �u π(t1

i )

l [[t1
1, . . . ,t1

n]] �u l [t2
1, . . . ,t2

m] l [t1
1, . . . ,t1

n] �u l [t2
1, . . . ,t2

m]
∨

π∈Πmon∩Πpr

∧

1≤i≤nt1
i �u π(t1

i )
∨

π∈Πmon∩Πbi j

∧

1≤i≤n t1
i �u π(t1

i )

For instance, if the left term has a partial, unordered specification for the subterms, the simulation
unification has to consider as alternatives all combinations of subterms of the left term with subterms of
the right term, provided that each child on the left gets a matching partner on the right.

Label Mismatch In case of a label mismatch, the unification fails. In the following, letl1 6= l2.
Decomposition Ruledecomp.4:

l1{{t1
1, . . . ,t1

n}} �u l2{t2
1, . . . ,t2

m} l1{t1
1, . . . ,t1

n} �u l2{t2
1, . . . ,t2

m}
False False

l1{{t1
1, . . . ,t1

n}} �u l2[t2
1, . . . ,t2

m] l1{t1
1, . . . ,t1

n} �u l2[t2
1, . . . ,t2

m]
False False

l1[[t1
1, . . . ,t1

n]] �u l2[t2
1, . . . ,t2

m] l1[t1
1, . . . ,t1

n] �u l2[t2
1, . . . ,t2

m]
False False
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→ Elimination

Pattern restrictions of the formX→ t1 �u t2 are decomposed by addingt2 as upper bound for the variable
X (as usual), adding the pattern restriction as lower bound for X (to ensure that there exists no upper bound
that is incompatible with the pattern restriction), and immediately trying to unifyt1 and t2. The latter
step is not strictly necessary, as it would also be performedby consistency rule 2 (transitivity). However,
immediate evaluation is advantageous as it excludes incompatible upper bounds immediately.
Decomposition Rulevar:

X→ t1 �u t2

t1 �u t2 ∧ t1 �u X ∧ X �u t2

Descendant Elimination

The descendant construct in terms of the formdesc tis decomposed by first trying to unifyt with the other
term, and then trying to unifydesc twith each of the subterms of the other term in turn. In this manner,
unifying subterms at all depths can be determined. Letm≥ 0.
Decomposition Ruledesc:

desct1 �u l{t2
1, . . . ,t2

m} desct1 �u l [t2
1, . . . ,t2

m]
t1 �u l{t2

1, . . . ,t2
m} ∨

∨

1≤i≤mdesc t1 �u t2
i t1 �u l [t2

1, . . . ,t2
m] ∨

∨

1≤i≤mdesc t1 �u t2
i

Decomposition withwithout

The declarative specification ofwithout in the ground query term simulation of Section 4.4 requires that
a partial function (of the set of non-negated subterms into the set of subterms of the second term) is not
completable to a (partial or total) function such that one ofthe negated subterm is mapped to a subterm
in which it simulates. Since the term on the right hand side ofa simulation constraint is always a data or
construct term, it is sufficient to consider the case where the right term does not contain negated subterms
(case 4 in Definition 4.8). For a simulation constraintt1�u t2, the decomposition rules for the case without
negated subterms is intuitively described as follows:

• A mappingπ is first restricted to the non-negated subterms oft1, i.e. the subterms of the left term
that are not of the formwithout t, on which the decomposition is performed in the same way as
for decomposition withoutwithout . Note that there might be several different mappings that are
identical withπ for all the non-negated subterms and only differ on the negated subterms.

• It is then necessary to verify whether there exists a mappingπ ′ that maps the non-negated subterms
of t1 to the same subterms oft2 asπ (in particular,π ′ might beπ itself), and permits to map at
least one negated subtermwithout s1 of t1 to a subterms2 of t2 such thats1 � s2. In this case, the
mapping restricted to the positive subterms oft1 is considered to be invalid, because it is completable
to a mapping that allows to map a negated subterm oft1 to a matching non-negated subterm oft2.
Thus,all mappings that map the positive subterms oft1 to the same subterms oft2 have to be ruled
out.

It is important to note that the set of mappingsΠ is defined (in the Preliminaries above) as the set of all
partial functions that aretotal on the set of positive subformulas. Recall furthermore, that the mappings in
Π are completed by mapping all undefined values to⊥.

In the following, letSubT+ ⊆ 〈t1
1, . . . ,t1

n〉 be the sequence of all subterms not of the formwithout t,
and letSubT− ⊆ 〈t1

1, . . . ,t1
n〉 be the sequence of all subterms of the formwithout t. Also, two functionsπ

andπ ′ are considered to be equal on the positive part, denotedπ(SubT+) = π ′(SubT+), if for all t ∈SubT+

holds thatπ(t) = π ′(t). Furthermore, letp(·) be a function that removes thewithout construct in front of
a negated subterm, i.e.p(without t) = t.
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Decomposition Rulewithout:

l{{t1
1, . . . ,t1

n}} �u l{t2
1, . . . ,t2

m}
∨

π∈Πpp

(
∧

t+∈SubT+ t+ �u π(t+)∧¬
(

∨

π ′∈Πpp with π(SubT+)=π ′(SubT+)

∨

t−∈SubT− p(t−)�u π ′(t−)
))

l [[t1
1, . . . ,t1

n]] �u l [t2
1, . . . ,t2

m]
∨

π∈Πm-pr

(
∧

t+∈SubT+ t+ �u π(t+)∧¬
(

∨

π ′∈Πm-pr with π(SubT+)=π ′(SubT+)

∨

t−∈SubT− p(t−)�u π ′(t−)
))

l{{t1
1, . . . ,t1

n}} �u l [t2
1, . . . ,t2

m]
∨

π∈Πpr

(
∧

t+∈SubT+ t+ �u π(t+)∧¬
(

∨

π ′∈Πpr with π(SubT+)=π ′(SubT+)

∨

t−∈SubT− p(t−)�u π ′(t−)
))

Note that decomposition withwithout is currently not covered in the completeness and correctness
proofs of Section 8.2.4.

Decomposition withoptional in the query term

Intuitively, decomposition withoptional in the query term should “enable” the maximal number of op-
tional subterms such that they can participate in the simulation. In the following, this is expressed as
follows:

• for all required subterms (i.e. not of the formoptional t), the treatment is as before (since all
negated subterms are required, they must be treated here as well, but this is omitted in the rules
below to enhance readability)

• for all optional subterms, a certain number is “enabled” by adding appropriate simulation constraints,
and all others are “disabled” by adding appropriate negatedsimulation constraints

In the following, these requirements are expressed as follows: given a partial mappingπ ∈Π (by definition
π must be total on the set of non-optional subterms, but may be partial on the set of optional subterms), it is
first verified whetherπ yields a simulation by unifying all terms on whichπ is defined with their mapping
(in the same manner as before). In the second part of the formula, it is then necessary to ensure thatπ
is also themaximalmapping with this property, i.e.π is not completable to a mappingπ ′ such that this
would also yield a simulation. This is ensured by adding a negated disjunction testing for all mappings
that are identical withπ on the subterms for whichπ is defined, but differ on the other subterms, whether
there exists an additional subterm that would unify with thesubterm it is mapped to inπ ′. If yes,π is not
maximal and completable toπ ′. If no, π is maximal.

For a given mappingπ , let SubTπ ⊆ SubTbe the sequence on whichπ is defined and not mapped to
⊥, i.e. for all t ∈ SubTπ holds thatπ(t) 6= ⊥, and letSubTπ = SubT\SubTπ. Also, two functionsπ andπ ′
are considered to be equal on a set of subtermsX ⊆ SubT, denotedπ(X) = π ′(X), if for all t ∈ X holds
thatπ(t) = π ′(t). Furthermore, letp(·) be a function that removes theoptional construct in front of an
optional subterm, i.e.p(optionalt) = t.
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Decomposition Ruleoptional:

l{t1
1, . . . ,t1

n} �u l{t2
1, . . . ,t2

m}
∨

π∈Πb−pp

(
∧

t∈SubTπ t �u π(t)∧¬
(
∨

π ′∈Πb−pp with π(SubTπ )=π ′(SubTπ )

∨

t′∈SubTπ
p(t ′)�u π ′(t ′)

))

l{{t1
1, . . . ,t1

n}} �u l{t2
1, . . . ,t2

m}
∨

π∈Πpp

(
∧

t∈SubTπ t �u π(t)∧¬
(
∨

π ′∈Πpp with π(SubTπ )=π ′(SubTπ )

∨

t′∈SubTπ
p(t ′)�u π ′(t ′)

))

l [t1
1, . . . ,t1

n] �u l [t2
1, . . . ,t2

m]
∨

π∈Πm−b

(
∧

t∈SubTπ t �u π(t)∧¬
(
∨

π ′∈Πm−b with π(SubTπ )=π ′(SubTπ )

∨

t′∈SubTπ
p(t ′)�u π ′(t ′)

))

l [[t1
1, . . . ,t1

n]] �u l [t2
1, . . . ,t2

m]
∨

π∈Πm−pr

(
∧

t∈SubTπ t �u π(t)∧¬
(
∨

π ′∈Πm−pr with π(SubTπ )=π ′(SubTπ )

∨

t′∈SubTπ
p(t ′)�u π ′(t ′)

))

l{t1
1, . . . ,t1

n} �u l [t2
1, . . . ,t2

m]
∨

π∈Πb−pr

(
∧

t∈SubTπ t �u π(t)∧¬
(
∨

π ′∈Πb−pr with π(SubTπ )=π ′(SubTπ )

∨

t′∈SubTπ
p(t ′)�u π ′(t ′)

))

l{{t1
1, . . . ,t1

n}} �u l [t2
1, . . . ,t2

m]
∨

π∈Πpr

(
∧

t∈SubTπ t �u π(t)∧¬
(
∨

π ′∈Πpr with π(SubTπ )=π ′(SubTπ )

∨

t′∈SubTπ
p(t ′)�u π ′(t ′)

))

Note the close similarity to the decomposition rules for terms containingwithout . Intuitively, this
similarity means that decomposition withoptional corresponds to creating all different alternatives where
zero or moreoptional subterms are “turned on” by omitting theoptional and the others are “turned
off” by replacingoptional by without , and evaluating all resulting terms as alternatives. Consider for
example the term

f{{var X→ a,optionalvar Y→ b,optionalvar Z→ c}}

The substitution resulting from the evaluation of this query term is equivalent to the union of the results of
the four terms

f{{var X→ a,var Y→ b,var Z→ c}}
f{{var X→ a,var Y→ b,withoutvar Z→ c}}
f{{var X→ a,withoutvar Y→ b,var Z→ c}}
f{{var X→ a,withoutvar Y→ b,withoutvar Z→ c}}

Note that this representation might be surprising on a first glance, because the intuitive understanding
of optional would be to simply leave out the optional subterms instead ofreplacing them by negated
subterms, as in:

f{{var X→ a,var Y→ b,var Z→ c}}
f{{var X→ a,var Y→ b}}
f{{var X→ a,var Z→ c}}
f{{var X→ a}}

However, this term representation does not reflect that an optional subterm isrequired to match, if it is
possibleto match. Consider for example a unification with the termf{a,c}. The correct solution would be
the substitution set

Σ =
{
{X 7→ a,Z 7→ c}

}

whereas the evaluation of the second set of terms would yield

Σ =
{
{X 7→ a,Z 7→ c},{X 7→ a}

}
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Note that decomposition withoptional is currently not covered in the completeness and correctness
proofs of Section 8.2.4.

Example 8.9 on page 176 illustrates the decomposition of a term containing two optional subterms.
Note that more efficient evaluation techniques for the decomposition rules above are conceivable. For
example, if one of the unification steps in the part for whichπ is defined already fails, it is not necessary to
consider all different alternative mappings that are equalon the subterms on whichπ is defined.

Incomplete Decomposition with grouping constructs, functions, aggregations, and optional subterms
in construct terms

A unification with a term containing grouping constructs, functions, or aggregations is in general incom-
plete because a complete decomposition requires to handle meta-constraints over the constraint store itself,
which is very inconvenient. Consider for instance a unification f{a,b,c} �u f [all X ]. To provide the
full information stated in this constraint, it would be necessary to add a meta-constraint stating that there
must be exactly three alternative bindings forX, and of those, one must bea, anotherb and the thirdc.
Evaluation of a query containingX would thus become very complex.

Although a complete decomposition is preferable, it is (fortunately) not necessary for evaluating Xcerpt
programs, as grouping constructs always depend on the bindings of the variables in the query part of a rule.
Rules containing grouping constructs are treated by thedependency constraint(cf. Section 8.3.1), which
performs an auxiliary computation for solving the query part of a rule and then substitutes the results in the
rule head. Thus, in this case it is sufficient to treat the unification of a query term with a data term, which
does not contain grouping constructs (and obviously also novariables).

However, it is still desirable to unify a term containing grouping constructs as far as possible in order
to exclude irrelevant evaluations of query parts in the dependency constraint as early as possible. For
example, the termsf{a,b} andg{all var X} will never yield terms that unify, regardless of the bindings
for X. Likewise, the termsf{g{a},g{b}} and f{all h{var X}} will never yield terms that unify, because
neitherg{a} norg{b} can be successfully unified with any of the ground instances of h{var X}.

Therefore, the algorithm described here takes a different approach, in which a unification withall only
yields anecessaryset of constraints, not asufficientset. The algorithm is thusincomplete(or “partial”) in
this respect.

The following decomposition rule is used, where the return value is either simplyTrueor False, with
the informal meaning “there might be a result” or “a result isprecluded”.
Decomposition Rulegrouping:

t1 �u all t2

(t1 �u t2) 6= False

In the case where the constraint is reduced toTrue, it is possible that there is a result, but it is also
possible that there is none, depending on the further evaluation of the variables int2.

Term References: Memoing of Previous Computations

Resolving References. References occurring in either term of a simulation constraint are dereferenced
in a straightforward manner using thedere f(·) function described above:
Decomposition Rulederef :

↑ id �u t2

t1 �u t2 t1 = dere f(id)
t1 �u ↑ id
t1 �u t2 t2 = dere f(id)

Memoing. Dereferencing alone is not sufficient for treating references, because the simulation unification
would not terminate in case both terms contain cyclic references. The technique used by the algorithm to
avoid this problem ismemoing(also known astabling). In general, memoing is used to avoid redundant
computations by storing the result of all previous computations in memory (e.g. in a table). If a computation
has already been performed previously, it is not necessary to repeat it as the result can simply be retrieved
from memory. This technique is among others used in certain implementations of Prolog [122, 37].

Consider for example the following (naı̈ve) implementation of the Fibonacci numbers in Haskell:
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f i b : : I n t → I n t
f i b 0 = 1
f i b 1 = 1
f i b n = f i b ( n−1) + f i b ( n−2)

Without memoing, this implementation performs many redundant computations.2 For example, for the
computation off ib(n) it is necessary to computef ib(n− 1) and f ib(n− 2), and for the computation of
f ib(n−1) it is necessary to computef ib(n−2) and f ib(n−3). Thus, f ib(n−2) needs to be computed
twice. With memoing, the second computation could instead refer to the previous computation.

In Xcerpt, memoing for unification with references can be implemented by keeping for each conjunct
in the disjunctive normal form a history of all previous applications of simplification rules (without their
results) that were used for the creation of the conjunct. In every decomposition step it is then first verified
whether the considered constraints have already been evaluated in a previous application of this simplifica-
tion rule. If yes, the constraint reduces toTrue; if no, the computation is continued as usual.

In the following rule, letH be a set of constraints that have been considered in previousapplications
of simplification rules in the current conjunct of the disjunctive normal form (history). Furthermore,t1 is
considered to be not of the formdesc t.
Decomposition Rulememoing:

desc t1 �u t2 such thatdesc t1 �u t2 ∈H t1 �u t2 such thatt1 �u t2 ∈H

False True

It might be somewhat surprising that the constraint is reduced toTrue/False instead of inserting the
result of a previous computation. The rationale behind thisis that the result of the previous computation
is already part of the current conjunct in the disjunctive normal form. TrueandFalseare the neutral ele-
ments of conjunction and disjunction, and thus terminate the unification while keeping results of previous
computations. Examples 8.10 and 8.11 illustrate the simulation unification with references.

8.2.3 Examples

Since most examples for the decomposition rules are rather extensive, they are all grouped in this Section to
improve readability. As in the examples in Section 4.4, the constructoptional is sometimes abbreviated
by opt , the constructposition is sometimes abbreviated bypos , and the constructwithout is sometimes
abbreviated by¬. The latter abbreviation is unproblematic, as¬ can otherwise never occur within a term.
Some of the more complicated examples also provide a “decomposition tree” which shows the application
of decomposition steps in the different conjuncts of the DNF. In these trees, nodes represent conjuncts and
edges represent decompositions. If applying a simplification rule to a conjunct yields a disjunction, its
corresponding node has more than one alternative successors. Read from the root to the leaves, these trees
allow to follow the sequences of decomposition steps that lead to substitutions. The consistent end states
of the constraint store are often emphasised by a rectangular frame.

Example 8.7 (Decomposition)
This example consists of three decompositions of simple simulation constraints. Figures 8.1, 8.2, and 8.3
provide a graphical illustration of the decompositions.

1. Consider the simulation constraint (cf. Figure 8.1)

C = f{{var X}} �u f{a,b,c}

Applying the decomposition ruledecomp.3with three different mappingsπ ∈ Π to this simulation
constraint yields

var X�u a ∨ var X�u b ∨ var X�u c

No further simplification rules are applicable.

2Note that Haskell’s lazy evaluation performs a technique similar to memoing
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f{{var X}} �u f{a,b,c}

var X�u a

decomp.3

var X�u b

decomp.3

var X�u c

decomp.3

Figure 8.1: Derivation tree off{{var X}} �u f{a,b,c} (Example 8.7, part 1). Different paths denote
different alternatives, nodes represent conjuncts, and edges represent applications of simplification rules.

f{{var X,var Y}} �u f{a,b,c}

var X�u a∧var Y�u b

decomp.3

var X�u a∧var Y�u c

decomp.3

var X�u b∧var Y�u c

decomp.3

Figure 8.2: Derivation tree off [[var X,var Y]] �u f [a,b,c] (Example 8.7, part 2). Different paths denote
different alternatives, nodes represent conjuncts, and edges represent applications of simplification rules.

2. Consider the simulation constraint (cf. Figure 8.2)

C = f [[var X,var Y]]�u f [a,b,c]

Note the partial, ordered term specification of the left term. Decomposition with ruledecomp.3and
the three different index monotonic mappingsπ ∈Πmon yields

var X�u a∧var Y�u b
∨ var X�u a∧var Y�u c
∨ var X�u b∧var Y�u c

3. Consider the simulation constraint (cf. Figure 8.3)

C = f{{var X→ b}} �u f{a,b,c}

As both terms are unordered, decomposition ruledecomp.3with the three differentπ ∈Π yields

var X→ b�u a ∨ var X→ b�u b ∨ var X→ b�u c

Decomposition of the→ construct reduces the constraint store to

b�u a ∧ var X�u a ∧ b�u var X
∨ b�u b ∧ var X�u b ∧ b�u var X
∨ b�u c ∧ var X�u c ∧ b�u var X

Simulation unification in all three conjuncts yields

False∧ var X�u a ∧ b�u var X
∨ True ∧ var X�u b ∧ b�u var X
∨ False∧ var X�u c ∧ b�u var X

and formula simplification simplifies this constraint storeto

var X�u b ∧ b�u var X
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f{{var X→ b}} �u f{a,b,c}

var X→ b�u a

decomp.3

b�u a ∧ var X�u a
∧ b�u var X

var

False∧ var X�u a
∧ b�u var X

unify

False

simplify

var X→ b�u b

decomp.3

b�u b ∧ var X�u b
∧ b�u var X

var

True ∧ var X�u b
∧ b�u var X

unify

var X�u b ∧ b�u var X

simplify

var X→ b�u c

decomp.3

b�u c ∧ var X�u c
∧ b�u var X

var

False∧ var X�u c
∧ b�u var X

unify

False

simplify

Figure 8.3: Derivation tree off{{var X→ b}} �u f{a,b,c} (Example 8.7, part 3). Different paths denote
different alternatives, nodes represent conjuncts, and edges represent applications of simplification rules.

Example 8.8 (Simulation Unification withwithout)
1. Consider

C = f{{a,without b}} �u f{a,c}

The setΠ of partial mappings that are total onSubT+ is as follows (partial mappings completed by
mapping undefined values to⊥)3:

{a 7→ a,¬b 7→ ⊥} {a 7→ c,¬b 7→ ⊥}
{a 7→ a,¬b 7→ c} {a 7→ c,¬b 7→ a}

From this set, the constraintC is decomposed into the following constraint formula (usingthe de-
composition rule for terms containingwithout ):

a�u a∧¬(b�u⊥∨b�u c)
∨ a�u c∧¬(b�u⊥∨b�u a)

Note thatt �u ⊥ always evaluates toFalse. Evaluating the constraints contained in the negated
subformulas yields:

a�u a∧¬(False∨False)
∨ a�u c∧¬(False∨False)

and formula simplification results in

a�u a∨a�u c

which of course can be further decomposed toTrue.

2. ConsiderC = f{{a,without b}} �u f{a,b}

The setΠ of partial mappings that are total onSubT+ is as follows (completed by mapping all terms
on which the mappings are undefined to⊥):

{a 7→ a,¬b 7→ ⊥} {a 7→ b,¬b 7→ ⊥}
{a 7→ a,¬b 7→ b} {a 7→ b,¬b 7→ b}

3note thatwithout bis abbreviated by¬b
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From this set, the constraintC is decomposed into the following constraint formula (usingthe de-
composition rule for terms containingwithout ):

a�u a∧¬(b�u⊥∨b�u b)
∨ a�u b∧¬(b�u⊥∨b�u a)

Evaluating the constraints contained in the negated subformulas yields:

a�u a∧¬(False∨True)
∨ a�u c∧¬(False∨False)

and formula simplification results in

a�u c

which of course can be further decomposed toFalse.

Example 8.9 (Simulation Unification withoptional)
Consider the constraintC = f [[a,opt g{var X},opth{var Y} ]]�u f [a,g{b}]

The setΠmon of partial, index monotonic mappings that are total onSubT! (the non-optional subterms
of the left term) is as follows (partial mappings are completed by mapping undefined values to⊥):

Πmon=
{
{a 7→ a, optg{var X} 7→ ⊥, opth{var Y} 7→ ⊥}
{a 7→ a, optg{var X} 7→ g{b}, opth{var Y} 7→ ⊥}
{a 7→ a, optg{var X} 7→ ⊥, opth{var Y} 7→ g{b}}
{a 7→ g{b}, optg{var X} 7→ ⊥, opth{var Y} 7→ ⊥}

}

From this set, the constraintC is decomposed into the following constraint formula (usingthe decomposi-
tion rule for terms containingoptional ). The constructoptional is already eliminated using the helper
rule described above:

a�u a∧ ¬( g{var X} �u⊥ ∨ h{var Y} �u⊥ ∨
g{var X} �u g{b} ∨ h{var Y} �u⊥ ∨
g{var X} �u⊥ ∨ h{var Y} �u g{b} )

∨ a�u a ∧ g{var X} �u g{b} ∧ ¬( h{var Y} �u⊥ )
∨ a�u a ∧ h{var Y} �u g{b} ∧ ¬( g{var X} �u⊥ )
∨ a�u g{b} ∧ ¬( g{var X} �u⊥ ∨ h{var Y} �u⊥ )

Note thatt �u⊥ always evaluates toFalse. Evaluating the constraints contained in the negated subformulas
yields:

a�u a∧ ¬( False ∨ False∨
var X�u b ∨ False∨
False ∨ False )

∨ a�u a ∧ g{var X} �u g{b} ∧ ¬( False )
∨ a�u a ∧ h{var Y} �u g{b} ∧ ¬( False )
∨ a�u g{b} ∧ ¬( False ∨ False )

Formula simplification and application of consistency rule5 (negation) yields

a�u a∧ False
∨ a�u a ∧ g{var X} �u g{b} ∧ True
∨ a�u a ∧ h{var Y} �u g{b} ∧ True
∨ a�u g{b} ∧ True

Note that reducing the first line toFalseinformally states “the mapping is completable”, whereas theTrue
values in lines 2–4 state that “the mapping is not completable” (because the right term only contains two
subterms and the mapping needs to be injective). After further decomposition and simplification steps, this
formula is simplified tovar X�u b (as desired).
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Example 8.10 (Simulation Unification with References)
Consider the simulation constraint

C = f{{o1@g{{var X→↑ o1}} }} �u f{g{a},o2@g{b,↑ o2}}

In the following, the sequence of decomposition steps that result in a complete simulation unification of
the simulation constraint is described. For each conjunct,the setHi denotes the current memoing history
of the conjunct. So as to better distinguish the path that lead to this history, the index is composed of the
numbers of the branches followed in previous steps. For example,H121 is the history of the node that can
be located by following the first branch on the top level, the second branch on the second level, and the first
branch on the third level. Note that Figure 8.4 gives a graphical representation of the decomposition tree
that might be easier to read. In this tree, the history of a node is easily determined by following the path
from the root node to the current node, and thus not given explicitly. The first decomposition step yields

o1@g{{var X→↑ o1}} �u g{a} H1 = {C}
∨ o1@g{{var X→↑ o1}} �u o2@g{b,↑ o2} H2 = {C}

Note that theHi denote the history for every conjunct, and is in this step thesame for both conjuncts, as
they “share the same history”. Further decomposition results in

var X→↑ o1�u a H11 = H1∪{o1@g{{var X→↑ o1}} �u g{a} }
∨ var X→↑ o1�u b H21 = H2∪{o1@g{{var X→↑ o1}} �u o2@g{b,↑ o2}}
∨ var X→↑ o1�u↑ o2 H22 = H2∪{o1@g{{var X→↑ o1}} �u o2@g{b,↑ o2}}

Application of the→ decomposition in all three conjuncts yields

↑ o1�u a ∧ ↑ o1�u var X ∧ var X�u a H111 = H11∪{var X→↑ o1�u a}
∨ ↑ o1�u b ∧ ↑ o1�u var X ∧ var X�u var X�u b H211 = H21∪{var X→↑ o1�u b}
∨ ↑ o1�u↑ o2∧ ↑ o1�u var X ∧ var X�u↑ o2 H221 = H22∪{var X→↑ o1�u↑ o2}

In the next step,o1 is dereferenced too1@g{{var X→↑ o1}} in all conjuncts. This gives the result:

o1@g{{var X→↑ o1}} �u a∧ ↑ o1�u var X ∧ var X�u a H1111= H111∪{↑ o1�u a}
∨ o1@g{{var X→↑ o1}} �u b∧ ↑ o1�u var X ∧ var X�u b H2111= H211∪{↑ o1�u b}
∨ o1@g{{var X→↑ o1}} �u↑ o2∧ ↑ o1�u var X ∧ var X�u↑ o2 H2211= H221∪{↑ o1�u↑ o2}

Decomposition in the first two conjuncts and dereferencing of o2 in the third conjunct then yields:

False∧ ↑ o1�u var X ∧ var X�u a
H11111= H1111∪{o1@g{{var X→↑ o1}} �u a}

∨ False∧ ↑ o1�u var X ∧ var X�u b
H21111= H2111∪{o1@g{{var X→↑ o1}} �u b}

∨ o1@g{{var X→↑ o1}} �u o2@g{b,↑ o2} ∧ ↑ o1�u var X ∧ var X�u o2@g{b,↑ o2}
H22111= H2211∪{o1@g{{var X→↑ o1}} �u↑ o2,var X�u↑ o2}

The next step eliminates the first two conjuncts because theycontainFalse. In the third conjunct, the
memoingrule is applicable to the first simulation constraint:o1@g{{var X→↑ o1}} �u o2@g{b,↑ o2} ∈
H22⊆H22111. It thus reduces toTrueand terminates the otherwise infinite computation:

True∧ ↑ o1�u var X ∧ var X�u var X�u o2@g{b,↑ o2} H221111= H22111

Now the second occurrence ofo1 can be dereferenced. The following constraint store is theresult of the
simulation unification:

o1@g{{var X→↑ o1}} �u var X ∧ var X�u var X�u o2@g{b,↑ o2}
H2211111= H221111∪{↑ o1�u var X}
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f{{o1@g{{var X→↑ o1}} }} �u f{g{a},o2@g{b,↑ o2}}

o1@g{{var X→↑ o1}} �u g{a}

decomp.3

var X→↑ o1�u a

decomp.3

↑ o1�u a∧ ↑ o1�u var X ∧var X�u a

var

o1@g{{var X→↑ o1}} �u a∧
↑ o1�u var X ∧ var X�u a

deref

False

decomp.4

o1@g{{var X→↑ o1}} �u o2@g{b,↑ o2}

decomp.3

var X→↑ o1�u a

decomp.3

↑ o1�u b∧ ↑ o1�u var X ∧var X�u b

var

o1@g{{var X→↑ o1}} �u b∧
↑ o1�u var X ∧ var X�u b

deref

False

decomp.4

var X→↑ o1�u↑ o2

decomp.3

↑ o1�u↑ o2∧ ↑ o1�u var X ∧ var X�u↑ o2

var

o1@g{{var X→↑ o1}} �u↑ o2∧
↑ o1�u var X ∧ var X�u↑ o2

deref o1

o1@g{{var X→↑ o1}} �u o2@g{b,↑ o2} ∧
↑ o1�u var X ∧ var X�u o2@g{b,↑ o2}

deref o2

True∧
↑ o1�u var X ∧ var X�u o2@g{b,↑ o2}

memoing

↑ o1�u var X ∧ var X�u o2@g{b,↑ o2}

simplify

σ =
{

X 7→ o2@g{b,↑ o2}
}
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f{{ desc a{{}} }} �u f{ o1@a{↑ o1} }

desc a{{}} �u o1@a{↑ o1}

decomp.3

a{{}}�u o1@a{↑ o1}

desc

True

decomp.2

desc a{{}} �u↑ o1

desc

desc a{{}}�u o1@a{↑ o1}

deref

False

memoing

Figure 8.5: Derivation tree off{{ desc a{{}} }} �u f{ o1@a{↑ o1} } (Example 8.11). In this graph, the
memoing historyH of a node is represented by the path from the root to that node.

Example 8.11 (Simulation Unification with References and Descendant)
Consider the simulation constraint

C = f{{ desc a{{}} }} �u f{ o1@a{↑ o1} }

The sequence of decomposition steps is as follows (cf. Figure 8.5 for a graphical illustration). The first
decomposition step (decomp.3) yields

desc a{{}}�u o1@a{↑ o1} H1 = {C}

Application of the descendant decomposition splits the constraint store into two conjuncts as follows:

a{{}} �u o1@a{↑ o1} H11 = H1∪{desc a{{}} �u o1@a{↑ o1}}
∨ desc a{{}} �u↑ o1 H12 = H1∪{desc a{{}} �u o1@a{↑ o1}}

Decomposition in the first conjunct yieldsTrue, and in the second conjunct,o1 can be dereferenced:

True H111 = H11∪{a{{}}�u o1@a{↑ o1}}
∨ desc a{{}} �u o1@a{↑ o1} H121 = H12∪{desc a{{}} �u↑ o1}

As desc a{{}} �u o1@a{↑ o1} ∈ H1 ⊆ H121, the memoing rule is applicable and reduces the second
conjunct toFalse, and the process terminates as no more rule is applicable.

True H1111= H111

∨ False H1211= H121

8.2.4 Soundness and Completeness

The following theorem shows soundness and completeness forthe simulation unification algorithm applied
to a simulation constraint of the formtq �u tc. tq is assumed to not contain subterm negation or optional
subterms. Also, as rules with grouping constructs are always evaluated in an auxiliary computation using
the dependency constraint, it is assumed thattc does not contain grouping constructs. Furthermore,tc is
assumed not to contain functions, aggregations or optionalsubterms.

Theorem 8.6 (Soundness and Completeness of Simulation Unification)
Let tq be a query term without subterm negation and optional subterms and lettc be a construct term
without grouping constructs, functions/aggregations, and optional subterms. A substitution setΣ is a most
general simulation unifier oftq andtc if and only if the simulation unification oftq�u tc terminates with a
constraint storeCSsuch thatΣ = Ω(CS).

Proof. cf. Appendix B.2 ut
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8.3 Backward Chaining

The backward chaining algorithm presented here is inspiredby the SLD resolution calculus used in logic
programming [71]. However, traditional approaches like SLD resolution do not account well for Xcerpt
constructs like partial term specification or grouping constructs. Both kinds of constructs seriously influ-
ence the resolution calculus:
High Branching Rate.In traditional logic programming, there are two elements ofnondeterminism that
lead to branching in the proof tree: selection of the predicate to unfold in the evaluation of a rule body, and
the selection of the program rule used for further chaining.Xcerpt’s usage of partial patterns adds a third
element: When using partial patterns, there is in general nosingle way to match two terms. Instead, all
possible alternative matchings have to be considered, which leads to a significantly higher branching rate.
Grouping Constructsall and some. Unlike Prolog’ssetof andbagof predicates, the grouping constructs
all and some are an integral part of the language. It is hence desirable tosupport such higher order
constructs in the proof calculus itself rather than treating them as external predicates.

In the following, a backward chaining algorithm based on constraint solving is introduced. It makes
use of the simple constraint solver of Section 8.1 and the simulation unification algorithm of Section 8.2.
In this algorithm, it is assumed that Xcerpt programs are range restricted, stratified, and separated apart
(cf. Chapter 6). Evaluation always begins with a single, folded query constraint, i.e. a single constraint of
the form〈Q〉 for some goaltc←g Q, and terminates when the constraint store either fails or issufficiently
solved to produce the answer term for the goal.4 “Sufficiently” currently means that the constraint store is
solved completely, but it might be desirable to investigateoptimisations based on the construct termtc of
the goal that solve only relevant parts of the constraint store.

Instead of using backtracking to evaluate rule chaining, the backward chaining algorithm for Xcerpt
uses disjunctions in the constraint store to represent alternatives. In this manner, it is possible to use other
selection strategies than depth-first search for the selection of paths to evaluate. This is desirable as theall
construct requires to find all solutions to a query anyway.

Note that the algorithm does not necessarily terminate for any input, as programs may contain recursive
rules that produce infinite chains. As it is desirable to havethis expressive power in Xcerpt, it is the duty of
programmers to ensure that programs terminate. Non-termination might also be desirable, e.g. to produce
continuous streams of data (together with theall construct), but such applications have not yet been
investigated in detail (cf. Section 9.5.2).

The following Sections first introduce the dependency constraint as a means to treating the grouping
constructsall andsome, functions, and aggregations by performing an auxiliary computation. Afterwards,
simplification rules for unfolding folded queries are discussed, which also implement the main part of the
algorithm Different approaches to backward chaining in Xcerpt have been considered in the course of this
thesis [25, 94]. The approach presented here is a further refinement of the “all at once” approach presented
in [25].

8.3.1 Dependency Constraint

The dependency constraint is of the form(t1 �u t2 | D) for a simulation constraintt1 �u t2 and some
constraintD (usually a folded query) and expresses a temporal and functional dependency betweent1�u t2
andD. A dependency constraint of the form above requires to completely evaluate the constraintD in
an auxiliary computation (also considering other constraints with which the dependency constraint is in
conjunction) beforet1�u t2, and applies the substitution resulting from the evaluation of D to t2 (application
to t1 is not necessary as the termst1 andt2 stem from different rules and are thus variable disjoint). If the
evaluation ofD fails, then the dependency constraint also fails without evaluatingt1 �u t2. The following
simplification rule formalises this treatment:

( t1 �u t2 | D )
∨

t′2∈Σ(t2) t1 �u t ′2
Σ = subst(solve(D))

4Recall that the result of a goal is always either failure or a single data term.
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Note that ifΣ is empty (i.e. there is no solution forD), the setΣ(t2) is empty and thus the result of the
evaluation is the empty disjunction, which simplifies toFalse. In case the evaluation ofD yields simply
True, the resulting substitution setΣ is not empty, but contains the empty substitution (identity).

The dependency constraint is necessary because the (incomplete) simulation unification with a con-
struct term containing the grouping constructsall or some, or functions and aggregations, usually does
not sufficiently characterise the possible bindings of the variables in the two terms.

In order to detect inconsistencies early (and avoid unnecessary recursion), it is reasonable to perform
a partial unification between the query term and the construct term and add that result toD in order
to exclude such cases for which no answer can exist. Considerfor instance the simulation constraint
f{{g{var X}}} �u f{all h{var Y}}). A partial unification could determine that for allY must hold that
g{·} �u Y, but notg{var X} �u Y as this would possibly yield inconsistent restrictions forthe variable
X. The following refinement of the rule above uses the incomplete decomposition ofall andsome to add
such information:

( t1 �u t2 | D )
∨

t′2∈Σ(t2) t1 �u t ′2
Σ = subst(solve(D ∧ t1�u t2))

8.3.2 Query Unfolding

The rules for query unfolding take a folded query constraintof the form〈Q〉 and evaluate it by “unfolding”
it. For and/or connected queries, this simply means to distribute the evaluation to the subqueries and
connect the corresponding folded query constraints with the respective connectives. For query terms (i.e.
atomic queries), this means either to query the terms at the associated resource, or to query the construct
parts of program rules. In both cases, the algorithm revertsto simulation unification for determining the
solution. In case a query term queries the construct parts ofprogram rules, it is furthermore necessary to
evaluate the respective query parts of the rules and to take care of grouping constructs that possibly occur
in the construct part of rules. The following query unfolding rules are used:

And/Or-Connection The connectivesand andor are simply mapped to their counterparts in the con-
straint store. The rules forandandor are therefore straightforward:

〈and{Q1, . . . ,Qn}〉R 〈or {Q1, . . . ,Qn}〉R
〈Q1〉R∧·· ·∧ 〈Qn〉R 〈Q1〉R∨·· ·∨ 〈Qn〉R

Note that the resource specificationR is distributed recursively, and that in particular,R may be empty (i.e.
R = /0).

Query Negation Xcerpt query negation is negation as failure (NaF), and evaluated in an auxiliary com-
putation very much like the dependency constraint. The result of this auxiliary computation is a constraint
formulaC specifying which variable bindings are disallowed for the variables occurring inQ. It is thus
first restricted to constraints containing variables that occur in Q and then added negated to the original
constraint store. The consistency verification rules 3–5 ofthe constraint solver ensure that variables cannot
be bound to values disallowed byC.

〈not Q〉R
¬C

V = vars(Q),C = restrict(V,solve(〈Q〉R))

Resource Specification In the case where the query is the specification of an input resource, this resource
needs to be retrieved. The functionretrieve(RSpec) takes a resource specification of any form (e.g. an URI
together with a format specification of “xml” such that it canbe parsed correctly) and returns a set of data
terms corresponding to this resource. Note that it is also possible that a resource contains more than one
term, e.g. when the resource is another Xcerpt program.

〈in{RSpec,Q}〉R′
〈Q〉R

R = retrieve(RSpec)

Note that the old resource specificationR′ is shadowed by the new resource specificationR = retrieve(RSpec)
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Query Term Two simplification rules process query terms. The first rule considers query terms with
associated resources. In this case, the query term is unfolded to adisjunctionof simulation constraints, one
constraint for each resource. The intuitive meaning is “query any of the given resources”.

〈tq〉{t1,...,tn}
tq�u t1∨·· ·∨ tq�u tn

The second query term unfolding works on such query terms that haveno resource associated. In such
a case, the query term is evaluated against all rules in the program. For each rule containing grouping
constructs, functions, or aggregations, a dependency constraint is added which evaluates the unification
between the query term and the head of the rule only, if the body of the rule can be evaluated successfully
and the result can be applied to the rule head. For each rule not containing a grouping construct, the folded
query is replaced by a simulation constraint between the query term and the construct term of the rule
together with the (folded) query part of the rule. Each rule evaluation is an alternative, hence the result is a
disjunction of constraints.

In the following, letPgrouping⊆ P be the set of program rulestc← Q such thattc contains grouping
constructs, functions, aggregations, or optional subterms, and letPnongrouping⊆ P bet the set of program rules
tc← Q such thattc does not contain grouping constructs, functions, aggregations, or optional subterms.
Note that goals are not considered in either case, as they do not participate in chaining. Furthermore,n≥ 0
andm≥ 0.

〈tq〉 /0
∨

tc←Q∈Pgrouping
(tq�u tc | 〈Q〉 /0) ∨

∨

tc←Q∈Pnongrouping
tq�u tc∧〈Q〉 /0 ∨

∨

td∈P tq�u td

8.3.3 Examples

This Section contains several examples that show various aspects of the evaluation algorithm. Like for
simulation unification in Section 8.2.3 above, the examplesare also illustrated in derivation trees. Nodes
represent conjuncts, edges represent applications of simplification rules, and different nodes on the same
level are alternatives. Each non-False leaf node in these trees represents an alternative solutionof the
evaluation.

Example 8.12 (Chaining)
Consider the following Xcerpt program (represented in compact notation and with internalised resources):

f{var X}← and{g{{var X}},h{var X}}
g{a,b}
h{b}

Figure 8.6 shows the evaluation of the query〈 f{var R}〉. Note the use of consistency verification rules in
some of the lower parts of the tree.

Example 8.13 (Chaining, Query Negation)
Consider the following Xcerpt program (represented in compact notation and with internalised resources):

f{var X}← and{g{{var X}},not h{var X}}
g{a,b}
h{b}

Figure 8.7 shows the evaluation of the query〈 f{var R}〉. Note the use of consistency verification rules
in some of the lower parts of the tree and the auxiliary computation used for evaluating the negated part.
This auxiliary computation is indicated by the dashed line and evaluates〈h{var X}〉 like in Example 8.12
before tovar X�u b.
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〈 f{var R}〉

f{var R} �u f{var X} ∧ 〈and{g{{var X}},h{var X}}〉

unfold query

var R�u var X ∧ 〈g{{var X}}〉 ∧ 〈h{var X}〉

unfold query

var R�u var X ∧ 〈h{var X}〉
g{{var X}}�u f{{var X′}} ∧ 〈and{. . .}〉

unfold query, sep. apart

var R�u var X ∧ 〈h{var X}〉
False∧ 〈and{. . .}〉

unify

False

simplify

var R�u var X ∧ 〈h{var X}〉
∧ g{{var X}}�u g{a,b}

unfold query

var R�u var X ∧ g{{var X}}�u g{a,b}
h{var X} �u f{var X′′} . . .

unfold query, sep. apart

False

unify, simplify

var R�u var X ∧ g{{var X}}�u g{a,b}
h{var X} �u g{a,b,c}

unfold query

False

unify, simplify

var R�u var X ∧ g{{var X}}�u g{a,b}
h{var X} �u h{b}

unfold query

var R�u var X ∧ var X�u a
var X�u b

unify

False

consistency, unify, simplify

var R�u var X ∧ var X�u b
var X�u b

unify

var R�u var X ∧ var X�u b

consistency, unify, simplify

var R�u var X ∧ var X�u b ∧ var R�u b

transitivity

var R�u var X ∧ 〈h{var X}〉
g{{var X}} �u h{b}

unfold query, sep. apart

var R�u var X ∧ 〈h{var X}〉
False

unify

False

simplify

f{var X} �u g{a,b}

unfold query

False

unify

f{var X} �u h{b}

unfold query

False

unify
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〈 f{var R}〉

f{var R} �u f{var X} ∧ 〈and{g{{var X}},not h{var X}}〉

unfold query

var R�u var X ∧ 〈g{{var X}}〉 ∧ 〈not h{var X}〉

unfold query

var R�u var X ∧ 〈not h{var X}〉
g{{var X}} �u f{{var X′}} ∧ 〈and{. . .}〉

unfold query, sep. apart

var R�u var X ∧ 〈not h{var X}〉
False∧ 〈and{. . .}〉

unify

False

simplify

var R�u var X ∧ 〈not h{var X}〉
∧ g{{var X}}�u g{a,b}

unfold query

var R�u var X ∧ ¬〈h{var X}〉 ∧ g{{var X}} �u g{a,b}

unfold query

var R�u var X ∧ ¬(var X�u b) ∧ g{{var X}} �u g{a,b}

auxiliary comp.〈h{var X}〉

var R�u var X ∧ ¬(var X�u b) ∧ var X�u a

unify

var R�u var X ∧ var X�u a ∧ ¬(a�u b∨b�u a)

consistency (neg.)

var R�u var X ∧ var X�u a ∧ True

unify, negation

var R�u var X ∧ var X�u a

simplify

var R�u var X ∧ ¬(var X�u b) ∧ var X�u a

unify

var R�u var X ∧ var X�u b ∧ ¬(b�u b∨b�u b)

consistency (neg.)

var R�u var X ∧ var X�u a ∧ False

unify, negation

False

simplify

var R�u var X ∧ 〈not h{var X}〉
g{{var X}} �u h{b}

unfold query, sep. apart

var R�u var X ∧ 〈not h{var X}〉
False

unify

False

simplify

f{var X} �u g{a,b}

unfold query

False

unify

f{var X} �u h{b}

unfold query

False

unify

Figure 8.7: Derivation tree showing the evaluation of〈 f{var R}〉 with the program in Example 8.13 (chain-
ing with negation).
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〈 f{{var R}}〉

( f{{var R}} �u f{all var X} | 〈g{var X}〉)

unfold query

∨

t∈Σ( f {all var X}) f{{var R}} �u t

auxiliary computation
Σ = substitutions(〈g{var X}〉)
cf. Figure 8.9

f{{var R}} �u f{a,b}

var R�u a

unify

var R�u b

unify

f{{var R}} �u g{var Y} ∧ 〈h{var Y}〉

unfold query

False∧ 〈h{var Y}〉

unify

False

simplify

f{{var R}} �u g{a}

unfold query

False

unify

f{{var R}} �u h{b}

unfold query

False

unify

Figure 8.8: Derivation tree showing the evaluation of〈 f{var R}〉 with the program in Example 8.14 (chain-
ing with grouping constructs).

Example 8.14 (Chaining, Grouping Constructs)
Consider the following grouping stratifiable Xcerpt program (cf. Examples 6.5 and 7.11):

f{all var X}← g{var X}
g{var Y}← h{var Y}
g{a}
h{b}

The evaluation of a queryf{{var R}} in this program is shown in Figures 8.8 (main evaluation) and
8.9 (auxiliary computation ofg{var X} for the dependency constraint). Note that the evaluation ofthe
dependency constraint in Figure 8.9 uses the incomplete unification withall to avoid unnecessary auxiliary
computations.

8.3.4 Soundness and Completeness

In this section, it is shown that the backward chaining algorithm is sound with respect to the fixpoint se-
mantics described in Section 7.5, and that it is complete in all cases where the algorithm terminates. This
completeness result is weak, but appears to be inherent to backward chaining. As rules with grouping con-
structs in the rule head require the body to be maximally satisfied (cf. Chapter 7), the proofs for soundness
and completeness are tightly interweaved. We therefore first show the following Lemma, which is at the
core of both soundness and (weak) completeness. Recall thatΩ(CS) denotes the solution set of a constraint
storeCS.

Lemma 8.7
Let P be a negation-free, grouping stratified Xcerpt program without goals, letMP be the fixpoint ofP, and
let Q be a negation-free query (composed of one or more query terms). If the evaluation of〈Q〉 terminates
with a constraint storeCS, thenΣ = Ω(CS) is a maximal substitution set withMP |= Σ(Q).

Proof. cf. Appendix B.3 ut

This Lemma contains almost all necessary “ingredients” forboth soundness and completeness: it states
that the solution set of the resulting constraint store is a maximal (i.e. “complete”) substitution set for the
satisfaction (i.e. “soundness”) of the query part of a goal.
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〈g{var X}〉

(g{var X} �u f{all var X′} | 〈g{var X′}〉)

unfold query

(False | 〈g{var X′}〉)

unify (incomplete)

False

simplify

g{var X} �u g{var Y} ∧ 〈h{var Y}〉

unfold query

var X�u var Y ∧ 〈h{var Y}〉

unify

var X�u var Y ∧ (h{var Y} �u f{all var X′} | 〈g{var X′}〉)

unfold query

var X�u var Y ∧ (False | 〈g{var X′}〉)

unify (incomplete)

False

simplify

var X�u var Y ∧ h{var Y} �u g{a}

unfold query

var X�u var Y ∧ False

unify

False

simplify

var X�u var Y ∧ h{var Y} �u h{b}

unfold query

var X�u var Y ∧ var Y�u b

unify

var X�u var b ∧ var Y�u b

transitivity

g{var X} �u g{a}

unfold query

var X�u a

unify

g{var X} �u h{b}

unfold query

False

unify
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CHAPTER 8. OPERATIONAL SEMANTICS

Recall for the remainder of this section that goals differ from rules in that the ground instances of the
goal heads cannot be queried by query terms. This differenceis not reflected in the declarative semantics
described in Chapter 7, but can be achieved by ensuring that no query term simulates into a ground instance
of a goal head, e.g. by wrapping goal heads as subterms of a term with a label not used elsewhere in the
program.

Soundness

Theorem 8.8 (Soundness of the Backward Chaining Algorithm)
Let P be a negation-free, grouping stratified Xcerpt program, andlet G = tc←g Q be a goal inP. If
the evaluation ofQ in P terminates with a constraint storeCS inducing a grounding substitution setΣ =
substitutions(CS), thenΣ(tc) is a subset of the fixpointMP of P.

Proof. Let P be a negation-free, grouping stratified Xcerpt program, andlet G = tc←g Q be a goal inP. Assume
thatP′ ⊆ P is P without the goals. According to Lemma 8.7, evaluation of〈Q〉 in P′ terminates with a constraint store
CS= D1∨ ·· · ∨Dn in disjunctive normal form such that the substitution setΨ = Ω(CS) is a maximal substitution set
with MP′ |= Ψ(Q).

As the results of goals do not participate in rule chaining, adding the goals toP′ does not influence the other rules
in P′ and only adds new data terms toMP′ . Thus, also forMP holds thatMP |= Ψ(Q), andΨ is maximal.Ψ(tc)⊆MP

then follows from the definition ofTP. Furthermore, becauseP is range restricted, it holds that every variableX in
tc appears in every conjunctDi in a simulation constraint of the formX �u t. Hence, with Corollary 8.2 follows that
substitutions(CS) = Ω(CS)|V , whereV is the set of variables occurring intc. Thus,substitutions(CS) yields the same
ground instances oftc asΨ = Ω(CS). The backward chaining algorithm is thus sound. ut

Completeness

In general, backward chaining is incomplete with respect tothe fixpoint semantics described in Chapter 7.
This is easy to see on a small example. Consider the program

f{a}← f{a}
f{a}

The fixpoint for this program obviously is simply
{

f{a}
}

. However, evaluation of e.g.f{var X} does
not terminate in the backward chaining evaluation, becausethe rule in the program above is applicable
infinitely often. This problem is not particular to Xcerpt: other logic programming languages like Prolog
terminate neither with such programs.

To solve this, SLD resolution [71] uses afairnessclause that states that every clause (i.e. rule or data
term) must be used eventually, which ensures that SLD resolution determines an answer after finitely many
steps, if an answer exists. Unfortunately, this fairness clause is not applicable in Xcerpt, because the
grouping constructs require to retrieveall solutions to a query, whereas fairness only guarantees to find one
solution after finitely many steps. Consider for example theprogram

g{all var X}← f{var X}
f{a}← f{a}
f{a}

This program is grouping stratifiable and the fixpoint of thisprogram is obviously
{

f{a},g{a}
}
. Con-

struction of the resultg{a} however requires to retrieve all solutions tof{var X}; a single solution does
not suffice because it violates the maximality requirement in the semantics of theall construct.

Hence, we restrict the statement of completeness to negation-free, grouping stratified Xcerpt programs
for which the evaluation algorithm terminates. This result is obviously somewhat unsatisfactory, because
any non-terminating program would be complete under this assumption. We therefore also give criteria
and suggest enhancements that ensure that programs terminate (in case the fixpoint is finite).

Theorem 8.9 (Weak Completeness of the Backward Chaining Algorithm)
Let P be a negation-free, grouping stratified Xcerpt program, with a stratificationP= P1]·· ·]Pm (m≥ 1),
and letG = tc←g Q be a goal inP such that the evaluation ofQ terminates. Assume thatP has a fixpoint
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MP = Tω
P (P). If the evaluation ofQ in P terminates with a constraint storeCS, thenCSinduces amaximal

substitution setΣ with Σ(tc)⊆MP (i.e. there exist no other ground instances oftc in MP).

Proof. By Theorem 8.8, evaluation ofQ in Pyields a constraint storeCSinducing a substitution setΣ with Σ(tc)⊆MP.
Hence, we only have to show thatΣ is also maximal wrt.tc, i.e. there exists noΣ′ with Σ|V ⊆ Σ′|V for the set of variables
V occurring intc.

From Lemma 8.7, we know that the evaluation of〈Q〉 in P terminates with a constraint storeCSsuch thatΨ =
Ω(CS) is a maximal substitution withMP |= Ψ(Q), and thusΨ(tc)⊆MP. Furthermore,Ψ is maximal wrt. toQ. As by
definition of goals, no ground instances oftc besides those produced by the goal may exist5, Ψ is thus also maximal
wrt. Ψ(tc)⊆MP. Also, we have already seen in the proof of Theorem 8.8 thatΣ = substitutions(CS) = Ω(CS)|V where
Σ yields the same ground instances oftc asΩ(CS). Thus,Σ is also maximal wrt.Σ(tc)⊆MP. ut

Criteria for Termination

No Recursion. Disallowing recursion is an obvious way to ensure termination. This restriction appears
very strict on a first glance. However, due to the powerful grouping constructsall andsome, this restricted
class still allows many useful programs that would require recursion in traditional logic programming. For
example, the program computing the sum of rows and columns inan HTML table described in Section 5.1.3
didn’t use recursion despite the rather complex task. Likewise, many of the other examples of Chapter 5
did not require recursion while still being useful programs.

Of course, as has been argued before, there are many applications that still require recursion. It is
therefore important to study refinements of this restriction that disallow only certain kinds of recursion. A
useful candidate are programs where only the ground instances of rules are non-recursive (so-calledlocally
hierarchical programs[87]).

Retrieving only Some Solutions. In many cases, it is actually not necessary to retrieve all solutions of
the constraint store, e.g. when the rules that depend on the recursion do not contain grouping constructs.
Also, a user might be satisfied with results that can be delivered in a certain time span. For both cases, the
change to the evaluation algorithm would only be minor: instead of iterating as long as a rule can be applied
to the constraint store, the functionsolve( ·) (Section 8.1.6) would need to terminate as soon as one of
the conjuncts of the constraint store is completely solved.Also, a fair rule application strategy would be
necessary (e.g. breadth-first search or some other completesearch strategy).

Tabling. Tabling [37] is a technique (used e.g. in XSB Prolog) where redundant and non-terminating rule
applications are avoided by caching the results of previousapplications, and is known to terminate more
often than the SLD resolution used in standard Prolog [105].In particular, it avoids the problem described
above.

5otherwise, disambiguation is possible because results of goals do not participate in rule chaining
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CHAPTER

NINE

Perspectives

This thesis only provides the foundations for the language Xcerpt. In its current state, Xcerpt is not suited
for usage in practical applications, because it lacks many desirable constructs and the current implemen-
tation is rather inefficient and implements the presented language constructs only in parts. This chapter
provides perspectives for future research that might contribute to the success of the language.

9.1 Advanced Query Constructs

As shown in this thesis, the language Xcerpt in its current form is well suited for a number of Web appli-
cations. However, Xcerpt only provides a number of core constructs. Many queries are therefore either not
possible or rather complicated to express. This section briefly describes areas where additional constructs
might be desirable and in some cases suggests concrete language extensions that have been thought of.

9.1.1 Advanced Text Processing

Text Querying Beyond Markup Boundaries

Most XML documents on the Web do not represent semistructured “databases” but rather text content with
markup serving various purposes, including layout (as in HTML), text structure, and annotations. In the
form presented in this thesis, Xcerpt only provides regularexpressions for text processing. However, for
advanced text processing, e.g. searching for certain sentences regardless of whether they are interrupted by
markup or not, regular expressions do not suffice. Consider for example the following fragment of Goethe’s
poem “Der Zauberlehrling”1. Markup is added to indicate beginning and end of a verse and beginning and
end of a line.

<verse>
<line>Hat der alte Hexenmeister</line>
<line>sich doch einmal wegbegeben!</line>
<line>Und nun sollen seine Geister</line>
<line>auch nach <emph>meinem</emph> Willen leben.</line >

</verse>

For many applications, it is interesting to query ignoring the intermediate markup. For example, it might
be desirable to query for verses where the words “nach meinemWillen” occur in a sentence. Advanced
text querying constructs are necessary to allow for this kind of querying. While a simple modification of
regular expressions appears possible, there might be implications when combining these with regular query

1english: “The Sorceror’s Apprentice”
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patterns. E.g. in the example above, one might want to query for the sentence “nach meinem Willen” where
at least one of the words is emphasised.

Markup Overlap

Likewise, it is often necessary or interesting to consider documents with so-calledoverlap, i.e. where the
enclosed range of one element partly overlaps with the boundaries of another element [125, 44]. Such
representations are required when representing differentkinds of markup for the same text document (e.g.
layout, structure, and annotations), and often occur in computational linguistics. Consider for example
the following (not well-formed) document (text by Mark Twain). Lines and sentences are marked up.
Obviously, they overlap as not every sentence begins and ends in exactly one line:

<line><sentence>Don’t go around saying the world</line>
<line>owes you a living.</sentence><sentence>The world o wes you</line>
<line>nothing.</sentence><sentence>It was here first.< /sentence></line>

There are various means to represent such markup: in a singledocument (but then it is not well-formed
XML), in several documents (containing much redundancy), using distinguished empty elements for start
and end tags, or by adding “layers” of markup to a base document. Interesting queries to such documents
would e.g. be “all lines ignoring sentences” or “sentences beginning in line 2”. Supporting such queries
would be interesting for many text processing tasks.

9.1.2 Duplicate Elimination

The grouping constructsall andsome currently do not eliminate duplicate variable bindings when building
ground instances of construct terms, because such duplicate elimination is usually computationally expen-
sive and often not desirable (e.g. if an address book contains two person entries with name “John Smith”,
then they represent two distinguished persons). For some applications it might however be useful to let the
programmer specify a grouping with duplicate elimination.A possible approach is to add a new keyword
unique that may be used together withall andsome. Consider for example the construct term:

unique-entries {
all unique entry {

name { var Name },
}

}

This construct term would ensure that for every binding ofNamethere exists exactly oneentry subterm
in the resulting data term.

Extending the model theory and evaluation to take into account this construct is not difficult. However,
further refinements are possible: for example, it might be desirable to eliminate duplicates as early as
possible so as to keep the constraint store small.

9.1.3 Advanced Filter and Exclusion Mechanisms

Many applications demand to filter out certain subterms of a term while retaining the overall nesting struc-
ture of the remaining subterms. For example, one might create the table of contents of a book represented
as an XML document (cf. the example in Section 2.4.3) by filtering out all subterms besides thechapter ,
section , andtitle subterms. Such filtering can be implemented in Xcerpt by using recursive rules for
structural recursion over the input document. However, implementing this recursion can be rather inconve-
nient and inefficient, and thus special purpose constructs are desirable. In David Maier’s characteristics of
a Web query language (Section 3.2), such constructs are summarised under thereductionquery operation.
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This section proposes two so-calledfiltering constructs. As subterms of a data term are selected in
Xcerpt by binding to variables in a query term, both constructs may only be used inside a pattern restriction
for a query term variable. To distinguish this “filtering” pattern restriction from the usual pattern restriction,
it uses the arrow instead of→. The first construct is calledplus and filters out from the bindings of
the variables all subterms besides those matched by subterms of the query term explicitly marked by the
keywordplus . The second construct is the symmetric counterpart calledminusand filters out from the
bindings all subterms matched by subterms of the query term marked by the keywordminus , but leaves all
others.

Both constructs may be used in front of every subterm within the pattern restriction of a variable in a
query term. This in particular includes subterms containing further variables. Every subterm in a pattern
restriction is still required to match, even if it is prefixedby minus . If a different behaviour is desirable,
plus andminus may be combined with other Xcerpt constructs likeoptional . Also, a combination with
constructs likedesc is useful, as shown in the following examples:

Example 9.1 (minus)
Consider the XML documentreviews.xml described in the bookstore scenario in Section 2.4.2. The
following query term binds book entries to the variableBook , but excludes allreview subterms from the
bindings:

reviews {{
var Book  entry {{

minus review {{ }}
}}

}}

Example 9.2 (plus)
Consider the “thesis” example from Section 2.4.3. From thisthesis, the table of contents can be retrieved
by using the following query term with the filtering construct plus . Only those sections are taken that
contain at least one paragraph.

var TOC plus report {{
desc plus chapter {{

plus title { plus /.*/ }
optional desc plus section {{

plus title { plus /.*/ }
paragraph {{ }}

}}
}}

}}

Note that all subterms except for the one labelledparagraph are marked withplus . This means that
only section subterms with aparagraph subterm are considered, but theparagraph subterms are not
part of the variable binding forTOC.

Note thatplus andminus influence the meaning of the unmarked subterms: if subterms are marked
with plus , then unmarked subterms are not part of the variable binding, and if subterms are marked with
minus , then unmarked subterms are part of the variable binding. Therefore, a reasonable restriction is that
plus andminus may not be used together for subterms of the same parent.

Interestingly,plus andminus require considerable modifications to the ground query termsimulation
and simulation unification, because subterms marked with eitherplus or minus need to match with several
subterms of a data term for a single binding of the variable containing the pattern restriction. For example,
a query term of the form

var X  f{{a,minus b,c}}
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requires to removeall b subterms off from the bindings of the variableX (e.g. for the data termf{a,b,b,c},
whereas ground query term simulation would map theminus b to only oneb in the data term.

The filtering described above is very basic. More sophisticated forms are conceivable. For example,
there might be applications in which it is desirable to exclude allb subterms that have two children that are
equal. A possible pattern restriction could be

var X  f{{a,minus b{var Y,var Y},c}}

. However, as the variableY can only be bound to a single value within one alternative, this would only
excludeb subterms with that property for a certain binding ofY. Some sort of “term quantification” is
therefore useful, like in

var X  f{{a,minusall b{var Y,var Y},c}}

9.1.4 Advanced Constraint Solving

The evaluation algorithm described in Chapter 8 uses very simple constraints and a very straightforward
constraint solver, which resembles constraint solvers forso-calledfinite domains[51], but works with terms
instead of integers. Many more sophisticated constraint solvers for different application areas have been
studied in literature, for a collection see e.g. [51].

9.2 Support for Special Theories and Reasoners

Many complex query tasks appear frequently in Web queries. Although many of these tasks can be im-
plemented in Xcerpt, a special purpose construct built intothe language is often easier and more natural
to use. Also, this implementation is often rather inefficient compared with an optimised implementation
in a language that is close to machines. Therefore, it might be desirable to support special theories and
associated reasoners in future versions of Xcerpt. This Section describes two concrete applications where
this is reasonable: Semantic Web reasoning and time reasoning.

Semantic Web Reasoning

With the rise of the Semantic Web, support for Semantic Web technologies like OWL [118] or RDF [119]
is increasingly important. However, querying such data beyond the mere structure (as in Section 5.3)
usually requires profound knowledge of the underlying concepts (e.g.description logics) and has to take
into account different syntactical representations of thesame data. Integrating support for such Semantic
Web reasoning into Xcerpt would therefore be desirable. Forexample, it would be possible to connect
efficient description logics reasoners likeFaCT [58] or RACER[55] to support reasoning with OWL-DL
ontologies2 instead of using the rather basic and inflexible reasoner described in Section 5.3. Since there is
no single standard reasoner for the Semantic Web, and since the Semantic Web is developed at a very rapid
pace, it is also desirable to let the user specify the kind of reasoner (and ontology language) to use.

Time Reasoning

As most of the data on the Web is associated with some sort of time and date (e.g. timetables, creation
dates of documents, validity periods, etc), being able to query based on time and date is often necessary.
Unfortunately, there is no single format for representing time (even within a country, there are usually
several representations for the same date and time), and there are different concepts that depend on culture
and tradition and are not necessarily aligned with common calendar systems (e.g. “Full Moon”, “Easter”).
Querying time is therefore often a very complicated task. Being able to transparently query time would
therefore be a very convenient property. Such support couldbe integrated into Xcerpt by e.g. using a time
reasoner as described in [29].

2OWL-DL is the fragment of OWL that is covered by the description logicSHIQ.
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9.3 Meta-Programming and Meta-Querying

In meta-programming(or meta-querying), programs are considered to be data that can be queried and
constructed by other programs. A prominent example of a language that allows meta-programming is
LISP, but meta-programming has also been studied for e.g. relational query languages, e.g. in Meta-SQL
[43].

9.3.1 Meta-Programming on the Web

On the Web, meta-programming is especially appealing, because it allows to consider programs (Xcerpt,
XChange, XQuery, . . . ) as arbitrary resources. Meta-programming on the Web has several application
areas:

Locating Web Services. The Web offers an increasing number of so-called “Web services” or “Web
applications”. A Web service is a resource offering a certain functionality, and differs from static resources
like XML or HTML documents in that its content is usually generated dynamically based on user input,
e.g. search engines, online stores, online databases, etc.In this “Web of services”, locating Web services
that provide a certain functionality is of interest, and first approaches that address this issue are currently
investigated, like theLinköping Semantic Web Butler[97] or OWL-S [82].

As Web services are often implemented in Web languages like Xcerpt, XQuery, or XSLT, meta-
programming with Xcerpt can play an important role in this area: imagine a collection of Web services
implemented in Xcerpt. With meta-programming, a user couldspecify an Xcerpt query that queries all
Web services and selects only those that fulfil a certain property, e.g. all Web services that produce RSS
news feeds (cf. Section 5.2.1). Of course, certain semanticproperties, like the termination of a program,
are undecidable and thus not queryable.

This scenario can easily be spun further: since the average user is probably not capable of writing a
complex Xcerpt program for querying Web services, it could be useful to use a more natural description of
a Web service (like in theSemantic Web Butleror in OWL-S) and use an Xcerpt meta-program to create
another Xcerpt meta-program that implements the actual query for the Web services. Combining this with
built-in ontology reasoning (cf. Section 9.2) would even allow to reason with a “Web service ontology”.

Software Development and Maintenance. In software development and maintenance, programmers are
often interested in finding parts of a program that match certain properties. For example, a programmer
might want to query (and modify!) all Xcerpt rules querying acertain resource that moved to a different
Web site. Likewise, it is often useful to have a certain abstract model of a program (like UML or different
modelling languages). Meta-programmingwith Xcerpt wouldallow to define rules that provide a simplified
view on another Xcerpt (or XChange, XQuery) program.

A salient application of meta-programming with Xcerpt in this context would bevisXcerpt[14, 16, 15]:
the visual rendering of an Xcerpt program could be performedby using another Xcerpt program instead of
XSLT and CSS as in the current implementation.

Automatic Program Construction. In many Web applications it is desirable to construct Xcerptpro-
grams “on-the-fly” based on certain input data. Consider thefollowing scenario: an online bookstore uses
XChange and Xcerpt to process customer orders (as events). Acustomer orders a certain book, but the
online bookstore does not have the book on stock. The order system could then automatically create an
XChange rule telling the system that if the book arrives at the book store, it should be sent further to the
customer.

Verification and Source-to-Source Transformations. Meta-programming can also be used to imple-
ment syntactic verifications like grouping and negation stratification (cf. Chapter 6) as an Xcerpt (meta-)
program. Likewise, it might be possible to implement source-to-source transformations of Xcerpt pro-
grams (i.e. transforming an Xcerpt program to another Xcerpt program) within Xcerpt, e.g. for the purpose
of optimisations, simplifications, or typing and type inference.

Sebastian Schaffert 195



9.3. META-PROGRAMMING AND META-QUERYING

9.3.2 Supporting Meta-Programming in Xcerpt

Implementing meta-programming in Xcerpt appears straightforward on a first glance: simply take the XML
representation of an Xcerpt program and use it as the resource of a query. However, this approach is not
sufficient, because it does not allow to properly distinguish between Xcerpt constructs (e.g. variables) of
the currently evaluated program and Xcerpt constructs of the queried program. For example, consider the
following query term (in the XML syntax not described in thisthesis):

<xcerpt:rule xmlns:xcerpt="http://xcerpt.org/1.0/pro grams" xcerpt:total="no">
<xcerpt:construct>

<f>
<xcerpt:variable name="X"/>

</f>
</xcerpt:construct>

</xcerpt:rule>

In this query term, it is unclear whether the variableX is part of the evaluated program and thus needs
to be bound to the content of thef element in the construct part of the queried rule, or whetherthe variable
X is part of the queried program, in which case the query only matches with rules that contain a construct
part with anf element containing a variable namedX. In the following, two different approaches to solving
this problem are suggested. Both seem worth investigating.

Quoting. Traditionally, this problem is addressed by implicitly (e.g. Prolog) or explicitly (e.g. LISP)
quoting data, i.e. telling the system what is considered to be data and what is considered to be program.
For example, the query term above could be quoted to say that it should only match rules with a construct
part containing the variableX as follows:

<xcerpt:quote xmlns:xcerpt="http://xcerpt.org/1.0/pr ograms">
<xcerpt:rule xcerpt:total="no">

<xcerpt:construct>
<f>

<xcerpt:variable name="X"/>
</f>

</xcerpt:construct>
</xcerpt:rule>

</xcerpt:quote>

As a companion to quoting, it would also be necessary to have aconstruct “unquote” that reverts the
effect of a “quote”. This would be necessary to say that the variableX is part of the evaluated program:

<xcerpt:quote xmlns:xcerpt="http://xcerpt.org/1.0/pr ograms">
<xcerpt:rule xcerpt:total="no">

<xcerpt:construct>
<f>

<xcerpt:unquote>
<xcerpt:variable name="X"/>

</xcerpt:unquote>
</f>

</xcerpt:construct>
</xcerpt:rule>

</xcerpt:quote>
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Namespaces. Besides quoting, XML provides another means to address the problem: namespaces. Names-
paces can be seen as a sophisticated way of quoting, because they allow to disambiguate elements from
different (not restricted to two) resources. The query above could be addressed as follows (note that the
namespace prefix definitions are deliberately not URIs):

<qp:rule xmlns:qp=" queried program" xmlns:ep=" evaluated program"
ep:total="no">

<qp:construct>
<f>

<ep:variable name="X"/>
</f>

</qp:construct>
</qp:rule>

The main problem with this approach is that, by the current XML specification, both Xcerpt programs
are in thesamenamespace (http://xcerpt.org/1.0/program ), whereas the query above would require
them to be different. A possible solution to this problem would be to use the Xcerpt namespace only for
the evaluated program and use the resource URI of the queriedprogram as the namespace for the queried
program, but other approaches are conceivable and interesting to investigate.

9.4 Distributed and Peer-to-Peer Evaluation

In the algorithms and implementations described in this thesis, Xcerpt programs are evaluated locally on
a single system, which requires access to the whole program.In a distributed, open environment like the
Web, this kind of evaluation is increasingly replaced by distributed or even peer-to-peer evaluation. Both
kinds of evaluation can be advantageous over a local evaluation for several reasons, among others:

• reduced network usage: only the queries and their results need to be transferred over the network

• increased performance: queries that are evaluated on the Web site containing the data can make
better use of the local organisation of the data, like index structures, etc. Also, several queries may
be evaluated in parallel.

• more fine-grained access control: the Web site containing the data can decide whichpartsof the data
to include in the result based on access rights of the requesting Web site instead of either admitting
or denying access to the data as a whole.

In the following, distributed and peer-to-peer evaluationof Xcerpt programs are described in more detail:

9.4.1 Distributed Evaluation

In a distributed evaluation, parts of the program are sent toa remote Web site for evaluation. After evalua-
tion, the remote Web site sends back the result to the requesting site for further processing. It is conceivable
to distribute query terms, queries, or even rules in this manner. For query terms, the remote Web site only
needs to implement thesimulation unificationalgorithm, and sends back to the requesting site a set of
substitutions. For queries or even rules, the remote Web site needs to implement parts of the backward
chaining algorithm as well. The first approach has the advantage that simulation unification always termi-
nates and Web site administrators do not need to worry about badly written queries. The second approach
has the advantage that it allows to better distribute programs to the queried resources.

Distributed evaluation can be transparent to the programmer: the evaluation engine can automatically
verify whether the remote site specified in the input resource of a query is capable of evaluating query terms
or rules and then decide to merely send the query and wait for the result instead of retrieving the resource
and performing a local evaluation.
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9.4.2 Peer-to-Peer Evaluation

Peer-to-peer evaluation is a special kind of decentralised, distributed evaluation in which the participating
sites (peers) are not known in advance, as peers connect and disconnect from the network at any time. In
general, it is unknown which peers have the requested data, so queries are usually sent further by each peer
to all or some of its neighbours in order to reach a large part of the network.

Peer-to-peer networks are usually distinguished by their degree of openness and structure. Openness
means that any peer can connect and disconnect at any time. Structure means the amount of information
that is available about the data contained in the network. For example, early peer-to-peer networks like
Napsterused a central database for storing information about the offered content of all peers. As this kind
of network is considered to be vulnerable, more recent peer-to-peer networks are more decentralised: each
peer only has knowledge about itself and about its immediatepeers.

For Xcerpt, a peer-to-peer evaluation would thus in particular mean that queries are not evaluated with
respect to a specific input resource but instead sent to a peer-to-peer network to request answers from those
peers that can give them. Again, it is conceivable to distribute only query terms, queries, or rules. Also,
different kinds of peer-to-peer networks with varying degrees of openness and structure can be used.

As peer-to-peer networks are open, it might be possible thatthere exists an answer to a query, although
none is returned within a certain amount of time. Consequently, it would be interesting to investigate
Xcerpt programs with a certain amount of uncertainty.

9.5 Optimised Evaluation and Implementation

In the evaluation algorithm and runtime system described inthis thesis, optimised evaluation of Xcerpt was
not the primary goal. Optimisations can address various parts of the evaluation algorithm. This section
briefly discusses possible optimisations for simulation unification, for rule chaining, and in the constraint
solver. Furthermore, a virtual machine implementation is suggested, which is currently worked on.

9.5.1 Identifying Complexity of Language Parts

A first step towards optimisations is to identify the complexity of various parts of the algorithm, in par-
ticular of the simulation unification algorithm. Preliminary investigations have shown that the simulation
unification problem is NP hard, as the 3-SAT problem can be reduced to it3. On the other hand, it is known
that rooted graph simulation can be computed in polynomial time [67].

Identifying restrictions of query terms that reduce the complexity of simulation unification therefore
appear to be promising, as they can help to improve the implementation for those cases. For example, a
possible restriction would be to only consider linear terms, i.e. terms where each variable name occurs at
most once. Other restrictions could consider only ordered subterm specifications, in which case the number
of possible combinations of subterms is reduced significantly.

9.5.2 Simulation Unification

The simulation unification algorithm is at the very heart of the program evaluation. It is therefore justifiable
to investigate even rather complex optimisations. Three kinds of optimisations are proposed here:

Index Structures

A common technique in relational database systems is to use index structures to reduce the complexity for
certain kinds of queries. An index structure is a certain kind of abstraction from the data (often in form of a
tree structure or hash table) that is comparably small and easy to access, whereas the data itself is rather big
and slow to access. Interest in index structures for XML dataonly started recently, but several promising
approaches exist, an overview of which is given in [123]. Most of these approaches only address certain
kinds of queries, and it is not yet clear how they can be integrated with simulation unification.

3Internal memo of Klaus Schulz
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Streamed Evaluation

In a streamed evaluation of queries (usually expressed in XPath), the queried XML data is considered to
have infinite or at least indefinite breadth. Such data can e.g. be produced by a newsfeed (cf. the example
in Section 5.2.1) or by sensors that monitor certain processes constantly (e.g. weather sensors). Streamed
evaluation of XPath queries is e.g. investigated in [80, 79]. Adopting the techniques described in [80, 79] to
simulation unification appears to be possible. Although Xcerpt (currently) only considers XML documents
of finite and known breadth, investigating a streamed evaluation of simulation unification can still be a
useful optimisation, because streamed evaluation allows aone-pass evaluation of simulation unification
and thus requires only a constant (plus space for the variables) amount of memory.

Schema Information

A third refinement of the evaluation algorithm could make useof the schema information that might be
associated with certain XML documents to reduce the “amountof incompleteness”. For example, if a
query termt = f{{a,b}} tries to match with a document whose schema states thata’s can only appear
afterb’s, then it is possible to refine the query termt to t = f [[b,a]] and remove the (expensive) unordered
term specification. Similar refinements can be performed fordesc , for optional , and forwithout . A
salient aspect is to combine this approach with a type inference as proposed in e.g. [124] to optimise
unifications even with the heads of rules.

9.5.3 Rule Chaining

Optimising rule chaining has been of major interest in the context of other logic programming languages
like Prolog. This section briefly summarises three areas that might be interesting for further investigations.

Clause Indexing

Clause indexing is a means to organise rules in some sort of index structure so as to more efficiently decide
which rules of a program are relevant for the evaluation of a certain query, i.e. the heads of which rules
might unify with a certain query. Applying clause indexing techniques to Xcerpt should in many cases
be rather simple due to the similarities between Xcerpt and Prolog. Clause indexing for Prolog has been
studied extensively; an overview over available literature can be found at [69].

Query and Clause Selection Strategies

A salient aspect of optimisation can be the selection strategy for the selection of the next query and/or
clause that is evaluated in backward chaining. Since Xcerptprograms do not have a fixed evaluation order
for the queries in a rule body (except for negation) or for clauses, Xcerpt provides much more freedom
for such optimisations than languages like Prolog. Queriescould be associated with a certain cost, and the
evaluation algorithm could decide to first evaluate querieswith a low cost in the expectation that some of
the more expensive computations will not be necessary afterwards. For example, it might be reasonable to
first evaluate queries against local resources and delay theevaluation of queries against remote resources
as far as possible.

Program Rewriting

Program rewriting takes a program and transforms it to a simpler and/or faster program that preferably
yields the same results as the original program. In Xcerpt, program rewriting can be used for several opti-
misations. For example, rules that obviously never participate in the evaluation can be eliminated, several
rules that interact via chaining can be combined to a single rule, or several queries to the same resource
can be combined to a single query selecting all of the required data. Many approaches to optimisation by
program rewriting have been proposed. A survey is given in [88], Section 3.
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Memoing/Tabling

Memoing[122] (also calledtabling) is a technique that stores (“memos”) results of previous computations
to avoid unnecessarily repeated evaluations of the same program part. Also, memoing allows to detect
cyclic computations in many cases, e.g. in the computation of the simulation unification algorithm for
terms with cycles (cf. Section 8.2) or in certain cases of backward chaining (cf. Section 8.3.4). For these
reasons, memoing is e.g. implemented in the XSB Prolog system4. Investigating memoing in Xcerpt is
worthwhile, because redundancy on the Web usually means repeatedly retrieving remote resources, which
is usually very time consuming.

9.5.4 Constraint Solver

The constraint solver used by the current implementation islacking in several aspects. Most importantly,
repeatedly creating the disjunctive normal form is very inefficient. An interesting enhancement of the con-
straint solver would therefore be to not consider the disjunctive normal form of a formula and then each
disjunct separately in the constraint solver, but instead the constraint store as a whole. Such a constraint
solver would need to be able to work with disjunctions in constraint stores. To the best of our knowledge,
such constraint solvers have not been investigated much in literature, as disjunctions are usually imple-
mented in the underlying host language (e.g. Prolog).

Another enhancement could be to support user-defined constraints and constraint solvers, e.g. expressed
in the language CHR [50], to allow users to add their own theories to the constraint solver. In this manner,
it would e.g. be possible to integrate time reasoning or algebraic theories in Xcerpt.

9.5.5 Virtual Machine

In order to establish Xcerpt as a Web query language that is usable in practice, the design and imple-
mentation of a virtual machine for program evaluation can beuseful. A virtual machine provides a suitable
low-level language into which programs implemented in a higher-level language (like Xcerpt) can be trans-
formed. The advantages of this approach are manifold:

• a compiler for the language is easier to implement, as the low-level language is tailored to implement
the high-level language

• the instruction set of the virtual machine is closer to the instruction set of the processor and thus
easier to implement on different platforms

• the virtual machine can be used both in a compiler and in an interpreter of the language

• the language of the virtual machine allows for low-level optimisations

The virtual machine can be designed and implemented in two steps: for the simulation unification and for
the rule chaining algorithm. A virtual machine for simulation unification is already worked on in a project
thesis, and a virtual machine for rule chaining is planned.

9.6 Term Formulas as Integrity Constraints

A salient aspect of term formulas as introduced in Section 7.2 is the posibility to specify integrity con-
straints for XML or semistructured data by using universally or existentially quantified formulas and im-
plications. One example has already been mentioned earlier:

Example 9.3
An integrity constraint that requires all books in thebib.xml document to have at least one author:

∀ B . bib{{ var B → book{{ }} }} ⇒
∃ A . bib{{ var B → book{{ authors{{ var A }} }} }}

4http://xsb.sourceforge.net/
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Integrity constraints would also allow to specify conditions that are (currently) not expressible in XML
schema languages (like RelaxNG or XML schema). For example,they could be used to require that for
every IDREF reference, there exists an element with the corresponding ID:

∀ Ref . desc attributes {{ idref { var Ref } }} ⇒
∃ Id . desc attributes {{ var Id → id { var Ref } }}

Furthermore, it would be possible to specify XML schemata that also depend on the content of the doc-
ument. The following problem arised in the course of a project thesis that aimed at modelling a publication
list in XML. In the publication list, there are many different entries, for example journal articles, articles in
proceedings, proceedings, etc. All of these have much in common, but differ in some aspects. Furthermore,
since the list needs to be easily extensible by new types of publications, the type (e.g.journal or book )
is represented as the value of an element rather than by different parent elements (one might question this
representation, but assume that it is like this). The following fragment could be part of such a publication
list (in Xcerpt syntax):

publist {
entry {

type { "book" },
title { "Data on the Web" },
isbn { "1-55860-622-X" },
...

},
entry {

type { "journal" },
title { "Journal of the ACM" },
issn { "0004-5411" },
...

}
}

Obviously, books have an ISBN number, whereas journals havean ISSN number. A schema definition
that would take this into account would be difficult and contain many redundancies. Instead, two integrity
constraints of the following form could ensure this property:

∀ Book . publist {{ var Book → entry {{ type { "book" } }} ⇒
∃ ISBN . publist {{ var Book → entry {{ var ISBN → isbn {{ }} }}

∀ Journal . publist {{ var Journal → entry {{ type { "journal" } }} ⇒
∃ ISSN . publist {{ var Journal → entry {{ var ISSN → issn {{ }} }}
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CHAPTER

TEN

Conclusion

Summary

This thesis investigated how logic programming techniquescan be applied to querying (Semantic) Web
data. For this purpose, a new Web query language called Xcerpt has been introduced, and its usefulness
has been shown on many practical examples in both the standard and the Semantic Web. In addition to the
language specification, a declarative and operational semantics has been proposed that follows closely the
traditional logic programming approach. Soundness and weak completeness of the operational semantics
with respect to the declarative semantics has been shown forthe case of programs without negation.

Arguably, logic programming techniques are suitable for Web querying: queries based on derivation
rules are often more intuitive than those using other modularisation techniques, they allow for a straight-
forward visualisation (invisXcerpt), and the reasoning capabilities bridge the gap between standard Web
querying and Semantic Web querying.However, the particularities of data representation on the Web de-
mand significant changes to traditional logic and logic programming: data does often not conform to a
rigid schema, data might be incomplete or redundant, and many different data items might be grouped in a
single document under a common root. To address these requirements, Xcerpt introduced incomplete query
specifications for querying such data and grouping constructs for creating such data as integral parts of the
language. A salient aspect of this thesis is therefore the development of a suitable unification algorithm
that is capable of working with such incomplete query specifications, and an extensible backward chaining
algorithm that integrates support for grouping constructs.

Concluding Remarks

Designing a programming or query language is a difficult and time consuming task, and this thesis only
serves as the first building stone towards the Web query language Xcerpt. Much remains to be done (some
of the possibilities have been sketched in Chapter 9), and the areas that may be addressed in future research
are manifold.
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APPENDIX

A

A Prototypical Runtime System

As part of this thesis, a prototypical runtime system for evaluating Xcerpt programs has been implemented.
This runtime system (from now on called “the prototype”) serves both as a testbed for new features and
algorithms, and as a means to implement and test Xcerpt queries. Being a prototype, this implementa-
tion lacks some features that are desirable for practical applications (like the negation constructsnot and
without ) and evaluation speed was not one of the primary goals (although evaluation is reasonably fast in
many cases).

The runtime system is implemented in the functional language Haskell which, due to its purely func-
tional approach, is particularly well suited for the purpose of prototypical implementations. Haskell allows
to program at a very high level of abstraction and thus to stayclose to the more formal definition of the
evaluation algorithm(s) in Chapter 8.

The following sections illustrate various aspects of the prototype and its evaluation. Since the complete
implementation is rather extensive (approximately 6500 lines of code), this chapter only highlights impor-
tant aspects while the complete source code is provided in electronic form athttp://www.xcerpt.org .
Most of the code presented here is furthermore simplified over the real implementation for presentation
purposes. The descriptions here are thus rather meant as aguideto the source code than as a standalone
description and in most parts require to have the source codeat hand. The documentation in this chapter is
structured according to the module structure of the source code. Each section starts with a small illustration
of the (sub-)module hierarchy.

The source code of the prototype is copyright of the authors and made available under the GNU General
Public License (GPL), a copy of which is contained in the source archive. It uses several packages from
third parties, particularly the HaXML and HXML XML parsers,and an implementation of the HTTP
protocol. HaXML is available under GNU Library General Public Licence (LGPL), and HXML and HTTP
under BSD license. All components are Open Source and may be distributed freely. The code is compiled
with theGlasgow Haskell Compiler(GHC) and runs on both Unix and Windows systems. Makefiles for
make on Unix are provided.

A.1 Usage of the Prototype

The Xcerpt prototype consists of two callable Unix or Windows binary programs:

• xcerpt (or xcerpt.exe ) implements the command line interpreter

• convert (or convert.exe ) converts between different Xcerpt syntaxes (i.e. XML and Xcerpt).

xcerpt can operate in two modes: either with a program as argument (evaluation mode), or in interac-
tive command mode. The first mode of operation is most frequently used and simply evaluates the given
program, which can be read either from a file or from standard input. The second mode of operation serves
mainly debugging purposes and allows to test various aspects of the program evaluation (like unification).
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A.1.1 Command Line Switches

The programxcerpt supports the following command line options. As is common onUnix systems, all
options are prefixed by- and provided in both a short and a long form:

short option long option description
-V --version show version number
-h, -? --help show usage
-I --interactive launch interactive interface
-c --cgi add CGI headers in output
-g term --goal=term evaluate query term against program
-p FILE --program=FILE evaluate program
-i <format> --in= <format> input format
-o <format> --out= <format> output format

The command line switch-I starts the prototype with the interactive interface, otherwise, it is started in
evaluation mode. The switch-c is useful when using Xcerpt programs as CGI1 scripts that are evaluated on
a Web server; it adds appropriate HTTP headers (likeContent-Type: ) to the output that allow browsers
to render the result correctly.

As input format (switch-i ), the prototype supportsxml (the Xcerpt program is in XML syntax),
xcerpt1 (the Xcerpt program is in the old Xcerpt syntax), andxcerpt2 (the Xcerpt program is in the
new Xcerpt syntax). If no input format is specified, the default value ofxcerpt2 is used. Output formats
can be specified only, if the goals of the program do not contain an explicit format specification. The-o
switch supports the same arguments as-i . Other switches are explained in the following Section.

Running an Xcerpt Program

The basic command line syntax for running an Xcerpt program is:

xcerpt (<program file>) or xcerpt -p (<program file>)

The latter syntax is provided for symmetry with the-I switch. In both cases, the file<program file>
is loaded as an Xcerpt program and all goals in it are evaluated.

In combination with these commands, it is possible to use theswitches-c , -i , and-o described above.
In all cases, the output of the Xcerpt program is written either to the resources specified in the program
or to standard output (i.e. the current console) if no explicit output resources are given. The syntax of the
output again is either specified in the output resource, or the syntax specified by-o is used.

In addition, it is possible to evaluate a query term specifiedat the command line against the rules of the
program. In this case, the prototype is called with

xcerpt -g <query term> -p <program file>

Note that the switch-p is required, and that the specified query term must be in the syntax specified with
-i . The query term is evaluatedonly against the rules of the program, not against its goals. Thisoption is
useful when developing Xcerpt programs. The output is a set of substitutions, always written to standard
output, and in the syntax specified by the switch-o .

Xcerpt Programs as Unix Scripts

On Unix systems, it is possible to turn “text files” into executable scripts by providing in the first line a
specification of the interpreter to use. In this case, it is sufficient to just call the script itself instead of
specifying the complete command for the interpreter on the command line. For example, shell scripts for
the standard Unix shell usually look as follows:

1Common Gateway Interface, a common standard for creating dynamic Web applications
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#!/bin/sh
echo "Hello World."

The first line specifies where to find the executable of the interpreter (in the example above/bin/sh ), the
rest is the content of the script. The whole script is passed to the standard input of the interpreter. The
Xcerpt prototype supports this behaviour. An Xcerpt program can look as follows:

#!/usr/local/bin/xcerpt
GOAL

result { all var Book }
FROM

in {
resource { "file:bib.xml" },
bib {{ var Book }}

}
END

Assuming, the Xcerpt program is stored in a file with namebooks , it can be evaluated by just entering
the commandbooks instead ofxcerpt books (assuming the permissions are set correctly). This is par-
ticularly useful when writing Web applications. In this case, the Web server does not need to be aware of
Xcerpt and can simply treat the Xcerpt program as a CGI script.

Interactive Interface

The interactive interface can be started with the commandxcerpt -I . It provides acommand prompt
indicated by the prefix symbols?- . The following commands are available in this interface:

Commands for program management:
:load <resource> load the program at the specified resource into memory
:run run the loaded programs
:clear remove all loaded programs from memory

Generic commands:
:quit leave the interactive interface
:help show summary of commands
:version show version information
:reset remove all settings
:set <key> = <value> set the property<key> to <value>
:set show all options

Debugging commands:
:unify <t1> = <t2> unify <t1> and<t2> and return the resulting constraint store
:parse <resource> print the term representation of the specified resource

An example session in this interactive interface (loading and running a program) looks as follows:

how may I help you?
?- :load prog.xcerpt
Loading prog.xcerpt ...
?- :run
<results>

Note that the interface might behave in unexpected ways due to Haskell’s lazy evaluation. For exam-
ple, the program is not actually loaded before the command:run is issued. As it is intended mainly for
debugging the prototype, the interactive interface does not provide additional commands. It is, however,
easy to add this functionality if desirable.
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A.2 Overall Structure of the Source Code

Figure A.1: Overall module and file structure; modules in green, files in red

The source code of the runtime system is structured using Haskell’s hierarchical module mechanism.
The outline of the structure is shown in Figure A.1. On the toplevel, there is the moduleXcerpt containing
the actual runtime system and the two filesXcerpt.hs andconvert.hs , which implement the command
line interface and the conversion program and both use partsof the moduleXcerpt . The moduleXcerpt
consists of the following submodules:

Xcerpt.Data contains data structures and helper functions to operate onthese structures

Xcerpt.IO contains functions for accessing local and remote resources and accessing them in Haskell

Xcerpt.Parser contains the various parser modules (currently Xcerpt version 1 and 2, XML and HTML)
and provides functions for parsing strings into the data structures ofXcerpt.Data

Xcerpt.Show contains functions for formatting and pretty-printing thedata structures ofXcerpt.Data

Xcerpt.EngineNG implements the core part of the runtime system the unification and the constraint-based
backward chaining algorithm

Xcerpt.Methods contains the implementations of predefined functions, aggregations and comparisons
that are available in Xcerpt programs

In the following, the respective modules are explained in more detail and certain aspects are highlighted to
provide proficient programmers the means to modify the prototype as desired to test new features. Most
of the code presented here is simplified: the prototype usually contains additional data structures or more
complex function definitions that are needed for technical reasons or have been introduced for certain test
cases. It is assumed that the reader is already proficient with programming in Haskell, and is familiar with
tools like parser and lexer generators (likeyacc andlex ).
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A.3 Module Xcerpt.Data: Data Structures

Figure A.2: Module and File Structure of the package Xcerpt.Data; modules in green, files in red

The structure of the moduleXcerpt.Data is shown in Figure A.2. The module consists of four files:

Term.hs defines a unified data structure for representing data, query, and construct terms, and provides
helper functions to perform various tasks on these terms (e.g. find all variables, test whether two
terms are equal, . . . ).

Program.hs contains data structures for programs, rules, resources, and queries

Constraint.hs contains the internal data structures of the constraint solver

BTree.hs contains the definition of generic BTrees used internally insome aspects of program evaluation
(see below)

Term.hs and Program.hs are the files that are most relevant to developers. Their datastructures are
explained in the following two sections.

A.3.1 Term.hs: Data Structures for Terms

Data Structures

Listing A.1 defines the data structureTerm, which is used to represent data, construct, and query termsin
a unified structure. The code is simplified in that it omits some constructs to improve readability.

Listing A.1: Data Definition ofTerm

1 data Term = Elem { l a b e l : : Term , namespace : : String ,
2 ordered , t o t a l : : Bool , c h i l d r e n : : [ Term ] }
3 | Text String
4 | RegExp { pa t t e rn : : String , vars : : [Maybe String ] }
5 | Var String
6 | String :→ Term
7 | Desc Term
8 | A l l [ Term ]
9 | Some I n t [ Term ]

10 | Reference { i d e n t i f i e r : : String , r e f e r s : : Maybe Term }
11 | Anchor { i d e n t i f i e r : : String , content : : Term }

Lines 1 and 2 define the most common form ofTerm, i.e. compound terms (e.g.f[a,b,c] ) that consist
of a label, a namespace, a subterm specification (orderedandtotal), and a list of subterms (children). A
label is of typeTerm, because this allows to represent text labels, variable labels, and regular expression
labels in a uniform manner; the types of the other fields are straightforward. In Haskell, field names may
be used as functions for retrieving the respective field value. Assuming that a compound term is bound to
a variablet , the following code retrieves the label oft :
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l a b e l t

Lines 3 and 4 defineTerms for representing text content and regular expressions. Thedefinition of a
regular expression consists of a regular expression pattern (in POSIX syntax without Xcerpt extensions)
and a list of variables associated with the subexpressions in that pattern. Processing of Xcerpt extensions
is performed during parsing.

Lines 5 and 6 define variables and variables with restrictions. A variable is always identified by its
name. Variable names in the runtime system are usually different to the original variable names in the
Xcerpt program, because variable renaming is performed to avoid conflicts between different rule instances.

Line 7 defines the structure of descendant terms, and lines 8 and 9 define the structure of terms of the
form all t andsome i t .2.

Lines 10 and 11 define referring occurrences and defining occurrences of references. A referring occur-
rence (constructorReference ) consists of a reference name and possibly the referred term(if the reference
is already dereferenced). A defining occurrence simply associates an identifier with a term.

Terms can e.g. be created in the following manner:

l e t t = Elem { l a b e l = ” f ” , namespace = ” h t t p : / / www. example . com” ,
ordered = True , t o t a l = True ,
c h i l d r e n = [ Text a , Text b , Text c ] }

Besides the definition shown above, the fileTerm.hs contains definitions for arithmetic expressions
and conditions.

Helper Functions

The file Term.hs contains two higher order helper functions based on which most other functions are
defined. Both take a function as argument and implement a generic recursive traversal over the structure of
Term, applying the function argument to each subterm.

collectInTerm takes as arguments a term, a transformation function, a merging function, and a default
value, and returns a collection of information based on the transformation and merging functions;
the transformation function maps subterms to arbitrary values and the merging function merges a list
of these values to a single value

recurseTerm takes as arguments a term, a transformation function (transforming one term to another),
and returns a transformed term with the same structure

These generic functions are best illustrated on some examples of helper functions that are defined based
on them. The following function checks whether a term contains a grouping construct. It uses the function
collectInTerm and merges the results usingor :

Listing A.2: Helper function defined usingcollectInTerm

1 containsGrouping : : Term → Bool
2 containsGrouping ( A l l ) = True
3 containsGrouping (Some ) = True
4 containsGrouping t = c o l l ec t I nTerm t containsGrouping or False

Lines 2 and 3 define that terms of the formall t andsome i t contain a grouping construct. In a
sense, these definitions overwrite the recursive traversalimplemented by collectInTerm. Line 4 applies to
all other cases and callscollectInTerm with containsGrouping as transformation function,or as merg-
ing function, and a default value ofFalse . Assuming that the examined term is complex,collectInTerm
applies the transformation function to all children and merges the list of results with the merging function.

Likewise, the following function usesrecurseTerm to rename all variables in a term by adding a
certain postfix (given as first argument):

2both take a list of terms as arguments for future extensions
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Listing A.3: Helper function defined usingrecurseTerm

1 renameVariables : : String → Term → Term
2 renameVariables p ( Var x ) = ( Var x++p )
3 renameVariables p ( x $λ l eads to$ t ) = ( x++p ) :→ renameVariables p t
4 renameVariables p t = recurseTerm t ( renameVariables p )

Lines 2 and 3 add the postfixp to variable names, and line 3 in addition applies the function to the
pattern restriction. Line 4 implements for all other terms arecursive traversal in which(renameVariables
p) is applied to all subterms.

One of the main advantage of these two generic functions is that modifications of the data structures
(e.g. adding a new kind of terms) usually only need to be reflected in the definition of these two helper
functions; all functions that are based on them work withoutfurther modification. Whenever changing the
data structures, it is therefore important to modify at least these two functions as well.

A.3.2 Program.hs: Data Structures for Programs

Listing A.4: Data structures for programs

1 data Program = Prog [ Rule ] deriving Show
2 data Rule = Rule { rhead : : Term , rbody : : Query }
3 | Goal { output : : [ Resource ] , rhead : : Term , rbody : : Query }
4 deriving Show

Consider Listing A.4. Programs are simply represented as lists of rules. A rule is either a goal (line 3)
or a standard rule (line 2). Both rules and goals consist of a rule head (a term) and a rule body (a query part
– see below); in addition, goals contain a (list of) output resources.

Listing A.5: Data structures for query parts

1 data Query = QTerm { resources : : [ Resource ] , term : : Term }
2 | QAnd { resources : : [ Resource ] , quer ies : : [ Query ] }
3 | QOr { resources : : [ Resource ] , quer ies : : [ Query ] }
4 deriving (Eq ,Show)

A query part is either a query term, anAnd-connection of query parts, or anOr-connection of query
parts.3 Each query part has a list of associated resources (which might be empty), i.e. thein construct of
Xcerpt is already resolved during parsing.

Listing A.6: Data structures for resources

1 data Resource = XML URI
2 | Xcerpt URI
3 | HTML URI
4 | Parsed Term
5 deriving (Eq ,Show)

Resources can be either in XML, Xcerpt, or HTML format (lines1–3). The respective constructors are
used by the parser to determine which parsing module to use. The resource is identified by a URI. Line 4
is used to represent data terms or XML/HTML documents that have already been parsed. The prototype
retrieves all resources in a preprocessing step and replaces resource specifications of the first three kinds
by a parsed representation. The advantage of this approach is technical: program evaluation does not
need to perform I/O and thus avoids the complexity of Haskell’s I/O system. Instead, it focusses on the
complexity of program evaluation. While this might seem inefficient, Haskell’s lazy evaluation guarantees
that resources are only actually retrieved when needed. Theonly drawback is that it anticipates the use of
variables in resource specifications.

3The fileProgram.hs defines some additional kinds of queries not mentioned here to improve readability.
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A.4 Module Xcerpt.IO: Input/Output

Figure A.3: Module and File Structure of the package Xcerpt.IO; modules in green, files in red

The moduleXcerpt.IO contains functions for performing input/output operations to local files or over
the network. The module contains the following files:

ResourceHandler.hsis the main file of this module; it defines functions for retrieving a resource into a
term or string

Browser.hs and HTTP.hs implement access to network resources via the HTTP protocol; they are taken
from a library implemented by Warrick Gray4 and available under the BSD license

The two important functions exported byResourceHandler.hs are the following:

parseResourcetakes a resource specification as defined above and returns a parsed term structure of the
data using the parser for the specified format

writeResource takes a term and writes it to the specified resource. The first argument is a file handle used
if the specified resource is standard output (i.e.stdout: ), in which case the output can be redirected
by the system as appropriate.

4http://homepages.paradise.net.nz/warrickg/haskell/h ttp/
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A.5 Module Xcerpt.Parser: Parser

Figure A.4: Module and File Structure of the package Xcerpt.Parser; modules in green, files in red

The Xcerpt parser currently consists of three parsing modules:

Xcerpt.Parser.Xcerpt provides functions for parsing terms and programs in Xcerptsyntax (old and new)

Xcerpt.Parser.XML provides functions for parsing terms and programs in XML syntax (based on HXML5)

Xcerpt.Parser.HTML provides functions for parsing HTML documents into Xcerpt terms; it differs from
the XML parser in that it is somewhat error-resistant and tries to also parse documents that are not
well-formed XHTML

All parser modules provide the functionparseTerm for parsing (data) terms, and the Xcerpt and XML
parser in addition provide the functionparseProgram for parsing programs (in Xcerpt and XML syntax).

A.5.1 Xcerpt.Parser.Xcerpt: Xcerpt V1 and V2 Parser

The Xcerpt parser module consists of two separate parsers: one for the old Xcerpt syntax (V1) primarily
used in publications before 2004 (e.g. [23]), and one for thenew Xcerpt syntax (V2) used in 2004 and
later (and also in this thesis). Both parsers are implemented using the Haskell lexer generatoralex6 and the
Haskell parser generatorhappy7.

Lexer Specifications

In alex, tokens are defined in terms of regular expressions, similarto other lexer generators. More specific
instructions for usingalexcan be found in thealexdocumentation [46]. For example, the following code
defines identifiers to begin with an alphabetic character andcontinue with alphanumeric characters. It
returns a tokenTIdentifier which stores the current position in the input file and the value of the character
sequence matching the token. The first lines define characterclasses, and the last two lines define the token
TIdentifier .

5http://www.flightlab.com/˜joe/hxml
6http://www.haskell.org/alex/
7http://www.haskell.org/happy/
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$idchar = [A-Z a-z 0-9 \- \_ \:]

tokens :-
<0> $alpha $idchar* { tok (\p s -> TIdentifier p s) }

The filesXcerptLexerV1.x andXcerptLexerV2.x contain the respective lexer definitions for the old
and new Xcerpt syntax, including definitions for the variousavailable tokens. Both files define a function
lexer that takes as input a single string and returns as output a list of tokens.

Grammar Specifications

The parser generatorhappyuses LALR(1) grammars that consist of rules in a syntax similar to Backus-
Naur Form (BNF), but extended by constructs that allow to define actions for grammar rules. Developers
interested in extending or modifying the parser should consult happy’s documentation at [74]. For instance,
the following code specifies the grammar rule for compound Xcerpt terms with partial and unordered term
specification as a label (non-terminal), followed by two opening curly braces (terminals), a list of terms
(non-terminal), and two closing curly braces (terminals);it returns aTerm instance with constructorElem
and the field values set appropriately (occurrences of $n refer to the value of the n’th token of the rule).
Furthermore, a list of terms (PTermL) is defined as either a term (non-terminal), followed by a comma and
a list of terms, or a single term, or an empty list of terms; it returns a Haskell list ofTerm elements:

PTerm :: { Term }
PTerm : label ’{’ ’{’ PTermL ’}’ ’}’ { Elem {label=(Text $1), n amespace="",

total=False, ordered=False, children=$4}}

PTermL : PTerm ’,’ PTermL { ($1:$3) }
| PTerm { $1:[] }
| { [] }

The filesXcerptParserV1.y andXcerptParserV2.y contain the grammar definitions for parsing Xcerpt
terms and programs. In particular, they define the functionsparseTerm andparseProgram , which com-
bine the lexer with the generated parser. Both take as input asingle string and return aTerm resp. a
Program . In addition, the parser module contains the grammar definition RegexParser.y , which defines
a grammar for parsing regular expressions with Xcerpt extensions. The regular expression parser is used
internally inside the Xcerpt and XML parsers.

A.5.2 Xcerpt.Parser.XML: XML parser

The prototype’s XML parser module uses the HXML parser for Haskell, which is very efficient and makes
use of Haskell’s lazy evaluation. The module consists of twofiles:

HXMLToXcerpt.hs provides transformation functions that convert XML data from HXML’s internal data
structures to the prototype’sTerm structure. In particular, these transformation functionstake care of
attributes and Xcerpt term constructs like term specifications or variables, and resolve namespaces.

XMLParser.hs provides transformation functions that transform a term containing appropriate constructs
in the Xcerpt namespace (http://xcerpt.org ) into aProgram .

A.5.3 Xcerpt.Parser.HTML: HTML parser

Unfortunately, most of the HTML documents available in today’s Web do not conform to the XHTML
standard and are therefore not well-formed XML. To make use of existing Web pages, the Xcerpt proto-
type also contains an HTML parser module. This module uses the Haskell XML parser HaXML [121],
which provides an error tolerant HTML parser that parses HTML documents into the same structure as
XML documents. The HTML parser consists of the single fileHTMLParser.hs , which defines a function
parseTerm to parse HTML documents into aTerm structure. A functionparseProgram is not available
for HTML, as Xcerpt programs cannot be represented in HTML.
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A.6 Module Xcerpt.Show: Output Formatting

Figure A.5: Module and File Structure of the package Xcerpt.Show; modules in green, files in red

The moduleXcerpt.Show contains functions for pretty-printing Xcerpt data structures. The main
interfaces to these functions are the classesXcerptPrintable andXMLPrintable , which define pretty-
printing in Xcerpt (V1 and V2) and in XML syntax.

Listing A.7: XcerptPrintable

1 class Xc erp tP r i n t ab le a where
2 asXcerpt : : I n t → a → String
3
4 showXcerpt : : Xc erp tP r i n t ab le a ⇒ a → String
5 showXcerpt = asXcerpt 0

The classXcerptPrintable defines a function prototypeasXcerpt that takes the current level of
nesting (Int ) and the data structure to be printed (a) as arguments and returns aString . The function
showXcerpt is a convenient wrapper for the default nesting level of0.

Listing A.8: XMLPrintable

1 class XMLPrintable a where
2 asXML : : Bool → I n t → a → String
3
4 showXML : : XMLPrintable a ⇒ a → String
5 showXML = asXML True 0

Likewise, the classXMLPrintable defines a function prototypeasXML. asXML takes as arguments a
Bool indicating whether to add Xcerpt attributes forordered/unorderedandtotal/partial term specifications
in the resulting XML document, anInt for the current level of nesting, and the data structure to beprinted
(a). Again, the functionshowXML is a convenient wrapper for default level of nesting and adding Xcerpt
attributes.

Both classes are instantiated for the data structuresTerm, Rule , andProgram . The module is divided
into the following files:

XcerptV1.hs contains the definition and implementation of the classXcerptPrintable for the old Xcerpt
V1 syntax (before 2004)

XcerptV2.hs contains the definition and implementation of the classXcerptPrintable for the new
Xcerpt V2 syntax (2004 and later)

XML.hs contains the definition and implementation of the classXMLPrintable for the XML syntax
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A.7 Module Xcerpt.EngineNG: Program Evaluation

Figure A.6: Module and File Structure of the package Xcerpt.EngineNG; modules in green, files in red

The moduleXcerpt.EngineNG is the “heart” of the runtime system: it contains the evaluation algo-
rithms described in Chapter 8 and consists of the following parts:

Matrix.hs contains an auxiliary data structure used by the unificationalgorithm called thememoisation
matrix; using it, simulation unification can be evaluated in a rather efficient manner.

Unify.hs contains the implementation of thesimulation unificationalgorithm described in Section 8.2; it
uses the memoisation matrix and the constraint solver described below.

Program.hs contains the implementation of the backward chaining algorithm described in Section 8.3; it
uses the unification algorithm and the constraint solver described below.

Solver.hs contains the implementation of a simple and somewhat inefficient but reliable constraint solver

Substitutions.hs implements functions for converting constraint stores into substitutions, and for applying
substitutions to terms (cf. Section 7.3)

The following Sections illustrate this implementation in more detail.

A.7.1 Constraint Solver

The constraint solver implemented in the fileSolver.hs operates on a (conjunctive) list ofConstraint s
and yields a list of consistent alternative conjunctions ofconstraints. It applies simplification rules (or
“verification rules”) to pairs of constraints. Each application of a verification rule yields a pair of two lists:
a list of removed constraints and a list of new constraints.

type V e r i f i c a t i o n R u l e = ( Cons t ra in t , C ons t ra i n t ) → ( [ C ons t ra i n t ] , [ C ons t ra i n t ] )

In contrast to traditional constraint solvers, the result of simplification rules in this prototype may also
contain disjunctions; in the results of verification rules,these are represented by a constraint of the form
Or [. . . ], and the incremental solver (inverifyInc ) generates the disjunctive normal form represented by
a list of lists of constraints (i.e. a disjunction of conjunctions of constraints).

The current implementation uses the two verification rulesconsistency and transitivity (both
also defined inSolver.hs ), which correspond to the respective rules in Section 8.1.4. The definition of
consistency is given in Listing A.9:

Listing A.9: Consistency Rule

1 cons is tency : : V e r i f i c a t i o n R u l e
2
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3 cons is tency (c1@( ts1@( Var v , ) :< t s2 ) , c2@( ts1 ’@( Var v ’ , ) :< ts2 ’ ) )
4 | ( v == v ’ ) = ( [ c1 ] , [ solve $ andFl [ ( u n i f y t2 t2 ’ ) , ( u n i f y t2 ’ t2 ) ] ] )
5 where t2 = f s t t s2
6 t2 ’ = f s t ts2 ’
7 cons is tency = ( [ ] , [ ] )

The definition in line 3 catches the case where the two constraints are of the formsvar v� t2 and
var v′ � t ′2 such thatv = v′. In this case, one of the constraints is removed (c1 ), and the two upper bounds
are unified, i.e.t ′2 � t2∧ t2 � t ′2 is added. Line 7 matches all other cases and neither removes nor adds
constraints, indicating thatconsistency is not applicable.

The main part of the constraint solver is implemented in the functionverifyInc (which stands for
incremental verification). verifyInc takes as parameters a list of verification functions (currently only
consistency andtransitivity ), and two lists of constraints (the current constraint store and theincre-
ment, i.e. the newly added constraints). The increment must always be a part of the constraint store and
the constraint store without the increment is considered tobe consistent; in this way, it is sufficient to only
consider pairs of constraints where at least one of the constraints is part of the increment. The function
verifyInc is implemented as follows (note the comments in the source code):

Listing A.10: Constraint Solver

1 v e r i f y I n c : : [ V e r i f i c a t i o n R u l e ] → [ C ons t ra i n t ] → [ C ons t ra i n t ] → [ [ C ons t ra i n t ] ]
2
3 v e r i f y I n c ru les c ur ren t [ ] = maybe [ ] ( : [ ] ) $ s imp l i f y Pa th c ur ren t
4
5 v e r i f y I n c ru les c ur ren t added = concat $ r e c V e r i f y $ added ’
6 where run = f l a t P a i r . unzip . f i l t e r (6= ( [ ] , [ ] ) ) $ map ( applyRules ru les ) ( pa i r s (

id c ur ren t ) ( added ) )
7
8 −− r e c u r s i v e l y c a l l v e r i f y I n c f o r a l l con junc ts i n the d i s j u n c t i v e
9 −− normal form ( see added ’ below ) ; f i r s t parameter to v e r i f y I n c i s

10 −− the l i s t o f v e r i f i c a t i o n ru les , second i s the v e r i f i e d c o n s t r a i n t
11 −− s to re minus the removed c o n s t r a i n t s and plus the new c ons t ra i n t s ,
12 −− t h i r d i s the l i s t o f new c o n s t r a i n t s ( increment )
13 r e c V e r i f y = map (λx → v e r i f y I n c ru les ( o ld ‘ addLis t ‘ (new x ) ) (new x ) )
14
15 −− the new c o n s t r a i n t s of x are the c o n s t r a i n t s of x minus the
16 −− c ur ren t l i s t o f c o n s t r a i n t s
17 new x = ( dupelim x ) ‘ minusLis t ‘ c u r ren t
18
19 −− the remaining l i s t o f c o n s t r a i n t s i s the c ur ren t l i s t o f
20 −− c o n s t r a i n t s minus the removed c o n s t r a i n t s
21 old = c ur ren t ‘ minusLis t ‘ removed ’
22
23 −− added ’ i s a l i s t o f l i s t s of c o n s t r a i n t s c on ta in i ng the
24 −− d i s j u n c t i v e normal form of a l l add i t i ons ( generated by getPaths )
25 added ’ = s imp l i f y Pa ths $ getPaths ( And $ snd run )
26
27 removed ’ = f s t run
28
29 −− generate a l l pa i r s of the elements of two l i s t s . s ince the f i r s t
30 −− l i s t always conta ins the second l i s t as a t a i l , and the order of
31 −− the pa i rs i s of no importance , we can drop a l l elements of the
32 −− second l i s t i f i t conta ins the c ur ren t element .
33 pa i rs l 1 l 2 = l e t l1 ’ = f i l t e r i sS imCons t ra in t l 1
34 l2 ’ = f i l t e r i sS imCons t ra in t l 2
35 in [ ( x , y ) | x ← l1 ’ ,
36 y ← ( d r o p I f U n t i l l2 ’ x l2 ’ ) , x 6= y ]
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Since it uses Haskell’s function combinators ($ and. ), the definition of the functionverifyInc (line
5) is best read from right to left, and begins with the auxiliary definition of run (line 6): run implements
a complete run over all pairs of constraints from the old constraint store (current ) and constraints from
the increment (added ). The result is a pair consisting of a list of constraints that need to be removed, and
a list of constraints that need to be added in subsequent calls of verifyInc . From the result ofrun , the
valuesadded’ (line 25, containing the disjunctive normal form of the new constraints) andremoved’ (line
27, containing a list of constraints to be removed) are extracted. With these lists, the functionrecVerify
(line 13) is called, which callsverifyInc recursively for each of the conjuncts inadded’ . The recursion
terminates upon saturation, i.e. when no new constraints are added (line 3). The application ofconcat to
the results of recVerify merges the results of the separate recursive calls into a single list. The result is a
list of consistent conjunctions, each representing an alternative solution.

BesidesverifyInc , the fileSolver.hs contains a functionsimplify that can be applied to any con-
straint or constraint store to create a simplified representation without considering dependencies between
constraints. In particular,simplify eliminates the constraints with boolean values ofTrue or False . The
file Solver.hs defines two additional convenience functions used below:

solveCS takes an arbitrary constraint (in general a constraint store), and returns a consistent constraint
store in disjunctive normal form, or the boolean constraintFalse .

solveM takes a memoisation matrix containing constraints or sub-matrices (usually created in a unifica-
tion), and returns a consistent constraint store in disjunctive normal form, or the boolean constraint
False .

A.7.2 Unification

The file Unify.hs contains a prototypical implementation of the Simulation Unification algorithm de-
scribed in Chapter 8.2. This Section first introduces a naı̈ve implementation, which is straightforward but
has a very bad time and space behaviour. As an improvement over this approach, the so-calledmemoisa-
tion matrix(defined in the fileMatrix.hs ) is then introduced. Unification with the memoisation matrix is
considerably more efficient both with respect to time and space. A further refinement of the memoisation
matrix ismatrix compactisation(a pruning method to exclude parts that never contribute to avalid answer),
with which this Section is concluded.

The implementation is described in a very simplified manner;the actual code in the prototype contains
many further constructs that improve efficiency or cover some of the more complex constructs, but antic-
ipate a clean presentation. The algorithms are described ina Haskell-like notation, with some syntactic
additions that are not available in Haskell but useful for readability. In particular, it uses the Xcerpt term
notation instead of the prototype’s data structure.

Due to the potentially exponential size of the desired result, time and space complexity are in general
exponential. However, an important measure is the number ofunification steps, i.e. recursive calls of the
unify function, that are performed. Each such step is computationally expensive, as it requires string
comparisons of the labels and recursive calls ofunify for (in the worst case) all possible combinations
of children of the unified subterms. Thus, the number of unification steps is a measure of the number of
comparisons that need to be done.

Naı̈ve approach

When unifying two (compound) terms with matching labels, the naı̈ve approach simply builds a disjunction
of all alternative combinations of recursive unifications of the subterms and solves each separately (like the
declarative description of Simulation Unification in Section 8.2). unify is thus a function that takes two
terms as arguments and returns aConstraint representing the disjunction of combinations of subterm
unifications and has the following signature:

u n i f y : : Term → Term → C ons t ra in t

In the following, letmappings be the set of functionsΠ as defined in Definition 8.5 (this list can be cre-
ated in Haskell in a straightforward manner). The functionunify for two compound termsl1{{t1, . . . ,tn}}
l2{s1, . . . ,sm} can be implemented as follows:
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Listing A.11: Naı̈ve Implementation ofunify

1 u n i f y l1{{t1, . . . ,tn}} l2{s1, . . . ,sm} =
2 i f l1 6= l2 then False
3 else Or [ And ( zipWith u n i f y [ t1 , . . . ,tn ] [ sπ(1) , . . . ,sπ(n) ]} )
4 | π ←mappings ]

So, in the case of a label mismatch, the result is the atomic constraintFalse(see rule 4 in Chapter 8). In
any other cases, for each mappingπ in mappings , a conjunctive constraint store is created by recursively
applying theunify function to the list of children[t1, . . . ,tn] and their mapping[sπ(1), . . . ,sπ(n)].

Example A.1
Consider a unification of the two termst1 = f{{var X,c}} andt2 = f{a,b,c,d}. Applying the naı̈veunify
to t1 andt2 yields (in mathematical notation):

(uni f y(var X,a)∧uni f y(c,b))∨ (uni f y(var X,a)∧uni f y(c,c))∨ (uni f y(var X,a)∧uni f y(c,d))∨
(uni f y(var X,b)∧uni f y(c,a))∨ (uni f y(var X,b)∧uni f y(c,c))∨ (uni f y(var X,b)∧uni f y(c,d))∨
(uni f y(var X,c)∧uni f y(c,a))∨ (uni f y(var X,c)∧uni f y(c,b))∨ (uni f y(var X,c)∧uni f y(c,d))∨
(uni f y(var X,d)∧uni f y(c,a))∨ (uni f y(var X,d)∧uni f y(c,b))∨ (uni f y(var X,d)∧uni f y(c,c))

or after evaluating the recursive calls ofunify :

(var X� a∧False)∨ (var X� a∧True)∨ (var X� a∧False)∨
(var X� b∧False)∨ (var X� b∧True)∨ (var X� b∧False)∨
(var X� c∧False)∨ (var X� c∧False)∨ (var X� c∧False)∨
(var X� d∧False)∨ (var X� d∧False)∨ (var X� d∧True)∨

It is easy to observe that this implementation contains manyredundancies (e.g.uni f y(c,c) is computed
thrice).

After unification, it is necessary to apply the constraint solver to the resulting constraint store in order
to eliminate conjunctions that are inconsistent (either because one of the recursive unification steps fails
or because two constraints exclude each other). The constraint solver inSolver.hs provides a function
solveCS , which takes an arbitrary constraint store and creates a consistent constraint store in disjunctive
normal form.
Complexity. As there are m!

(m−n)! different total injective mappings from{t1, . . . ,tn} to {s1, . . . ,sm}, the car-

dinality of mappings is m!
(m−n)! . As a consequence, the resulting disjunctive constraint store will containm!

n!

conjunctive subformulas, and requiren · m!
(m−n)! unification steps. In particular, many recursive unifications

will be performed on the same pairs of subterms, leading to much redundancy.

The Memoisation Matrix

An optimisation over the naı̈ve appriach is to remove redundant unification steps by only performing each
unification of pairs of subterms once. The results of these recursive calls are stored in a matrix called
thememoisation matrix(as it memos the results of unifications for further processing). In this manner, it
is possible to reduce the number of necessary unification steps significantly; whereas the naı̈ve approach
requiredn · m!

(m−n)! unification steps, the memoisation matrix requires at mostn ·m unification steps at one
level. Nonetheless, the desired exponential result can be created in later steps by collecting the appropriate
unification results in the matrix.

Theunify function uses the following additional data structure (defined inMatrix.hs ) to store unifi-
cation results (the actual implementation inMatrix.hs is much more complex, as it allows to use nested
matrices and stores additional properties needed for respecting ordered and/or total term specifications):

data MMatrix = MMatrix [ [ C ons t ra i n t ] ]
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The matrix is initialised with all possible combinations ofunifications of children from one term with
children of the other term.8 Using the termsl1{{t1, . . . ,tn}} andl2{s1, . . . ,sm} as above, the matrix is thus
of sizen×m:

Listing A.12: Memoisation Matrix Creation

1 i n i t M a t r i x : : [ Term ] → [ Term ] → [ [ C ons t ra i n t ] ]
2 i n i t M a t r i x [ ] l = [ ]
3 i n i t M a t r i x ( t : t s ) [ s1 , . . . ,sm ] =
4 ( (map ( u n i f y t ) [ s1 , . . . ,sm ] ) : i n i t M a t r i x t s [ s1 , . . . ,sm ] )

Usage of the matrix is best illustrated on an example:

Example A.2
Consider a unification of the two termsf{{var X,c}} and f{a,b,c,d}. The matrix for the children is
initialised as follows:

t1\t2 a b c d
var X uni f y(var X,a) uni f y(var X,b) uni f y(var X,c) uni f y(var X,d)

c uni f y(c,a) uni f y(c,b) uni f y(c,c) uni f y(c,d)

Immediate evaluation gives the following matrix:

t1\t2 a b c d
var X var X� a var X� b var X� c var X� d

c False False True False
ut

Creating the different total mappings of subterms of the oneterm to subterms of the other term from
this matrix is straightforward; informally, each mapping corresponds to a different “path” through the
matrix such that a single cell of every row is collected. Notethat this method is similar to the “Connection
Method” described in [20]. The functiongetPaths serves to create all mappings:

Listing A.13: Path Generation in Memoisation Matrix

1 getPaths : : [ [ C ons t ra i n t ] ] → [ [ C ons t ra i n t ] ]
2 getPaths [ ] = [ [ ] ]
3 getPaths [ l ] = map (λx → [ x ] ) l
4 getPaths ( x : xs ) = [ ( x ’ : xs ’ ) | x ’ ← x , xs ’ ← ( getPaths xs ) ]

Using Haskell’slist comprehension, the set of paths is expressed in a very compact manner. However,
bear in mind that there arem!

(m−n)! possible paths in the matrix. In case the term specification of the corre-
sponding query term is ordered or total, the functiongetPaths needs to be modified appropriately to only
generate monotonic or surjective mappings; this modification is straightforward and not described here.

Example A.3
The following table shows some of the top-down paths throughthe memoisation matrix of Example A.2.
Each path represents a total mapping of subterms oft1 to subterms oft2. Note that the leftmost path (in
green colour) is not a valid mapping, as it is not injective. The second path beginning withuni f y(var X,a)
(in red colour) in contrast even represents a total, injective andmonotonicmapping and would thus be
suitable for ordered matchings. The third path (in blue colour) is not monotonic, but it is injective.

t1\t2 a b c d
var X uni f y(var X,a) uni f y(var X,b) uni f y(var X,c) uni f y(a,d)

c uni f y(c,a) uni f y(c,b) uni f y(c,c) uni f y(c,d)

8Note that, using Haskell’s lazy evaluation, the actual values of the cells are only computed upon use; implementations in other
languages should reflect this appropriately
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ut

The result of a unification is a constraint store in disjunctive normal form, the conjunctions of which
each correspond to a top-down path in the memoisation matrix. In the example above, e.g. the red path
represents the conjunctionvar X� a∧True.

Combining the pieces introduced separately above, the function unify with memoisation matrix is thus
implemented as follows (in simplified form):

Listing A.14: unify with Memoisation Matrix

1 u n i f y l1{{t1, . . . ,tn}} l2{s1, . . . ,sm} =
2 i f l1 6= l2 then False
3 else Or . map And . getPaths $ i n i t M a t r i x [ t1 , . . . ,tn ] [ s1 , . . . ,sm ]

During or after unification, it is necessary to resolve inconsistencies by calling the constraint solver for
the resulting matrix. For this purpose, the fileSolver.hs (described above) provides a functionsolveM
that takes a (filled) memoisation matrix as input and solves each of the conjunctive paths in it. As an optimi-
sation, the implementation in the prototype instead solveseven while collecting the different paths. To this
aim, the functionsolveM reverts to a different implementation forgetPaths calledgetConsistentPaths ,
which uses the incremental constraint solververifyInc to only generate paths that are consistent.

Complexity. The overall space and time complexity is still exponential,as the possible size of the
desired result is exponential as well. However, the complexity measured in the number of unification steps
in this approach is reduced to at mostn ·m, wheren,m are the number of nodes int1,t2 respectively. Each
node fromt1 is at most unified with each node fromt2, but in many practical cases less – depending on the
depth and breadth of the term structure.

Matrix Compactisation

An important observation is that a large part of the fields of the matrix will evaluate toFalse in many
applications. Since a path will be translated into a conjunctive constraint store, each path containing at
least oneFalseis immediatelyFalseitself. It is thus desireable to not consider such paths at all.

The Xcerpt Prototype uses amatrix compactisationsuch that paths containingFalsewill not be con-
sidered. This compatisation can be implemented as follows:

Listing A.15: Matrix Compactisation

1 compactise : : [ [ C ons t ra i n t ] ] → [ [ C ons t ra i n t ] ]
2 compactise mat r ix = map ( f i l t e r (λx → x 6= False ) ) mat r ix

Each row of the matrix is compactised such that it no longer contains anyFalseconstraints. Thus,
each path is valid if it isand-connected. Obviously, applying thegetPaths function to a matrix that
is compactised in such a way still returns the same (valid) paths as it would have returned without the
compactisation. All missing paths are those that would haveevaluated toFalsewhen theand-connector
would have been applied.

However, using the inexpensive compactisation can reduce the time and space consumption in many
practical cases, as a large amount of paths usually containsat least oneFalse. This can easily be seen on
the example used above.

Example A.4
Since many of the child unifications evaluate to false, the compactised matrix looks as follows:

t1\t2
var X uni f y(var X,a) uni f y(var X,b) uni f y(var X,c) uni f y(var X,d)

c uni f y(c,c)
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Obviously, the number of paths is reduced significantly (of the paths in Example A.3, there is only the
red path left), while the overall result is not changed. ut

Tests conducted using the Haskell implementation as described here have shown an execution time
improvement by a factor of 30 in average for the considered data. Note that this compactisation does
not allow to determine whether the mapping corresponding toa path is injective and/or monotonic, so
generating the correct paths for ordered unification requires to add additional information to the matrix
cells. In the current prototype, this is done by adding the subterm positions for the second term.

The completeunify function with memoisation matrix and matrix compactisation looks as follows:

Listing A.16: unify with matrix compactisation

1 u n i f y l1{{t1, . . . ,tn}} l2{s1, . . . ,sm} =
2 i f l1 6= l2 then False
3 else Or . map And . getPaths . compactise $ i n i t M a t r i x [ t1 , . . . ,tn ] [ s1 , . . . ,sm ]

A.7.3 Backward Chaining

The backward chaining algorithm is implemented in the fileProgram.hs . The main functions exported
by this file arerunProgram (evaluate a program and write resulting terms to resources specified in pro-
gram or standard output if no resource is given),hRunProgram (evaluate a program and write resulting
terms to resources specified in program or the handle provided to this function if no resource is given),
and tRunProgram (evaluate a program and return a list of all resulting terms,disrespecting potential re-
source specifications). Furthermore, this file provides thefunctionsevalQuery andevalQueryCompat for
evaluating a query part against a program instead of evaluating the goals in the program

The main data structure used by the backward chaining algorithm is a tree (structureBTree of module
Xcerpt.Data.BTree ) representing the current constraint store. In this tree, each leaf node represents a
conjunct of the disjunctive normal form, but unlike the decomposition trees of Chapter 8, this tree does
not convey the history of applications of simplification rules. The sole purpose of this tree is to provide an
efficient method for building the DNF by splitting a leaf nodeinto two or more successors if a disjunction
needs to be inserted. To operate on this tree,Program.hs provides four internal functionsinsertAtC
(to insert a constraint in a certain leaf node),deleteAtC (to remove a constraint in a certain leaf node),
replaceAtC (to replace a constraint in a certain leaf node), andreplaceC (to replace a constraint in all
leaf nodes). All functions ensure that a conjunct is consistent by calling the constraint solver described
above.

When evaluating a program, the algorithm loops over all conjuncts (functionrunC ) in a breadth-first
fashion, selects constraints that are not yet fully evaluated (functionselectC ), and applies simplification
rules (functioneval ) until no more simplification rules can be applied. For this purpose,runC uses a data
structure calledEvalContext as helper (it mainly contains the current program and the current position in
the constraint store).

The functioneval decides, depending on the kind of constraint, how to evaluate the constraint and
applies unification of query unfolding if necessary. The results are combined and the tree representing
the constraint store is updated. Of particular interest is the treatment of the dependency constraint, which
requires to perform an auxiliary computation before the “waiting” constraint can be evaluated. Depending
on the result of this auxiliary computation, either the resulting substitutions are applied, or the constraint
fails.

Query unfolding and standardisation apart is performed by the functionunfoldQuery , which takes as
an additional argument a prefix used for variable renaming. This prefix is composed depending on the
current level of recursion and the position of queries in a conjunction/disjunction such that it is sufficiently
unique to avoid conflicts during evaluation. Note that unfolding a query term may yield dependency con-
straints in case the query term is evaluated against the headof a rule containing a grouping construct.
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A.8 Module Xcerpt.Methods: User-Defined Functions

Figure A.7: Module and File Structure of the package Xcerpt.Methods; modules in green, files in red

The moduleXcerpt.Methods contains the definitions of functions that are available in Xcerpt either
as arithmetic/string functions in construct terms (fileArithmetics.hs ), or as aggregation functions (file
Aggregations.hs , or as sorting specification inorder by (file Comparisons.hs ). So as to not add every
function explicitly to the parser, all functions are storedin associated lists in which each entry consists of a
pair of string and function definition.

Listing A.17: Definition of Aggregation Functions

1 type Aggregat ionFunct ion = [ Term ] → [ Term ]
2
3 aggregat ions : : [ ( String , Aggregat ionFunct ion ) ]
4 aggregat ions =
5 [ ( ” count ” , ( ( : [ ] ) . Text . show . length ) ) ,
6 ( ”sum” , ( ( : [ ] ) . Text . show . sum . map parseFloat ) ) ,
7 ( ” avg ” , ( ( : [ ] ) . Text . show . avg . map parseFloat ) ) ,
8 ( ” min ” , ( ( : [ ] ) . Text . show . min ’ . map parseFloat ) ) ,
9 ( ”max” , ( ( : [ ] ) . Text . show . max ’ . map parseFloat ) ) ,

10 ( ” reverse ” , reverse ) ,
11 ( ” f i r s t ” , take 1 ) ,
12 ( ” l a s t ” , take 1 . reverse ) ,
13 ( ” r e s t ” , t a i l ) ,
14 ( ” p r e f i x ” , reverse . t a i l . reverse )
15 ]

Listing A.17 shows the definition of the associated listaggregations , which contains the definition of
the currently available aggregation functions. Helper functions (likemap’ ) are omitted for space reasons.
The lists in the filesArithmetics.hs andComparison.hs are defined in a similar manner.

Extending the prototype by new user-defined functions can beachieved easily by adding new function
definitions to these lists.
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APPENDIX

B

Proofs

B.1 Proof of Theorem 4.9 (Reflexivity and Transitivity of�)

Theorem 4.9
� is reflexive and transitive.

In order to prove Theorem 4.9, the following Lemma is first shown:

Lemma B.1
Given three sequences of ground query termsL, M, andN, and two (partial or total) mappingsπ : L→M
andτ : M→ N. Furthermore, letπ ◦ τ denote function composition such that(τ ◦π)(x) = τ(π(x)). The
following properties hold:

1. if bothπ andτ are index bijective, so isπ ◦ τ.

2. if bothπ andτ are index monotonic, so isπ ◦ τ.

3. if bothπ andτ are position preserving, so isπ ◦ τ.

4. if π is position preserving andτ is position respecting, thenπ ◦ τ is position respecting.

5. if π is position respecting andτ is index monotonic and index bijective, thenπ ◦ τ is position re-
specting.

Proof.

1. Trivial.

2. Trivial.

3. Let r ∈ L such thatterm(r) is a subterm of the formposition i r′. From the hypothesis, it follows thats= π(r)
such thatterm(s) is a subterm of the formposition k s′ with i = k. Likewise, it follows thatterm(τ(s)) is a
subterm of the formposition j t′ with k = j . Consequently,i = j andπ ◦τ is position preserving.

4. Let r ∈ L such thatterm(r) is a subterm of the formposition i r′. From the hypothesis, it follows thats= π(r)
such thatterm(s) is a subterm of the formposition k s′ with i = k. Likewise, it follows thatτ(s) maps to a
subterm with indexj such thatk = j . Thusi = j andπ ◦τ is position respecting.

5. Let r ∈ L such thatterm(r) is a subterm of the formposition i r′. From the hypothesis, it follows that
index(π(r)) = i . Sinceτ is index monotonic and index bijective, it follows thatτ maps everysk to a sub-
termt j such thatindex(sk) = index(sj ). Thusi = index(sj ) andπ ◦τ is position respecting.

ut

Proof of Theorem 4.9.

1. Reflexivity

The Lemma is proved by induction over the structure of groundquery terms. In all cases, label matching is
reflexive. It thus suffices to show that there exists a subtermmappingπ with the correct properties. Lett be a
ground query term:
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• if t is of the form f [t1, . . . ,tn], and all of theti are reflexive, then the mappingπ with π(ti) = ti for all ti is
trivially index monotonic and index bijective.

• if t is of the form f {t1, . . . ,tn}, and all of theti are reflexive, then the mappingπ with π(ti) = ti for all ti
is trivially index bijective; it is furthermore position preserving, as each subterm of the formposition j t
is mapped to the subtermposition j t.

• if t is of the form f {{t1, . . . ,tn}}, and all of theti are reflexive, then the mappingπ with π(ti) = ti for all
ti is position respecting (as above), and it furthermore holdsthat for eachti ∈ SubT+ holdsti � π(ti) (as
ti is reflexive by assumption), and for eachti ∈ SubT− holdsπ(ti) � ti (again becauseti is reflexive by
assumption).

• if t is of the form f [[t1, . . . ,tn]], and all of theti are reflexive, then the mappingπ with π(ti) = ti for all ti
is trivially index monotonic and position preserving; the remaining conditions are in analogy to above

All other cases are trivially satisfied.

2. Transitivity
It is easy to see that label matching is transitive. Lett1, t2, andt3 be ground query terms such thatt1 � t2 and
t2� t3. It is to show thatt1� t3. The lemma is proved by induction over the term structure oft1, t2, andt3. Not
all combinations are given; the remaining cases are proved in a similar manner to cases listed here.

• if t1 is of the form f1{r1, . . . , r l}, then t2 is either of the form (1)f2{s1, . . . ,sm} or (2) f2[s1, . . . ,sm]
becauset1� t2, and there exists a mappingπ from the successors oft1 to the successors oft2 that is index
bijective and position preserving.

Case (1): t3 is of the forms (1.1)f3{u1, . . . ,un} or (1.2) f3[u1, . . . ,un]

Case (1.1): there exists a mappingτ from the successors oft2 to the successors oft3 that is index
bijective and position preserving; with Lemma B.1, it follows thatπ ◦ τ is index bijective and
position preserving, and with the induction hypothesis it follows thatt1 � t3.

Case (1.2): there exists a mappingτ from the successors oft2 to the successors oft3 that is index
bijective and position respecting; with Lemma B.1, it follows thatπ ◦ τ is index bijective and
position respecting, and with the induction hypothesis it follows thatt1� t3.

Case (2): t3 is of the form f3[u1, . . . ,un], and there exists a mappingτ that is index monotonic and index
bijective; with Lemma B.1, it follows thatπ ◦ τ is index bijective and position respecting, and with
the induction hypothesis it follows thatt1 � t3

• if t1 is of the form f1{{r1, . . . , r l}}, thent2 is either of the form (1)f2{s1, . . . ,sm}, (2) f2{{s1, . . . ,sm}},
(3) f2[[s1, . . . ,sm]], or (4) f2[s1, . . . ,sm]

Case (1): there exists a mappingπ of SubT+(t1) to SubT(t2) that is position preserving and not com-
pletable to subterms of the formwithout s; furthermore,t3 is of the forms (1.1)f3{u1, . . . ,un} or
(1.2) f3[u1, . . . ,un]

Case (1.1): there exists a mappingτ from the successors oft2 to the successors oft3 that is index
bijective and position preserving; with Lemma B.1, it follows thatπ ◦τ is also position preserv-
ing and asτ is index bijective,π ◦τ is not completable; with the induction hypothesis it follows
thatt1 � t3

Case (1.2): there exists a mappingτ from the successors oft2 to the successors oft3 that is index bi-
jective and position respecting; with Lemma B.1, it followsthatπ ◦τ is also position respecting
and asτ is index bijective, it follows thatπ ◦τ is not completable; with the induction hypothesis
it follows thatt1� t3.

Case (2): there exists a total mappingπ of SubT(t1) to SubT(t2) that is position preserving such that:
(a) for all r ∈ SubT+(t1) holds thatr � π(r)
(b) for all r ∈ SubT−(t1) of the formwithout r ′ holds thatπ(r) is of the formwithout s′ and

s′ � r ′

furthermore,t3 is of the forms (2.1)f3{u1, . . . ,un}, (2.2) f3[u1, . . . ,un], (2.3) f3{{u1, . . . ,un}}, or
(2.4) f3[[u1, . . . ,un]]

Case (2.1): there exists a mappingτ from the successors oft2 to the successors oft3 that is position
preserving and not completable; with Lemma B.1, it follows thatπ ◦ τ is also position preserv-
ing; with (b), it follows thatπ ◦ τ is also not completable, because a completion to a subterm
without r′ of t1 would require that there exists a subtermui of t3 such thatr ′ � ui , but no such
subterm can exist, because (b) requires that there exists a subtermwithout s′ of t2 such that
s′ � r ′ andt2 is not completable (i.e.without s′ excludes all subterms for whichr ′ � ui would
hold).
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Case (2.2): similar to 2.1 and 1.2

Case (2.3): there exists a mappingτ from the successors oft2 to the successors oft3 that is position
preserving and for which holds that

– for all s∈ SubT+(t2) holds thats� π(s)

– for all s∈ SubT−(t2) of the formwithout s′ holds thatπ(s) is of the formwithout u′ and
u′ � s′

with Lemma B.1, it follows thatπ ◦τ is also position preserving; with (a), (b), and the induction
hypothesis follows that

– for all r ∈ SubT+(t1) holds thatr � (π ◦τ)(r)

– for all r ∈ SubT−(t1) of the formwithout r ′ holds that(π ◦ τ)(r) is of the formwithout
u′ andu′ � s′

consequently,t1 � t3.

Case (2.4): similar to 2.3 and 1.2

Case (3): similar to 2

Case (4): similar to 1

3. if t1 is of the formdesc t′1, then either (1)t ′1 � t2, or (2) t2 has a subtermt ′2 such thatt ′1 � t ′2, or (3) t2 is of the
form desc t′2 such thatt ′1 � t ′2.

Case (1): ast2 � t3 holds alsot ′1 � t3 and thust1 � t3.

Case (2): t2 has a subtermt ′2 such thatt ′1� t ′2. As t2� t3, there exists a subtermt ′3 of t3 such thatt ′2� t ′3. Thus,
t ′1 � t ′3, and thust1 � t3.

Case (3): trivial
ut
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B.2 Proof of Theorem 8.6 (Soundness and Completeness of Simula-
tion Unification)

Theorem 8.6 (Soundness of Simulation Unification)
Let tq be a query term without subterm negation and optional subterms and lettc be a construct term without
grouping constructs, functions/aggregations, and optional subterms. A substitution setΣ is a most general
simulation unifier oftq andtc if and only if simulation unification oftq �u tc terminates with a constraint
storeCSsuch thatΣ = Ω(CS).

We first show that simulation unification terminates for any query termtq and construct termtc, and
then show soundness and completeness by induction over the number of rule applications.

Lemma B.2 (Termination of Simulation Unification)
Let tq be a query term without subterm negation and optional subterms and lettc be a construct term without
grouping constructs, functions/aggregations, and optional subterms. Simulation unification oftq �u tc

terminates.

Proof. We prove termination by assigning a rank to atomic constraints and showing that the rank decreases with
every rule application. Consider a tree where each node is anatomic constraint (i.e. either a boolean or a simulation
constraint). Application of a simulation unification rule yields the constraints that are successors of this node. Conjunc-
tions and disjunctions split into several successors. For example, application ofdecomp.3to a simulation constraint
of the form f {a,b} �u f {c,d} yields the successor nodesa�u c, a�u d, b�u c, andb�u d. By König’s Lemma, it
suffices to show that every successor of a node has a strictly lower rank than its predecessor. Ranks of constraints are
defined as follows:

rank(True) = 0
rank(False) = 0
rank(t1 �u t2) = depth(t1)+depth(tn)

depth(var X) = 1
depth(var X�u t) = 1+depth(t)

depth(l{t1, . . . ,tn}) = 1+maxni=1(depth(ti))
depth(l{{t1, . . . ,tn}}) = 1+maxni=1(depth(ti))
depth(l [t1, . . . ,tn]) = 1+maxni=1(depth(ti))
depth(l [[t1, . . . ,tn]]) = 1+maxni=1(depth(ti))
depth(desc t) = 1+depth(t)
depth(id@t) = 1+depth(t)

Furthermore,depth(↑ id) is defines as(n+1) ·depth(t), wheren is the number of remaining applications of the
deref rule to ↑ id in the course of the evaluation, andt is the referenced term. Obviously,n is finite because the
memoing rule eventually terminates a path when a pair of terms is unified that has already been considered. Since
there are only finitely many subterms in each term, this happens inevitably in every computation that would otherwise
not terminate.

1. application ofdecomp.1, decomp.2, or decomp.4.

The rank trivially decreases, because all three kinds of rules reduce the constraint store to eitherTrueor False.

2. application ofdecomp.3

A constraint of the formtq �u tc wheretq = l{{t1
1, . . . ,t1

m}} and tc = l{t2
1, . . . ,t2

n} (independent of the kinds
of braces) is reduced to finitely many successors of the formt1

i �u t2
j for some childrent1

i of tq and t2
j of

tc. Let t1
i andt2

j be any such children. Obviously,depth(t1
i ) < depth(tq) anddepth(t2

j ) < depth(tc). Then,

rank(t1
i �u t2

j ) < rank(tq �u tc).

3. application ofvar

A constraint of the formvar X→ t �u tc is reduced to three successors:

• rank(t �u tc) = depth(t)+depth(tc) < (1+depth(t))+depth(tc) = rank(tq �u tc)

• rank(var X�u tc) = 1+depth(tc) < (1+depth(t))+depth(tc) = rank(tq �u tc), asdepth(t)≥ 1

• rank(t �u var X) = depth(t)+1 < (1+depth(t))+depth(tc) = rank(tq �u tc), asdepth(tc)≥ 1

4. application ofdesc

A constraint of the formdesc t�u tc wheretc = l{t2
1, . . . ,t2

n} is reduced to two kinds of successors:

• rank(t �u tc) = rank(t)+ rank(tc) < (1+ rank(t))+ rank(tc) = rank(desc t�u tc)

• rank(desc t�u t2
i ) = 1+ rank(t) + rank(t2

i ) < 1+ rank(t) + rank(tc) = rank(desc t�u tc) for some
1≤ i ≤ n
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5. application ofderef

A constraint of the form↑ id �u t is reduced todere f(id)�u t. Let n be the number of remaining applications
of the dereferencing rule

rank(↑ id �u t) = (n+1) ·depth(dere f(id))+depth(t) > depth(dere f(id))+depth(t) = rank(dere f(id) �u t)

because if↑ id occurs indere f(id), then thederef rule is only applicablen−1 times and thus the rank is strictly
lower.

6. application ofmemoing

A constraint of the formtq �u tc is reduced toTrue or False in case it has already been considered. Since
rank(True) = rank(False) = 0, the rank is trivially reduced to a lower value.

ut

Proof of Theorem 8.6.
We prove theorem 8.6 by induction over the numberk of applications of decomposition rules to the constraint store

C initialised byC = tq �u tc. In every case, it is to show thatΩ(C) is the most general simulation unifier oftq in tc.
Sincetc does not contain grouping constructs, we know that everyJσK ∈ Σ/'FV(tc)

consists of a single substitution.
This simplifies matters significantly, as it requires that a substitution setΣ is a simulation unifier only if for allσ ∈ Σ
holds thatσ(tq)� σ(tc) (*).
Induction Base.Let k = 0, i.e. no rules are applicable. We have to consider two cases:

1. C is of the formvar X�u tc for a variableX and a construct termt.

By definition,Ω(C) contains exactly the substitutionsσ whereσ(X) = t ′ s.t.t ′ ∼= σ(tc). Obviously,Ω(C) is a
simulation unifier oftq in tc.

Ω(C) is also the most general simulation unifier oftq in tc. Assume it was not. Then there existsΣ 6⊆ Ω(C)
s.t. Σ is a simulation unifier oftq in tc, i.e. (with *) for everyσ ∈ Σ holds thattq′ = σ(tq) = σ(X) simulates
into tc′ = σ(tc). Let now σ ∈ Σ and lettq′ = σ(X) be one of the ground instances oftq s.t. σ 6∈ Ω(C), but
tq′ simulates into the ground instance oftc in σ . BecauseΣ is a simulation unifier and thus an all-grounding
substitution set,tq′ is a data term. By definition of∼=, it thus holds thattq′ ∼= tc. Contradiction withtq′ 6∈Ω(C)  

2. C is of the formtq �u var X for a variableX and a query termt.

By definition,Ω(C) contains exactly the substitutionsσ whereσ(X) = t ′ s.t.σ(tq) � t ′. Obviously,Ω(C) is a
simulation unifier oftq in tc.

Ω(C) is also the most general simulation unifier oftq in tc. Assume it was not. Then there existsΣ 6⊆ Ω(C)
s.t. Σ is a simulation unifier oftq in tc, i.e. (with *) for everyσ ∈ Σ holds thattq′ = σ(tq) simulates into
tc′ = σ(tc) = σ(X). Let nowσ ∈ Σ and lettq′ = σ(tq) be one of the ground instances oftq s.t.σ 6∈ Ω(C), but
tq′ simulates into the ground instancetc′ of tc in σ . Then it holds thatσ(tq)� σ(X), and thusσ is in Ω(C).

Induction Step. Assume now that the number of decomposition steps isk. By induction hypothesis, Theorem 8.6
holds for alli < k. We have to consider the following cases:

1. application ofdecomp.1(brace incompatibility)

let tq = l [t1
1, . . . ,t1

m] andtc = l{t2
1, . . . ,t2

n}
or let tq = l [[t1

1, . . . ,t1
m]] andtc = l{t2

1, . . . ,t2
n}

As the braces oftq andtc are incompatible, ground instances oftq will not simulate in ground instances oftc

regardless of the substitutions. Thus, the mgsu oftq in tc, defined as the union of all simulation unifiers, is
empty.decomp.1reduces both cases to the constraint storeFalse. By definition,Ω(False) = { }, and thus the
theorem is correct.

2. application ofdecomp.2(left term without subterms)

• let tq = l{{ }} andtc = l{t2
1, . . . ,t2

n} or
let tq = l{{ }} andtc = l [t2

1, . . . ,t2
n] or

let tq = l [[ ]] andtc = l [t2
1, . . . ,t2

n] andn≥ 1

Thentq simulates intc for every grounding substitution set oftc. Thus, the mgsu oftq in tc is the set of all
all-grounding substitutions.decomp.2reduces all three cases toTrue, and with the definition ofΩ(True)
as the set of all all-grounding substitutions, the theorem is correct.
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• let tq = l{ } andtc = l{t2
1 , . . . ,t2

n} or
let tq = l{ } andtc = l [t2

1, . . . ,t2
n] or

let tq = l [ ] andtc = l [t2
1, . . . ,t2

n] andn≥ 1

Thentq never simulates in ground instances oftc, because there exists no index bijective function from
〈 〉 to 〈t2

1, . . . ,t2
n〉 for n≥ 1. Thus, the mgsu oftq in tc, defined as the union of all simulation unifiers, is

empty.decomp.2reduces all three cases to the constraint storeFalse. By definition,Ω(False) = { }, and
thus the theorem is correct.

• let tq = l{ } andtc = l{ } or
let tq = l{ } andtc = l [ ] or
let tq = l [ ] andtc = l [ ]

Thentq simulates intc for every substitution set. Thus, the mgsu oftq in tc is the set of all all-grounding
substitutions.decomp.2reduces all three cases toTrue, and with the definition ofΩ(True) as the set of
all all-grounding substitutions, the theorem is correct.

3. application ofdecomp.3(general decomposition)
Let tq = l{{t1

1 , . . . ,t1
m}} and lettc = l{t2

1 , . . . ,t2
n}.

The mgsu oftq in tc is the setΣ of all all-grounding substitutionsσ such thatσ(tq) � σ(tc). According
to Definition 4.8, it thus holds that there exists a total, index injective, and position preserving mappingπ
from SubT(σ(tq)) = 〈t1

1, . . . ,t1
m〉 to SubT(σ(tc)) = 〈t2

1, . . . ,t2
m〉 such that for eacht1

i ∈ SubT(σ(tq)) holds that
t1
i � σ(t1

i ), andΣ consists of all suchσ .

Application of decomp.3to tq �u tc yieldsC =
∨

π∈Πpp

∧

1≤i≤mt1
i �u π(t1

i ). Thus, as by definition,Ω(C) =

Ω(
∨

C′) =
⋃

Ω(C′) , Ω(C) substitutions for all possible total, index injective, andposition preserving functions
π. Consider now someC′ =

∧

1≤i≤mt1
i �u π(t1

i ) for some mappingπ. By definition, we know thatΩ(C′) =
⋂

1≤i≤n Ω(t1
i �u π(t1

i )), and by induction hypothesis, eachΩ(t1
i �u π(t1

i )) is the most general simulation unifier
of t1

i in π(t1
i ). Ω(C′) is thus the maximal all-grounding substitution set that is asimulation unifier for each of

the t1
i in π(t1

i ). Thus,Ω(C) =
⋃

Ω(C′) is the maximal all-grounding set that is a simulation unifierfor any of
the mappingsπ, and as the labels oftq andtc match,Ω(C) is the most general simulation unifier oftq in tc.
The argumentation is identical in the other cases with the exception of the chosen set of functionsΠ, which is
obviously correct.

4. application ofdecomp.4(label mismatch)
Let tq andtc be terms such that the labels mismatch. Hence, ground instances oftq will not simulate in ground
instances oftc regardless of the substitutions. Thus, the mgsu oftq in tc, defined as the union of all simulation
unifiers, is empty.decomp.1reducestq �u tc to the constraint storeFalse. By definition,Ω(False) = { }, and
thus the theorem is correct.

5. application ofvar (→ elimination)
Let tq = var X→ t1 and lettc = t2.
An all-grounding substitution setΣ has to satisfy the following conditions to be a simulation unifier of tq in tc:

(a) Σ must be applicable tovar X→ t1, i.e. it may only contain substitutionsσ for which holds thatσ(t1)�
σ(X)

(b) it must be a simulation unifier ofvar X in t2, i.e. for every substitution setσ in Σ holds thatσ(X)� σ(t2)

We now show that the evaluation of the rulevar satisfies both conditions and is maximal, i.e. a most general
simulation unifier oftq in tc. var reducestq �u tc to a constraint storeCS= t1 �u t2∧ t1 �u X∧X �u t2. By
definition,

Ω(CS) = Ω(t1 �u t2)
︸ ︷︷ ︸

A

∩ Ω(t1 �u X)
︸ ︷︷ ︸

B

∩ Ω(X �u t2)
︸ ︷︷ ︸

C

• B is the mgsu oft1 in var X; thus, for everyσ ∈ B holds thatσ(t1)� σ(X)

• C is the mgsu ofvar X andσ(t1)

B∩C describes exactly the mgsu oftq in tc, because it fulfils the requirements (1) and (2) given above and is
maximal, becauseB andC are maximal.

As, by induction hypothesis,t1 �u t2 computes the mgsu oft1 in t2, A∩B∩C = B∩C (i.e. t1 �u t2 does not
remove further substitutions fromB∩C). Note that this corresponds to the fact thatt1 �u t2 is merely used to
improve the evaluation performance.

Thus, the theorem is correct for this case.
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6. application ofdesc(descendant elimination)

Let tq = desc t, and lettc = l{t2
1, . . . ,t2

n} or tc = l [t2
1, . . . ,t2

n] (n≥ 0).

A substitution setΣ is then a simulation unifier if for everyσ ∈ Σ holds that there exists a subtermtc′ of σ(tc)
such thatσ(t) � tc′ , and it is the mgsu, if it is the union of all all-grounding simulation unifiers that adhere to
this restriction.

Application of the ruledescreduces the constrainttq�u tc to C = t �u tc∨
∨

1≤i≤n desc t�u t2
i . Thus,

Ω(C) = Ω(t �u tc)
︸ ︷︷ ︸

A

∪
⋃

1≤i≤n

Ω(desc t�u t2
i )

︸ ︷︷ ︸

B

By induction hypothesis,A is the mgsu oft �u tc, andB is the union of the mgsus oftq�u t2
i for some subterm

t2
i of tc. By Definition 4.8,Ω(C) is thus the maximal set of all-grounding substitutions thatis a simulation
unifier of tq in tc and thus the mgsu.

7. application ofmemoing(termination in case of constraints that have already been treated)

It suffices to consider the rulememoing; the rulederef is trivially correct, it simply implements the definition of
dereferencing in ground query term graphs (cf. Definition 4.2).

In the following, lettc be some construct term of the formsid@l{t2
1, . . . ,t2

n} or id@l [t2
1, . . . ,t2

n] such that at least
one of thet2

i contains a reference toid, i.e.tc contains at least one cycle. It is not necessary to consider othertc

without identifiers or without cycles, because the theorem holds for these as shown in the rest of this proof.

We already know that simulation unification is sound and complete for all rule applications besidesmemoing.
We have to show that thememoingrules have no influence on the resulting set of all-groundingsubstitutions,
i.e. with memoing, we get the same result as without memoing (and infinite application of decomposition rules).

• let tq = desc t; a substitution setΣ is the mgsu oftq in tc, if it contains exactly the substitutionsσ for
which holds thatσ(tq)� σ(tc).

Evaluation ofC = tq �u tc for the first time yieldsC = t �u tc∨
∨

1≤i≤n desc t�u t2
i by applying the

rule desc. Assume that further evaluation ofC eventually yields a constraint store (in DNF) of the form
C1∨·· ·∨Ci ∨·· ·∨Cm for somem≥ 1, and thatCi again is of the formtq �u tc, because thedesc t�u t2

j
leading toCi contains a cyclic reference toid. Evaluatingtq �u tc again then obviously does not yield
substitutions that are not already induced byC1∨·· ·∨Ci−1∨Ci+1∨·· ·∨Cm, and thus replacingCi by the
neutral element for disjunction has no influence onΩ(tq �u tc). Simulation algorithm is thus sound and
complete in this case.

• let tq be an arbitrary query term of the formid′@t

Decomposition with any of the rules exceptdescreducestq �u tc to either an atomic constraint or to a
disjunction of conjunctions (in DNF), i.e.

C = C1,1∧·· ·∧C1,n1 ∨·· ·∨Ci,1∧·· · ∧Ci,ni ∨·· ·∨Cm,1∧·· ·∧Ci,nm

Assume now that any of theCi, j is again of the formtq �u tc because some subterms oftq andtc contain
cyclic references toid′ andid, i.e. evaluation ofCi, j would again yieldC. As in the previous case, no new
information would be added, and thus replacingCi, j by the neutral element for disjunction (True) has no
influence onΩ(tq �u tc). Simulation algorithm is thus sound and complete in this case.

ut
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B.3 Proof of Lemma 8.7 (Soundness and Completeness of the Back-
ward Chaining Algorithm)

Lemma 8.7
Let P be a negation-free, grouping stratified Xcerpt program without goals, letMP be the fixpoint ofP, and
let Q be a negation-free query (composed of one or more query terms). If the evaluation of〈Q〉 terminates
with a constraint storeCS, thenΣ = Ω(CS) is a maximal substitution set withMP |= Σ(Q).

Proof. The proof is done by induction over the numbern of unfolding steps (applications of reduction rules) that are
performed until a constraint storeCSinitialised byCS= 〈Q〉 is completely solved (i.e. no further rules are applicable).
Induction Base. Let first n = 1, i.e. there is exactly one query term unfolding step. ThenP contains only data terms,
andQ is of the formtq (a query term), i.e. the constraint store is initialised with CS0 == 〈tq〉.

Application of query term unfolding thus reducesCS0 to

CS1 = tq �u td
1 ∨·· · ∨ tq �u td

n

for all data termstd
i ∈ P (1≤ i ≤ n).

As simulation unification is sound and complete and thetd
i are already ground, the algorithm computes a constraint

store representing substitution setsΣ1 = Ω(tq�u td
1), . . . ,Σn = Ω(tq �u td

n) such that
∧

σ∈Σi
σ(tq)� td

i holds for every
td
i (1≤ i ≤ n) (*). Note that some of theΣi may be empty, in which case it is not required that a ground instance of the
query term simulates into the data termtd

i .
By definitions 7.8 and 7.9,MP contains all data termstd

i that are inP. Thus,MP |= td
i for everytd

i , and with (*)
holds thatMP |= Σ(Q), whereΣ = Σ1∪·· ·∪Σn = Ω(CS1). As P only contains data terms,MP only consists of the data
terms inP. Sincetq is unified with every data term inP, Σ is also a maximal substitution set withMP |= Σ(Q).

Induction Step. Now assume that the number of query term unfolding steps for aconstraint store initialised with
CS0 = 〈Q〉 is n. By the induction hypothesis, Lemma 8.7 holds for all derivations of lengthk < n.

1. SupposeQ is of the formand{Q1, . . . ,Qm} with m≥ 2.

It suffices to consider the casem = 2, i.e. Q = and{Q1,Q2}, as it is always possible to transformQ to an
equivalent query of the formand{Q1,and{Q2, . . . ,Qm}}.

Unfolding 〈Q〉 to 〈Q1〉 ∧ 〈Q2〉 requires one unfolding step. Hence, solving each of the〈Qi〉 requireski query
unfolding steps withki < n. By induction hypothesis,MP |= Σ1(Q1) andMP |= Σ2(Q2) with Σ1 = Ω(〈Q1〉) and
Σ2 = Ω(〈Q1〉), andΣ1 andΣ2 are maximal.

It is to show that

Σ = Ω(〈Q1〉 ∧〈Q2〉) = Ω(Q1)∩Ω(Q2) = Σ1∩Σ2

is the maximal substitution set withMP |= Σ(Q).

We first show thatMP |= Σ(Q), i.e.MP |= Σ(Q1∧Q2), i.e.MP |= Σ(Q1) andMP |= Σ(Q2). For eachσ ∈ Σ holds
thatσ ∈ Σ1 andσ ∈ Σ2, becauseΣ = Σ1∩Σ2. As MP |= Σ1(Q1), it also holds thatMP |= Σ(Q1). Similar forQ2.

We then show thatΣ is also maximal. Assume thatΣ is not maximal. Then there exists a substitutionσ 6∈ Σ such
thatMP |= σ(Q), i.e. MP |= σ(Q1) andMP |= σ(Q2). As Σ1 andΣ2 are maximal forQ1 andQ2 by induction
hypothesis,σ ∈ Σ1 andσ ∈ Σ2. Contradiction withΣ = Σ1∩Σ2 andσ 6∈ Σ  .

2. SupposeQ is of the formor{Q1, . . . ,Qm} with m≥ 2.

Unfolding 〈Q〉 to 〈Q1〉 ∨ 〈Q2〉 requires one unfolding step. Hence, solving each of the〈Qi〉 requireski query
unfolding steps withki < n. By induction hypothesis,MP |= Σi(Qi) with Σi = Ω(solve(〈Qi〉)) for eachi with
1≤ i ≤m, and each of theΣi is maximal (*).

Also, by definition of the solution setΩ(·), it follows trivially that

Σ = Ω(〈Q1〉 ∨ · · ·∨ 〈Qm〉) = Ω(〈Q1〉)∪·· · ∪Ω(〈Qn〉) = Σ1∪·· ·∪Σm

With (*), it is easy to see thatΣ = Σ1∪·· · ∪Σm is a maximal substitution set withMP |= Σ(Q).

3. SupposeQ is of the formtq, i.e. a query term. Application of the query term unfolding rule toCS1 yields

CS1 =
∨

tc←Q′∈Pgrouping

(tq �u tc | 〈Q′〉) ∨
∨

tc←Q′∈Pnongrouping

tq �u tc∧〈Q′〉 ∨
∨

td∈P

tq �u td

Obviously, none of the〈Q′〉 requires more thann−1 unfolding steps to solve. Hence, for each ruletc← Q′

the algorithm computes a constraint storeCQ′ such thatΣQ′ = Ω(CQ′) is by induction hypothesis a maximal set
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with MP |= ΣQ′(Q′). By Definition 7.8,MP thus containsΣQ′(tc) for the construct termtc corresponding toQ′.
Also, MP does not contain ground instances oftc beyond those inΣQ′(tc), becauseΣQ′ is maximal forQ′ (*).

Corresponding to the structure ofCS1, we now partitionMP into three (possibly overlapping) setsMg, Mng,
andMd, whereMg contains the data terms resulting from rules with grouping,Mng contains the data terms
resulting from rules without grouping, andMd contains the data terms occurring inP. To show that the algorithm
computes a maximal substitution setΣ with MP |= Σ(Q), it suffices to show that the algorithm computes maximal
substitution setsΣg for Mg, Σng for Mng, andΣd for Md.

(a) ConsiderCS′1 =
∨

tc←Q′∈Pgrouping
(tq �u tc | 〈Q′〉). It is to show that the algorithm computes a constraint

storeCg = D1∨·· ·∨Dn from CS′1 such thatΣg = Ω(Cg) is a maximal substitution set withMg |= Σg(tq),
and eachDi corresponds to the evaluation of a dependency constraint ofthe form(tq �u tc | 〈Q′〉) in
CS′1.

Let tc←Q′ be one of the rules inPgrouping, i.e. with grouping construct. Simplification of the dependency
constraint(tq �u tc | 〈Q′〉) yields

∨

tc′∈ΣQ′ (t
c) tq �u tc′ for the substitutionΣQ′ = Ω(〈Q′〉 resulting from

the evaluation of〈Q′〉. As simulation unification is correct, the algorithm computes a substitution setΦ
such that each ground instancetq′ ∈Φ(tq) simulates into a ground instancetc′ ∈ Σ′(tc). Thus,Mg |= Φ(tq)
for every suchΦ, and in particular forΣg =

⋃
Φ holds thatMg |= Σg(tq).

As Mg does not contain data terms not produced by one of the rules inPgrouping, Σg is also maximal in that
respect.

(b) ConsiderCS′′1 =
∨

tc←Q′∈Pnongrouping
tq �u tc∧〈Q′〉. It is to show that the algorithm computes a constraint

storeCng such thatΣng = Ω(Cng) is a maximal substitution set withMng |= Σng(tq).

Let tc← Q′ be one of the rules inPgrouping, i.e. without grouping construct. Evaluation of this rule yields
D = tq�u tc∧〈Q′〉. LetC be the constraint store resulting from the unificationtq�u tc, and letCQ′ be the
constraint store resulting from the evaluation of〈Q′〉. By induction hypothesis, it holds thatCQ′ induces
a substitution setΣQ′ = Ω(CQ′) such thatMP |= ΣQ′(Q

′) andΣQ′ is maximal. Also,Ω(C) is the most
general simulation unifier oftq in tc.

By definition, MP contains all ground instances oftc by ΣQ′ , and thus, astc does not contain grouping
constructs, all ground instances oftc by ΣQ′ ∩Ω(C). As Ω(C) is a simulation unifier oftq in tc, it thus
also holds thatΦ = Ω(D) = Ω(C)∩Ω(CQ′) is a substitution set withMP |= Φ(tq), andΦ is maximal,
becauseΩ(C) is the most general simulation unifier andΩ(CQ′) is maximal by induction hypothesis.

(c) ConsiderCS′′′1 =
∨

td∈P tq �u td. It is to show that the algorithm computes a constraint storeCd such that
Σd = Ω(Cd) is a maximal substitution set withMd |= Σd(tq).

Like Induction Base.

ut
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