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ABSTRACT 

We define a language G for querymg data Epresented as a 
labeled graph G By considenng G as a relation. tis graphcal 
query language can be viewed as a relational query language, 
and its expressive power can be compared to that of other &a- 
honal query languages We do not propose G as an alternative to 
general purpose relational quety languages, but rather as a com- 
plementary language m which xecurslve quenes are simple to 
formulate The user 1s ;uded m this formulahon by means of a 
graphml mterface The pmvlsion of regular expressions m G 
allows recursive quenes more general than transitive closure to 
be posed, although the language 1s not as powerful as those based 
on funcuon-free Horn clauses However, we hope to be able to 
exploit well-known graph algonthms m evaluatmg recursive 
quenes efficiently, a topic which has received wdespread atten- 
tion recently 

1 INTRODUCTION 

It is often the case that the data compnsmg an apphcatlon 
can be represented most naturally m the form of a graph struc- 
ture In order to extract mformatton from such a representahon, 
users need a smtable query language One method of provldmg 
&us service would be to transform the graph mto a mlanon and 
use a relauonal query language such as SQL However, tis 
solution suffers from two disadvantages Firstly, the graphcal 
nature of the data 1s no longer apparent, and secondly, there are 
useful quenes, such as finding the transittve closure of a graph, 
that cannot be expressed m tradluonal relational query languages 
[Ah0791 As a result, our approach 1s different In tis paper we 
define a graphcal query language G tailored to querying data 
which 1s repnzsented as a graph Thus language has sufficient 
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expressive power to enable users to pose quenes, mcludmg tran- 
sitive closure, which are not expressible in relational query 
languages Furthermore, the formulation of such quenes by the 
user is facdltated by means of a graph& mterface. through 
whtch the user constructs and mampulates both query and 
answer graphs 

Recently, there have been a number of proposak for more 
power&l relational query languages [Daya86], many of them 
based on Horn clauses [Hens84,Chan85,Ullm85] However, 
efficient evaluanon algontbms for such languages have been 
difficult to obtam and seem highly data dependent 
[Banc86,Sacc86] We hope that by restnctmg the query 
language slightly and exploitmg exlstmg graph algonthms, we 
will be able to evaluate grafical quenes efficiently 

The graphs over which our graphlcal quenes are defined 
are labeled due&d multigraphs The node labels m distmct 
values drawn from some domam, while edge labels are tuples of 
domam values 

EXAMPLE 1 The followmg graph represents the fhght m- 
fonnauon of vanous rurlmes Each node IS labeled by the name 
of a city, whde each edge 1s labeled by an arlme name 

A directed edge from node ‘Tar’ to node ‘Bos’ with label ‘AC’ 
denotes the fact that Air Canada has a Right from Toronto to 
Boston 0 

A grophlcal query Q on a graph G 1s a set of labeled 
dlrected mulngraphs, m wkch the node labels of Q may he 
ather vanables or constants, and the edge labels are regular 
expresslons defined over n-tuples of vanables and constants An 
edge which IS labeled by a regular expression contammg the 
posmve closure operator (+) 1s drawn as a dashed edge m Q 
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ms 1s done to emphasize that such edges correspond to paths of 
arbitrary length m G, while sohd edges m Q (those whose labels 
contam no +) correspond to paths of fixed length The value of 
Q wtth respect w G IS the muon of all query graphs of Q which 
“match” subgraphs of G A formal defimtlon of the semanucs 
of G 1s postponed untd Secuon 2 2 

EXAMPLE 2 Given the graph G of Example 1, the follow- 
ing query Q = (Q 1 ,Q2) finds the first and last cmes vlslted m all 
round tnps from Toronto, m which the first and last fltghts are 
with Air Canada and all other flights (if any) are with the same 
arline 

y> 
Z 

The followmg graph 1s the value of Q with respect to the graph 
G 

The node x m Q 1 matches ‘Van’ m G, whde the edge from y to z 
in Q2 matches the paths <‘NY’,‘LA’> and c’Bos’,‘NY’,‘LA’> 
m G The concatenated edge labels of both these paths satrsfy 
the regular expression ‘AA’+ Because this query requires the 
computanon of the transiuve closure of G, it IS not expressible m 
relational algebra [Ah0791 Furthermore, tbe requirement that 
cmes be hnked by the same (unspecified) auhne means that the 
query IS also not expressible m the algebra extended with a tran- 
slhve closure operator [Vard82] Cl 

Apart from those query languages based on Horn clauses, 
other extended relational query languages have concentrated on 
the translhve closure operator QBE [Zloo76] allows transmve 
closure to be computed, but only with respect to mformahon 
which can be represented as a tree or a forest Both the 
approaches of [Clem81] and G-Wlnz [He11851 support recursive 
views, but neither of them can query cychc informanon The 
Probe prolect [Daya86,Rose86] IS closest to our approach 
Probe 1s an extension of G-Whiz which allows cychc structures 
to be quened Transitive closure 1s generalized to include addi- 
tional information about the set of paths between any two attn- 
bute values over wluch transihve closure 1s defined However, it 
1s not clear whether the query of Example 2 can be expressed m 
the Probe language In any event, we believe that the use of reg- 
ular expressions makes such quenes easier to express in our 
language The provision of vanous operators in Probe permlts 
quenes such as finding the shortest path to be expressed, which 
cannot be achieved m our present formulanon However, we any 
m the process of addmg suitable operators to our language m 
order to gam this additional expressive power 

The remamder of this paper is divided mto four mam sec- 
uons In the next secnon, the syntax and semantics of the graph- 
ical query language G are defined Section 3 compares the 
expressive power of G with that of II, the language of Horn 
clause programs [Chan85] An m~hal lmplementahon of G, m 
which quenes are translated to Prolog programs [Cloc81], is dn- 
cussed bnefly m Secnon 4 Finally, a number of further research 
issues are suggested in Secnon 5 

2 GRAPHICAL QUERIES 

The syntax and semanttcs of the graphcal query language 
G are defined m tis sectton Before dlscussmg the syntax and 
semanncs of G, tt 1s necessary to give a more precise defimoon 
of the graphs over wluch the expressions of G are defmed 

A labeled directed (mu&r-) graph G IS an ordered quintuple 

where No IS a set of nodes Eo IS a set of directed edges, yo 1s 
the rncufence functwn that associates urlth each edge of G an 
ordered pour of nodes of G, vo is a one-to-one node kabehng 
functwn that associates \~lth each node a &stmct value drawn 
from domam DO, and &o is an edge labehng function, wkch 
associates wrth each edge an n-tuple of values drawn from 
domams D1, .D, 
(‘Bos’.‘Van’,‘Tor’,‘~~,‘LA~,‘~~] m?~~(‘AAl’:‘AC’~“;f 
e=(X,y)iS~edgemEG,thenXiSthe~IlOfe~dylSthehead 
of e Given two edges e, and e, m Eo such that v&e,) = vG(e,), 
then e(e,) #~.&e,) We wtll call tius the dtstmt edge label 
property In addluon, there are no isolated nodes m G From 
now on, G wdl be referred to simply as a graph, and directed 
edges wdl simply be called edges 

2 1 Syntax 

Given a graph G = (NC, Eo, yo, VG, EG), an expression of 
G, that 1s. a graphical query, IS a set [Q t , ,Q,) of labeled 
directed (muln-) graphs Let 

be one of these graphs, and let X = (x1, ~2, ) be a set of vurt- 
ables Every node m Np must be the head or tad of some edge 
m EQ The node labehng funtion VQ maps each node m NQ to 
an element of DouX, that IS, a node is labeled either by a con- 
stunt a,EDo or by a vanable X,EX The edge labeling function 
EQ associates with each edge m EQ a regular expression of sun- 
ple edge labels A sunple edge label IS an n-tuple (11, 91”) of 
constants, vanables and underscores, such that for any constant b 
appearmg m the r’th component of an edge label, be D, The 
empty edge label 1s also a simple edge label, It 1s used only when 
querying graphs wkch have no edge labels 

A sequence of edge labels 1s defined as follows Each edge 
label (11, ,l,)isasequencec(lt, (1,) > of edge labels If 
x and y are sequences of edge labels, then so is the concntenatzon 
cr,y>ofxandy Lets1 andS2besetsofsequencesoflabels 
The set S ,S2, called the concatenatton of S 1 and Sz, 1s 

(cx,y> Ix=Sl andye&) 

lf S 1s a set of sequences of labels, define S’+’ = SS’ for I 21, and 
the posrtrve closure of S as the set 

S+=;Sl 
14 
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Let L be the set of simple edge labels The regular expres- 
swns over L and the sets that they denote are defined recursively 
as follows [Ah0741 

1 For each label 1 in 15.1 IS a regular expression and denotes 
the set (I) 

2 If s 1 and s2 are regular expressions denotmg the sets S 1 
and S2 respecttvely, then the alternatwn of s t and ~2. wnt- 
ten s1 Is2, and the sequence csl.s2> are regular expres- 
sions that denote the sets S t u S2 and S 1 S2 respecttvely 

3 Ifs 1s a regular expression denotmg the set S, then the posr- 
nve closure of s, wntten s+, IS a regular expression denot- 
ing the set S+ 

Edges whose labels are formed by usmg only the first two rules 
above are called solid edges, wMe those whose labels are con- 
structed usmg rule 3 are called dashed edges 

EXAMPLE 3 Refemng back to the graph of Example 1, the 
followmg query Q urlll return those cities reachable from 
Toronto using only a single kr Canada or Amencan Alrhnes 
flight 

@ ‘AC’ I ‘AA’@ 

This IS equivalent to the followmg set (Q 1, Q 2 ) of quenes 

Q,@EL@ 

Q,@%@ 

0 

The underscore can be viewed as a shorthand notation for 
the alternation of aJl relevant domain constants appeanng m the 
graph G That IS, d an underscore appears as the t’tb component 
of an n-tuple, it denotes the regular expression d 1 I I d,,,, 
where.D,=(dl, , d,,,) As a result, the posmve closure of the 
n-tuple of underscores denotes the set of all sequences of sunple 
labels which contam only constants 

EXAMPLE 4 The query to find the clues reachable from 
Toronto m a sequence of three flights such that the first and last 
fhghts are with the same atrlme could be expressed as follows 

@ <Y*-*Yyg 

The underscore IS shorthand for ‘AC’ I ‘AA’ 0 

EXAMPLE 5 The dashed edge label @ven by the regular 
expression AC? I <AC. AA>+ would match the edge labels on 
paths where either all the fltghts were with Air Canada or the 
flights alternated between An Canada and Amencan Alrlmes 0 

2.2 Semantics 

We shall now define the value of a graphcal query Q wtth 
respect to a graph G Gwen an expression Q of G which IS a set 
IQ,* , Q, ) of query graphs, the value of Q wrth respect to G 
1s slmply 

QG)=Q,(G)u uQ,G). 
where Q,(G) IS the value of Q, with respect to G The graph 
umon operator IS defined m such a way that It preserves the dls- 

tmct edge label property Next, we will defme the semantics 
when Q IS a single query graph 

The concept of a valuanon IS used to define a mappmg 
from the vanables in Q to values m the domams of G Let 
Q =(NQ,EQ,~Q,vQ, EQ) be a query graph which IS to be 
evaluated wtth respect to the graph G = (iVo. EC, WC, VG, +). 
whose nodes labels are defined over DO, and whose edge labels 
are defined over D1 x xD,, A valuatwn p of Q 1s a pan 
@1 ,pz) of mappings The node valuatron pl IS a one-to-one 
mapping from node labels to elements of the doman DO. such 
that if c IS a constant, then pl(c)=c The edge valuatwn p2 IS a 
mapping from the constants and vanables that appcdr m edge 
labels to domam values such that (1) If c IS a constant, then 
p#)=c, and (2) If x IS a vanable appeanng m the t’th com- 
ponent of a tuple m an edge label, then p2(n)e D, The mapping 
p2 can be extended to map snnple edge labels to tuples of 
domain values In addition. given an edge e m Ee, let pz(Q(e)) 
denote the result of applymg p2 to each sunple label appeanng us 
the regular expression EQ(e), and let S(p2, ~a, Q, e) be the set of 
sequences of simple labels denoted by p&(e)) 

EXAMPLE 6 A valuation p =(p1,p2) for the query of Exam- 
ple 4 IS given by 

pl(‘Tor’) = ‘Tor’, pi(x) = ‘LA’, 
p2(y) = ‘AA’, p2(‘AC’) = ‘AC’, p*(‘AA’) = ‘AA’ 

From now on, when definmg valuahons we will usually omit the 
defimbons for constant labels Cl 

The semantics of the graphical query language IS detined 
usmg a simplified form of mappmg between graphs known as a 
subgraph homeomorphmn [Lapa78. FortgO] Thus mappmg 
seems to captunz our mtentton that the user should dunk of the 
edges m a query being matched to paths m the graph being 
quened It is first necessary to define a simple path in a graph 
A sample path P in a graph G IS a sequence 

cvl,el.v2,e2, ,e,-l,v,>, 

where V,E?V'G, v,#v,, lll,jln, and ekEEG, lskln-1, such 
that vG(ek)=(vk,vk+l). 1 Sksn-1 The edge label sequence 
tnduced by P IS gtven by 

<ec(elX z-&-d~ 

An edge-independent subgraph homeomorphtsm between a 
query graph Q and a graph G IS defined as a pair p=(pl&) of 
one-to-one mappings, where p1 maps nodes of Q to nodes of G, 
and ~2 maps edges of Q to sunple paths m G The tradlbonal 
defirutlon of subgraph homeomorptism requues that the paths 111 
G to which the edges of Q map are panwise node-disjoint 
[Fort80] We use the term “edge-mdependent” m our defimtion 
since each edge m Q can be mapped to any snnple path III Q, 
independently of the other edges m Q Some JusMicatlon of tis 
choice for the setnanhcs of G IS gven towards the end of 011s 
sechon From now on, we will refer to edge-independent sub- 
graph homeomorphtsms snnply as homeomorphmns 

Given a valuatton p=(pl.pz) of Q, the homeomorptism 
p=(pl 42) 1s sard to preserve p if for each node x m Q, 

and for each edge e m Q. the edge label sequence Induced by the 
simple path pz(e) m G IS m the set S (p2.~ Q,e). that IS, the set 
denoted by the regular expression pz(h(e)) 
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The value of Q wrth respecr to G, denoted Q(G), IS the 
muon of the set of graphs 

( p(Q) I p is a valuanon of Q and there IS a homeo- 

morphsm between Q and G wkch preserves p ) 

EXAMPLE 7 Let us return to the graph G of Example 1 
The followmg two graphs provide defimnons for the structure of 
G as well as for the labehng functions 

r-l Bos 

Consider the followmg query Q, where only the second of the 
two graphs (that speclfymg the labels) would actually be input 
by the user 

Let a valuation p =(pl ,pz) of Q be given by 

p,(x)=‘LA’. p&)=‘AA’ 

One homeomo@sm FL= (~1 ,pz) from Q to G IS gwen by 

and 

The mappmg pt preserves the node valuation p1 since 
pl(v&))=v&(u,)) for all nodes U,ENQ For example, 
p1(vQ(u3))=‘LA’=v&(u3)) The edge label sequence 
induced by p2(ll) IS <‘AC’>, and that mduced by ~~(12) 1s 
<‘AA’> Since each of these IS m the set denoted by the edge 
valuation p2 applied to the corresponding regular expression m 

Q, ~2 preserves p2 So p preserves p. and p(Q) which IS 

IS a subgraph of the answer to Q Another valuation which IS 
preserved by a homeomorphlsm from Q to G IS p’, which IS 
idenncat to p except that p1 ‘(x)=‘SF’ The homeomorphlsm p’ 
which preserves p ’ 1s the same as p, except that pt ‘(~3) =vg and 
)12’(f2)=<v4,eS,v5,elO,v6> The valuation p’ is preserved 
since <‘AA’,‘AA’> sat&es ‘AA’+ Therefore, the followmg 
graph p ‘(Q) IS another subgraph of the answer 

The paths cv2,e3,vs,es,v4> and <v2,e4,vs,esVv+ do not 
preserve any valuation of Q (smce k(es)=‘AA’ and 
e&, )= ‘AC’+), so I 1 cannot be mapped to either of these paths 
Smce no other subgraphs contnbute to the answer, Q(G) is @ven 
by 

@c@ 
AA+ ” , 

.’ :AA+ 

We now provide some Jushficatlon for our chorce of a 
homeomorphlsm different from the tradiuonal mappmg For this 
purpose, it IS useful to consider the answer of the followmg 
query Q with respect to the graph G of Example 7 

+ 

If the semantics of G were based on the conventlonal defimuon 
of homeomo@usm, tis query would request all pans of dqouat 
paths from Toronto to New York There are three paths m G 
from Toronto to New York, 

PZ = a%e3,v3,es,v4>, and 

~3 = cv2,e4,v3,es9v4>. 

and two disJomt pars of paths, (p 1.~2) and (p l,p3) If the 
answer to the query Q IS the won of these paus, then it IS posn- 
ble for the user to deduce incorrectly thatpz andps are disJomt, 
since 011s information IS lost m formmg the muon An altema- 
nve 1s to present mdlvldual answers to the user one at a rime, but 
dus 1s both less elegant and would re~uue additional processmg 
to group answers where possible m order to try to avold produc- 
ing an exponenaal number of solutions We also feel that 
evaluatmg quenes with these semantics may be more costly, 
although we have no results to support Uns conJecture It should 
be noted that, using our chosen semanhcs, one of the dashed 
edges m the above query IS redundant 
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3 EXPRESSIVE POWER 
In tis secnon, the expressive power of G IS compared to 

that of relational query languages, specifically the language H of 
Horn clause programs [ChanSS] Before domg so, It 1s necessary 
to be able to view a query of G as a mappmg between relations 
rather than graphs, that is, to provide relational semantics for G 
Given a graph G and a query Q on G, we show how to mterpret 
both G and Q(G) as relahons 

3 1. Relational semantics for G 
Given a graph G = (NC, ,!?G, WC, VG, %G) m which edge 

labels are n-tuples of domam values, It IS stra@tforward to con- 
struct a relation r corresponding to G Let the relation scheme 
for r be gven by R=(Al,Az,Bl, .&h where 
dom(Al)=&rn(Az)=DO(thedomamofthenodelabelsmG) 
and dom(B,)=D,, l<r<n For every edge eeEG with 
vG@)=(x9yh where v&)=vl, vGb’)=vZ, and 
Ec(e)=Ul, .I.),thereoatuple(v~,v~,I~, ,I.)mr The 
dlstmct edge label property ensures that r 1s mdeed a relation 
Conversely, gwen a relatton r m which two attnbutes are de6ned 
over the same domam, it 1s also nmple to produce a graph G 
correspondmg to r 

EXAMPLE 8 The relation r of the graph G given m Exam- 
ple 1 IS shown below The relaaon scheme 1s fltght = Ifrom, to, 
awlme) 

Tor NY AC 

Bos NY AA 
NY LA AA 

LA SF AA 
SF NY AA 

0 
In order to interpret Q(G) as a relanon, It 1s convement to 

add a summary table to the syntax of G Given a set Q of p 
graphcal quenes (Q 1, , Q,), a slunmary table T 1s a set 
(t19 , t,, ] of k-tuples of constants and vanables from X, such 
that each vanable x, appearmg m tuple r, must label some node 
m Q, or be a component of some edge label of Q, Intmuvely, 
each tuple Z, of T defines the output relation r, for query Q,, the 
value of Q being @ven by the muon of the relations r 1, , r,, 

Let Q be an expression of G, that IS, Q 1s a set 
(Qlv ,Q,) of query graphs, and let T=(tl, .+I be the 
summary table for Q Given a relation r with scheme 
R=(AI,A~.BI, , B,), the value of Q wuh respect to r and T 
1s 

Q(r,T)=Ql<r,tdu uQ,<r@, 

where each Q,(r,f,), 1 <I Ip, is a relation whch 1s the value of 
query Q, with respect to relanon r and summary row f, Let G be 
the graph of r and Q(G) be the value of Q wnh respect to G 

The value of a single query graph Q with respect to r and sum- 
mary mw t IS defined as 

Q (r,t) = ( p(t) I p 1s a valuation of Q and p(Q) 

1s lsomorptic to a subgraph of Q (G) ) 

EXAMPLE 9 Returning to the query Q of Example 2, let the 
summary table T=(tl,rz), where tl=(x,x,‘AC’) and 
t2=0,z,w) The value of Q with respect to r and T IS the fol- 
lowmg relation 

Van Van AC 
Bos LA AA 
NY LA AA 

cl 
EXAMPLE 10 Given a graph G, the Identity query (shown 

below), with summary table conslstmg of the smgle tuple 
(XY,ll, , I,,), yields the same relahon as would be produced 
by the method outlined at the begmmng of dus section 

0 

3.2 Horn clause queries 
It seems most appmpnate to assess the expressive power of 

G by comparmg It to the language H of Horn clause querres 
introduced m [Chan85] We will not repeat the defimtlon of H 
here, but will only hlghhght some of the dlffenmces between H 
and the usual delimnon of fun&on-free Horn clauses The 
pre&cate symbols of H are pamuoned mto termrnal refanon 
symbols, which correspond to base relanons, and nontermrnal 
refatron symbols Smce we are dealmg with quenes over a smgle 
relauon, we wdl assume there is only a single termmal relanon 
symbol R, apart from = and # which are special terminal rela- 
tion symbols 

In order to view a program P of H as representmg a query, 
one of the nontennmal relation symbols of P IS ldentlfied as the 
tamer that produces the result of the query The tamer wdl 
usually be denoted by S If S 1s of anty m, we define the query 
represented by P as 

P@)=I(dl. ,dm)IPkS(dl, .dnd) 

A method for constructmg a program of H from a query of 
G 1s given m [Mend861 Rather than repmducmg the algonthm 
here, we wdl demonstrate some of its features by means of an 
example 
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EXAMPLE 11 Consider the graphlcal query Q of Example 
7, with the summary Tow (x,y) The followmg program P, with 
carrier S, would be constructed from Q by the algorithm 

C 1 Sky) t E 1 (Tor,W), Ez(NY,x,y), NY#x, x#Tor 

C2 El(Tor,NY) t Tl(Tor,NY) 

C3 T1(Tor,NY)tE1l(Tor,z),Tl(z,NY),Tor+z,z#NY 

C4 Tl(Tor,NY) tEll(Tor,NY) 

C5 E11(Tor,r)tR(Tor,z,AC) 

Crz Ez(NY>x.y)+ T~WJJ) 

C7 Tz(NY,x,y)cE21(NY,z,y), T2(2,x,y),~fz, zfx 

Cs Tz(NY,x,y)tEz~(NY,x,y) 

Cg ~21W',x,y)+RW,x,y) 

The nght-hand stde of C 1 contams a nontermmal hteral for each 
edge m Q Subsequent clauses pmvtde the defimtlons for these 
hterals C2 to C5 define El. and Cs to Cg define E2 A recur- 
sive clause 1s produced If an edge m Q 1s labeled by a regular 
expression contammg the posihve closure operator As a nzsult, 
the defimuons of both Et and E2 contam recursive clauses (C, 
and CT) The mequahnes m P ensure that the asslgmnent of 
values to those vanables m P which correspond to node labels m 
G obey the restnckon that such assignments are one-to-one 0 

We say that the translation of a query Q, with summary 
table T, to a program P, wrth tamer S, ts correct tf 
P(R) = Q (r,T) Our coI1sttucuon of P from Q IS correct tf either 
Q 1s nonrecurslve or the graph G correspondmg to the relation r 
1s my& If G 1s cychc and Q 1s recursive, there 1s no guarantee 
that the translaUon WIU be correct The dlfticulty arises m 
enforcing that only simple paths m G are traversed by P, and 
addmg mequahttes to the appmpnate clauses of P 1s not 
sufficient to prevent non-sunple paths from bemg traversed The 
translation m the previous example IS correct because, although 
non-sample paths may be examined by P, for every non-simple 
path from x toy which sahsfies the restnctlons of the query, there 
1s a simple path from x to y which also sat&z them The next 
example, however, demonstrates that this 1s not always txue 

EXAMPLE 12 Consider the followmg graph G 

and the query Q 

w 
with summary table (x,y) The value of Q(G) IS ((a&, (b,a)) 
However, the program P for Q would also produce the tuple 
(b,d), since there is no way of preventmg (b,a) from combmmg 
with (u,d) to form (b,d), even usmg mequalmes In this exam- 
ple, there 1s a non-sunple path between b and d which sattsties 
the regular expressIon <1,2>+, but no simple path between b and 
d which sausfies It q 

It 1s not hard to see that every nomccurstve program of H 
can be expressed as a graph& query Let P be a nonrecursive 
program of H, with tamer S Then P can be transformed to P ‘, 
where no nontermmal symbol appears m the body of any clause 
of P ‘, and the head of every clause m P ’ has the same predrcate 
symbol, namely S For each clause C, of P ‘, construct a graph- 
cal query Q, as follows Imtmlly N,,=0 and E@ Each 
atomlcfomndaR(vl,v2,It, , I,,) m the body of C, conmbutes 
an edge e to Q,, SO that EQ,=EQ, u(e), NQ,=NQ, u (x,Y], 

vQ,(e)=(-%Yh vQ,(x)'vlv vQ,ti)=vZs and q2,(e)=(~lv 94) 

Ifthe head of C, IS S(zt. , zd, add the tuple (z t , .zk) t0 
the summary table T The query Q consists of the set of all such 
quenes Q, produced in tis way along wtth the summary table T 

For a query Q constructed by the above process alone, It 
may be the case that Q (r,T)cP(R) Thus ts a consequence of 
the one-to-one node mappmgs, which force node vanables to lx 
mapped to dtstmct values However, the problem can be solved 
by mcludmg addmonal quenes Q,, m the set Q by contractmg 
edges (IdenMymg nodes) of Q, wMe preserving the dlstmct 
edge label property The summary row t,, for Q,, IS the same as 
that for Q,, except that those vanables appeanng m z,, that 
correspond to nodes m Q, which have been tdermfied are 
equated If I NQ, I =n, there may be 0 (2”) such quenes Q,, gen- 
erated, although for certam quenes on acychc graphs none of 
these additional quenes IS needed The followmg example dlus- 
trates the above process 

EXAMPLE 13 Consider the followmg program P 

S(x,y,z) c R(x.y,a), R(y,z,u), R(x,z.u) 

The above procedure produces the followmg graphlcal query 
Q=(Q*. vQ51 

Q4ma e’aa 

The summary table T for Q IS 

x x 2 

If the graph of R IS acychc, then Q t wtth summary table {rt ] 1s 
equivalent to P 0 

A consequence of the above translation 1s that G has 
greater expressive power than both the conjunchve quenes 
[Char1771 and the tableau quenes [Aho79a] However, it IS not 
obvious exactly which subset of the recurSlve quenes expressible 
m H can be expressed m G In the present formulanon of G, 
there are quenes expressible m H whch appear not to be expres- 
sible m G 
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EXAMPLE 14 Consider the fhghts relation scheme with two 
addmonal attnbutes @vmg the departure and amval times of 
fhghts, that IS,J‘~@ = (from, to, dep, arr, azrkne) The query Q 
that finds those cmes connected by fhghts where the amval hme 
of one fhght IS equal to the depamne tune of the next flight, 
appears not to be expressible m G However, Q can be 
expressed 111 H as demonstrated by the followmg program 

The above query Q reqmres flndmg the transmve closure of 
two pans of attnbutes simultaneously If G IS modified to permit 
node labels to be defined over sets of attnbutes, then Q can be 
expressed m G by labehng nodes with (jkom, dep) and (ro, arr) 
pans, while labeling edges ullth alrhnes The various ways m 
which G might be extended and the addmonal expressive power 
gamed through such extensions am currently under mvesugaoon 

4 IMPLEMENTATION 

We have wntten a prototype implementation of G, m 
which a graph& query is complied mto a C-Prolog program 
The complier accepts quenes wntten m an equivalent strmg 
representanon of G, whose syntax IS specified usmg a context- 
free grammar Thus allows the implementation to be Independent 
of the graphlcal mtirface, which IS curnmtly under development 
on a Sun 3 workstauon The UNId tools Lex and Yacc were 
used to develop a parser for the language Given a graphcal 
query Q, the compiler constructs a parse tree which IS traversed 
m pre-order to generate a Prolog program equivalent to Q 

Certam non-Horn clause constructs avadable m Prolog are 
used to ensure that only simple paths am traversed by any pro- 
gram generated by the compiler Thus overcomes the problem 
raised by the query Q of Example 12, whose translauon mto a 
Prolog program P 1s given below 

szmplel(X, Y, Vzszted, [X / Vzszted I) - 
0, K I), 
not member(X, Vzszted) 

szmple2(X. Y, Vzszted, [X 1 Vzszted I) - 
W, Y. 2), 
not member(X, Vzszted) 

sequence(X, Y, Vzszted, NewVzszted) - 
szmplel(X, 2, Vzszted, NV), 
szmple2(Z, Y, NV, NewVzszted) 

closure(X, Y, Vzszted, NewVzszted) - 
sequence(X, Y, Visited, NewVzszted) 

closure(X, Y, Vzszted, NewVzszted) - 
sequence(X, Z, Vzszted, NV), 
chure(Z. Y, NV, NewVzszted) 

The tamer of P is s, whde the rules for the nonterminal relation 
symbols closure, sequence, szmplel, and simple2 are. generated 
whde decomposing the regular expression <1,2>+ By mam- 
tammg a hst of vlslted nodes and testmg for membership m thus 
list (using the standard rules for the member pmdlcate), the pro- 
gram ensures that no nodes of the graph are revlslted Given the 
graph of Example 12, which IS translated mto the followmg set 
of Prolog facts 

r(a, b, I) 
r(b, c, I) 
r(b, d, 2) 
r(c, a, 2) 

P produces the answer ((u,d), (b,a)), as reqmred 
‘IIns Prolog lmplementatlon wdl be used to test and evalu- 

ate subsequent Implementations which we annapate will be 
more efficient as a result of employmg graph algonthms for 
query evaluauon 

5 CONCLUSION AND FURTHER RESEARCH 

We have described a language G for querying data which 
can be represented as a labeled drrected graph Thus representa- 
tion includes relations (e g parenr) over which useful recursive 
quenes (e g finding the ancestor relation) can be defined We 
have provided a means for speclfymg recursive quenes m G, 
which we believe IS sunpler to use than comparanve formula- 
tions such as algebr;uc operators and Horn clauses The use of 
regular expressions m G allows quenes to be formulated which 
are not expressible m relational algebra even when it IS extended 
with a transmve closure operator 

There are a number of topics for further research on the 
graphcal query language It would be useful to increase the 
expressive power of the language further by adding operators to 
the language m a manner similar to [Rose861 These operators 
are defined over paths m the graph, and permit quenes such as 
tiding shortest paths to be computed We are currently mvesti- 
gatmg the use of graph algonthms as a means for evaluatmg 
graphlcal quenes efficiently Related to dus IS the posslbdlty 
that properties of the graph bemg quened (such as acychaty) can 
be explolted duMg evaluauon It IS also sometimes the case that 
graphlcal quenes can contam some redundancies ‘Pius suggests 
the posslb&y of “optunizmg” graphlcal queries, for example, 
by removmg redundant edges 

SK u - 
closure(X, Y, [I. Vzszted), 
not member(Y, Vzszted) 

+ UNJX 1s a trademark of Bell Laboratones 
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