
H)/+: A Hygraph-based Query

Visualization System
and

Mariano P.Consens Alberto O. Mendelzon
consens@db .toronto. edu mendel@db. toronto. edu

Computer Systems Research Institute
University of Toronto

Toronto, Canada M5S IAI

Introduction

This paper provides abrief overview of Hy+, ahygraph-
based query and visualization system, which is presented in
the accompanying video.

Hy+ provides a user interface with extensive support for
visualizing structural (or relational) data as hygraphs (of
which labelled graphs are a special case). Hygraphs, defined
in [Con92], are a hybrid between Harel’s higraphs [Har88]
and directed hypergraphs. Hygraphs constitute a convenient
abstraction that generalizes several diagrammatic notations.

The Hy+ system supports visualizations of the actual
database instances, and not just diagrammatic representa-
tions of the database schema, Given the large volume of data
that the system must present to the user, it is fundamental to
provide her with two fundamental capabilities.

The first one is the ability to define new relationships by
using queries. This is pretty much the traditional way of using
database queries: the newly defined relationship either gives
a direct answer to a user question, or it provides a new view
on the existing data. The derived data can later be presented
visually by the system.

The second capability is an innovative way of using
queries to decide what data to show. Using this capabil-
ity the user can selectively restrict the amount of information
to be displayed, This filtering of relevant information is fun-
damental if one is to have any hope of conveying manageable
volumes of visual information to the user. Selective data vi-
sualization can be used to locate relevant data and to restrict
visualization to interesting portions of it (i.e., deciding what
data to present), and can also be used to control the level of
detail at which the data is presented (i.e., choosing how to
see the data).

To describe queries, Hy+ relies on a visual pattern-based
notation. The patterns are expressions of the GraphLog query
language [Con89, CM90b]. Overall, the system supports
query visualization (i.e., presenting the description of the

Permission to copy without fee all or pert of this matarial ie

granted providad that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the

title of the publication and ite date appear, and notice is givan
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to rapublish, requiree a faa
and/or specific permission.
SIGMOD 151931Waehington, DC, USA
01993 ACM O-8979j-~92-5/93/000~/O~j 1.00$1.50

query using a visual notation), the (optional) visualization
of data that constitutes the input to the query, and the visual
presentation of the result.

Hy+ has evolved from the G+ Visual Query System pre-
sented in [CM90a]. The new system is implemented as a
front-end, written in Smalltalk, that communicates with other
programs to carry on its tasks (including multiple database

backends for the actual evaluation of the queries).

An overview of the Hy+ system architecture is given in the
diagram in Figure 1. The remaining sections of this paper are
organized according to the main components in that diagram.

Data Acquisition

In the first section of the video we demonstrate Hy+ by
describing how a software engineer can use the system to
visualize and query a large C++ code library (the NIH public
domain library, which defines standard data structures for
C++). The IBM XL C++ compiler was used to extract 13,000
facts ftom the 35,000 lines of code in the library,

The Hy+ system relies on other programs (which are part
of the Data Acquisition module) to supply the raw data to be
visually manipulated within the system. The File Manager
module can directly import files containing logical facts (like
the ones produced by the XL C++ compiler). These files can
also be obtained from relational and deductive databases. In
addition, the system supports the GXF file format, developed
internally, which describes not just the logical facts, but also
all the positioning and visualization-related information that
completely defines the appearance of the data on the screen.

Using GXF, a data acquisition tool can provide Hy + with
a specific visualization as a starting point for the querying
process supported by the system.

The final section of the video presentation provides a

glimpse of other applications of Hy+ to visualize and query
data from different domains: formal software design docu-
mentation and code overlay structure ([CMR92]), debugging
distributed and parallel programs ([CHM93]), and network
management ([CH931).

Hygraph Browsers

Hy+ provides browsers that let users interact with the
hygraph-based visualizations that the system manipulates.
A hygraph extends the notion of a graph by incorporating

511

Hygraph Editor

1

Textual Label Editor

Functor Icon Map

Predicate Color Map

Figurel: Hy+ Architecture Overview.

Mobsiua dditiontoedges. Ablobrelates a containing node
with a set of contained nodes, instead of relating a node to
another node as edges do. Blobs are diagrammatically repre-
sented by a closed curve that is associated with the container
node and that encloses the contained nodes.

Formally, a hygraph H is a septuple

(N, LN,V,LE,E,LB,B)

where: N is a finite set of nodes; L N is a set of node labels;
u, the node labelling jimction, is a function from N to L AT
that associateswith each node in N a label from L N; LE is a
set of edge labels; E ~ N x N x LE is a finite set of labelled
edges; LB is a set of blob labels; and B G N x 2N x LB is a
finite set of labelled blobs. A restriction can be placed in the
labelled blobs relationship B to ensure that there is only one
tuple (n, N, 1) in B with the same values for the container
node n and the blob label 1 (i.e., the container node and blob
label values functionally determine the value of the set of
contained nodes N).

A major difference between hygraphs [Con92] and Harel’s
higraphs [Har88] is that the former are merely syntactic ob-
jects that do not provide any semantics to the relationships
among nodes, edges and blobs (i.e., they are as uninterpreted
as graphs are), while the latter imposes a fixed interpretation
for the objects in a higraph (blobs represent sets, and the
containment relationship is interpreted as set membership).
The attractiveness of hygraphs comes from their flexibility
to assign any semantics to the relationship represented by
the blobs (the meaning will be based on some interpretation
of the blob labels). Also, there can be more than one blob
associated with a given node (in the same way that there can
be multiple edges from a node).

Within H y+, all blobs associated with one container node
are represented by rectangles contained within a rectangular

region that has the container node in the topmost left corner.
Blob labels are drawn in the interior of the topmost left corner
of the rectangle representing the blob. In addition, the system
enforces a strict hierarchy of nested blob rectangles by cre-
ating, if necessary, multiple occurrences of a node with the
same label (i.e., it ensures that the blob-induced relationship
is a forest). Used in this way, hygraphs constitute a flexible
mechanism for clustering information and they support vary-
ing levels of abstraction in the display of both hierarchical
and non-hierarchical data. Additional control over the level
of detail displayed is achieved by interactively hiding and
showing blob contents.

Hygraphs area convenient formal abstraction for several
styles of diagrammatic data presentations, not just graphs
and extensions. By ignoring edges, and making use of multi-
ple blobs associated with the same node as well as recursive
node containment, one can easily model traditional (nested)
form-based presentations. In the context of hypermedia pre-
sentations, the edges in the hygraph can be interpreted as links
while the blobs can be regarded as fat links. This view of
hygraphs, similar to Tompa’s directed hypergraphs [Tom89],
makes them a suitable abstraction of the navigational choices
presented to rhe users that browse hypermedia-like informa-
tion structures.

Database instances in several application domains, regard-
less of the underlying database model, can be naturally visu-
alized as hygraphs. Object-oriented databases are especially
suited to graph-like representations, and so are hypertext
databases [CM89], But even plain relational databases can
be easily represented by hygraphs having an edge (resp. a
blob) labeled r(cl,.. . , Q) from a node labeled (al,. . . , ai)
to a node (resp. containing a node) labeled (b ~,... , bj) cor-
responding toeachtuple (al,ai. bl, . . . ,bj, cl, . . . ,Ck)
of each relation ~ in the database.

512

4
Displaying hygraph with319 nodes, 515 edges, and Oblobs.

Figure 2: An uninformative visualization.

HY+ browsers have extensive facilities for interactively
edi~g hygraphs, including copy, cut and paste; panning and
zooming; and textual editing of node and edge labels. Icons
are automatically selected for nodes according to the functor
of the node label (i.e., the type of data object represented
by the node). Similarly, the colours for edges and blobs
are selected based on the predicate in the label (i.e., the
relationship represented by the edge or blob).

Figure 2 has one Hy+ browser displaying a small portion
of the NIH database mentioned in the previous section. Four
relations are being displayed (their corresponding colours are
displayed on the top pane, where they can be changed). The
edges indicate, depending on the predicate labelling them,
whether a class is a subclass of another one, or a function is
a member of a class, or a function references a variable, or a
function calls another function.

It is clear that just displaying a graph (despite the use of
a spring layout algorithm to position the nodes) does not
magically produce a useful visualization. In the next section

the reader can get a glimpse of Hy + approach to generate
informative database visualizations.

Hy+ Query Evaluation

The visual queries supported by the Hy + system are expres-
sions of the GraphLog query language [Con89, CM90b], suit-
ably extended to hygraphs. GraphLog queries are hygraphs
whose nodes are labeled by sequences of terms, and whose
edges and blobs are labeled by path regular expressions on
relations. The query evaluation process consists of finding in

the database all instances of the query hygraph and for each
such instance performing some action, such as defining new
arcs in the database hygraph, or extracting from the database
the instances of the query hygraph. GraphLog has higher ex-
pressive power than SQU in particular, it can express, with no
need for recursion, queries that involve computing transitive
closures or similar graph traversal operations. The language
is also capable of expressing first order aggregate queries (an
example involving maximizing is given later in the paper)
as well as aggregation along path traversals (e.g., shortest
path queries) [CM90c]. Precise theoretical characterizations
of the expressive power of GraphLog and of its computational
complexity can be found in the references cited above.

Formally, GraphLog query hygraphsare hygraphs with no
isolated nodes having the following properties. The nodes
are labeled by sequences of terms. Each edge and blob is
labeled by a literal (either an atom or a negated atom) or by
a closure literal, which is simply a literal s followed by the
positive closure operator, denoteds +. Closure literals may
only appear between no&s labeled by sequences of the same
length. Queries have one or more distinguished edges and
blobs (drawn thicker), which can only be labeled by positive
non-closure literals. A graphical query is a finite set of query
hygraphs.

The semantics of graphical queries are given by a transla-
tion to stratified linear Data.log (extended in a straightforward
way if function symbols are present). Each query hygraph
H in a graphical query corresponds to a rule ~ for each dis-
tinguished edge and blob, with the label of the distinguished
edge or blob in the head, and as many literals in the body as

513

fl Hy+ Browser: GraphLog Define and Show Qugries

---ziEl@alEilEE2ilEz11
k

‘m “’P”;? g

*

i

1

11
~atabase ~

Tow GraphLog
— evaluate query

%&s(cl) ‘~~ . . . ,

\

Sto

CJJclass(c) ubclass

\

D’TI

members class(c2)

#function(F,L)

“-~ca’’’----/”””””””function(F2,L2)

howGraphLog
~c&.ss(’Dictionary’)

\
.

%subclass”
.

quant_u5es(C)

LCJ

7

clas5(C2)

/
em

nction(F2,L2)

ressmlddle button for query menu. Press SPACE bartolnteract.

Figure3: ADefine and Show Query.

there arenon-distinguished edges and blousing. Anedge
or blob of thequery graph labeled with a closure literal s+
introduces a predicate defined by additional rules expressing
the transitive closure of the predicate in s. The body of r
contains the predicates introduced by the closure literals and
the remaining edge and blob labels of G.

We allow as expressions of the GraphLog query language

only those graphical queries whose distinguished edges and
blobs define non-recursive predicates. Note that, although we
disallow explicit recursion, recursion is nevertheless implicit
in the use of closure literals.

The language can be made considerably more concise by
generalizing literals and closure literals to arbitrary regular
expressions. Each operator introduced is definable in terms
of the basic language and is added only for convenience.
In addition to the usual operators for positive and Kleene
closure, alternation, and concatenation, two new ones are
defined: inversion reverses the direction of the edge or blob
labeled by the regular expression, and negation negates rhe
predicate defined by its argument.

The Hy+ system interprets GraphLog patterns in two fun-
damentally different ways:

Define is the classical database interpretation of the pattern
as a query that defines relations described by the dis-
tinguished edges or blobs.

Show (formally described in [Con92]) is at the core of Hy+
capabilities for manipulating database visualizations,
as opposed to just databases. Informally, when execut-

ing a query in show mode the pattern does not define
any new relation, but it filters out information from the
input visualization to produce an output visualization
that contains the union of all the sub-hygraphs in the
input that match the query pattern.

Figure 3 contains one Hy + query. There are four top level
blobs in the query. ‘RVOof them, labelled defineGraphLog,
enclose expressions which are interpreted as define queries.
The one on the left defines (making use of GraphLog aggre-
gation capabilities) a derived predicate that has the count of
the number of calls from functions in one class to functions
in another (therefore providing a measure of coupling among
classes). The def ineGraphLog blob on the right defines a
blob that clusters with each class all its members functions.
This simple query shows how easy is to change the visual-
ization of a relationship tlom edges to blobs, and viceversa.

The showGraphLog blob in the right lower corner spec-
ifies that all member blobs and all subclass edges should
be displayed. The one in the left lower comer is quite more
specific about which quant Mses and CalIs edges should be
displayed (only quant~ses edges outgoing from subclasses
of class(’Dictionary’) and the associated calls). In general,
a showGraphLog blob contains a hygraph pattern in which
certain objects are distinguished. For each such blob in a

query, Hy+ finds all instances of the pattern in the database
and displays the corresponding distinguished objects in the
visualization returned as the answer.

Hy+ executes queries by translating the patterns into
backend programs the that are evaluated against tie current

514

Figure 4: A Layout of the Answer to the Query.

database hygraph. This translation, as well as the communi-
cation with the backend and the processing of the answers,
are carried by the Query Evaluator component.

Currently, there are three back-end query processors which
are part of the DB Backends componenh LDL [NT89],
Coral [Ram92], and a previously developed GraphLog inter-
preter implemented in Prolog [Fuk91].

Hygraph Layout

The result of the query described in the previous section
is displayed in Figure 4. The positioning of the nodes and
blobs in the figure is the result of running a hierarchical layout
algorithm. This algorithm is part of a suite of external layout
programs that can be invoked from the External Layout
component of the system. Note that the contents of two
blobs h?ve been interactively hidden to further reduce clutter.
When hiding blob contents, the incoming and outgoing edges
are also hidden (but there are options to present summaries
of the information carried by the hidden edges).

Tool Integration

The system has the ability to invoke external programs that,
for instance, browse an object being represented by a node

in one of the graphs displayed by the system. The Hy + vi-

sualizations can be used as overviews to locate information
and then invoke third-party browsers to display the contents
associated with the relevant objects. An obvious advantage
of this approach over a purely navigational one, is the ability

to use the convenience and expressive power of GraphLog
patterns to retrieve the objects of interest, instead of attempt-
ing an often impractical brute force search. Of course, this is

in addition of the use of Hy+ to generate as many specifically
tailored overviews as needed.

Figure 5 has an example of such an integration To the right
of a specialized hygraph browser there is a Lector 1 [Ray92]
window that displays the source code associated with the ob-
ject selected in the browser (the code for class(’ldentDict’)).
The display synchronization works both ways: when the
user changes the page of source code displayed by Lector

tie object selected in the Hy+ browser adjusts correspond-
ingly. Furthermore, the query evaluation component has
been extended to handle a mixture of traditional and textual
queries. The latter kind of queries are handled by the PAT
Text Searching Engine [Gon87], which has been integrated

as an additional query processor backend.

Acknowledgements

We would like to thank the other memks of the Hy+ development
group for their contributions to the system: Frank Eigler, Yarmi Jew,
Masum Hasan, Emanuel Noik, Dimltra Vista, and Annie Yeung. We

are also grateful to Pat Finnigan, Shahram Javey, Willard Korfhage,
Spires Mancoridis, Darrell Raymond, Arthur Ryman, and Jacob
Slonim.

The Hy+ project is supported by the NaturaJ Sciences and En&-
neering Research Council of Canada, the Information Technology

1Lector and Pat are trademiwks of Open Text Systems Inc.

515

Figure 5: Synchronized Graphical and Textual Browsing of Source Code.

Research Centre, the Institute for Robotics and Intelligent Systems,

and the IBM Canada Centre for Advanced Studies. The tirst au-
thor was supported by an IBM Canada Research Fellowslnp and by

PEDECIBA (Uruguay).

References

[CH93] Mariano Consens and MaSum Hasan. Supporting net-

work management through declaratively specified data

visualizations. In Proceedings of the Third IFIPIIEEE
International Symposium on Integrated Network Man-
agement. Elsevier North Holland, 1993. To be published.

[CHM931 Mariano Consens. Masum Hasan, and Alberto Mendel-
- zon, Debugging dlsrnbuted progrks by visualizing and

[CM89]

querying event traces. Abstract to be presented at the

ACM/ONR Workshop on Parallel and Distributed De-

bugging, 1993.

Mariano Consens and Alberto Mendelzon. Expressing

structural hypertext queries in GraphLog. In Proceedings
of the Second ACM Hypertext Conference, pages 269-

292, 1989.

[CM90a] Mariano Consens and Alberto Mendelzon. The
G+/GraphLog visual query system. In Proceedings of
the ACM-SIGMOD 1990 Annual Conference on Man-
agement of Data, page 388, 1990. Video presentation
summary.

[CM90bl Mariano Consens and Alberto Mendelzon. Gradhx:

[CM90C]

a wsual formahsm for real life recursion. In P~oceeZ
ings of the Ninth ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems,pages 404-416, 1990.

Mariano Consens and Alberto Mendelzon. Low com-
plexity aggregation in GraphLog and Datalog. In
Proceedings of the Third International Conference on
Database Theory, Lecture Notes in Computer ScienceNr.
470, pages 379-394. Springer-Verlag, 1990. A revised
version has been accepted for pubhcation in TCS.

[CMR921 Mariano Consens. Alberto Mendelzon. and Arthur Rv-
man. Visualizing and que~ng software structures, in

[Con89]

[Con92]

[Fuk91]

[Gon87]

[Har88]

[NT89]

[Ram92]

[Ray92]

[Tom89]

14th. Intl. Conference on Software Engineering, pages
138-156, 1992.

Mariano P. Consens. Graphlog: ‘teal life” recursive

queries using graphs. Master’s thesis, Department of

Computer Science, University of Toronto, 1989.

Mariano P. Consens. Visual manipulations of database

visualizations. PhD Thesis Proposal, 1992.

Milan Fukar. Translating GraphLog into Prolog. Tech-
nical report, Center for Advanced Studies IBM Canada

Limited, October 1991.

Gaston Gomet. PAT 3.1: An efficient text searching

system. Technical report, UW Centre for the New OED,
University of Waterloo, 1987.

David Harel. On visual formalisms. Communications of
the ACM, 31(5):514-530, 1988.

Sharnim Naqvi and Shalom Tsur. A logical languagefor
data and knowledge bases. Computer Science Press, New

York, 1989.

R. Ramalaishnan, D. Srivastava and S. Sudarshan. Coral:

Control, relations and logic. In Proc. Intl. Conference on
Very Large Data Bases, 1992. d

Darrell Raymond. Flexible text display with lector. IEEE
Compu(er, 28(8):49-60, 1992.

Frank Tompa. A data model for flexlble hypertext
database systems. ACM Transactions on Ojjice Infor-
mation Systems,7(1):85-100, 1989.

516

