INSTITUT FUR INFORMATIK

der Ludwig-Maximilians-Universitat Miinchen

Diplomarbeit

CSSYE: An Extension of the
Cascading Styles Sheets Language (CSS)

with Dynamic Document Rendering Features

Christoph Wieser

Aufgabensteller
und Betreuer: Prof. Dr. Francois Bry,
Abgabetermin: 30. April 2006

II

Erklarung

Hiermit versichere ich, dass ich die vorliegende Diplomarbeit selbststandig verfasst habe
und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Miinchen, den 30. April 2006 Christoph Wieser

II1

v

Abstract

Styling and formatting of XML documents for various target media is often specified
with the Cascading Style Sheets (CSS) language. An appealing feature of CSS is that
it specifies formatting instructions using rather simple rules. A limitation of CSS is
that it focuses on static formatting rules. As a consequence scripting languages such
as ECMA Script are used in practice for dynamic adaptation of formatting. This leads
to rather complex formatting specifications by comparison to CSS style sheets.

CSSM% is a novel extension of CSS 3, the newest version of CSS, introducing just
a few rules for a dynamic rendering and for markup visualization. The main goal of
CSSM¢ is to make scripting languages unnecessary for as many applications as possi-
ble. This limited extension of CSS 3 turns out to make possible, for instance, a rather
advanced visualization of programs. This thesis (1) introduces into the extensions of
CSSME with respect to CSS 3, (2) describes a proof-of-concept prototype implementa-
tion of CSSNY, and (3) demonstrates CSSM® by means of sample applications.

VI

Zusammenfassung

Die Aufbereitung zur Prasentation und Formatierung von XML-Dokumenten fiir ver-
schiedene Ausgabe-Medien wird oft mittels der Sprache Cascading Style Sheets (CSS)
spezifiziert. Eine glinstige Eigenschaft von CSS ist, dass Formatierungs-Anweisungen
mit ziemlich einfachen Regeln spezifiziert werden. Eine Einschrankung von CSS ist
allerdings die Fokussierung auf statische Regeln zur Formatierung. In Folge dessen
werden in der Praxis Script-Sprachen wie ECMA Script verwendet, um dynamische
Formatierung zu ermoéglichen. Damit geht die Einfachheit der Formatierung in CSS
verloren.

CSSNE ist eine neuartige Erweiterung von CSS 3, der aktuellen Version von CSS.
Diese Erweiterung fithrt nur wenige neue Regeln fiir dynamisches Rendering und fiir
die Visualisierung von Markup ein. Dabei ist das Ziel, die Verwendung von Script-
Sprachen fiir moglichst viele Anwendungsarten abdingbar zu machen. Es wird gezeigt,
dass diese beschrankte Erweiterung von CSS 3 beispielsweise ziemlich anspruchsvolle
Visualisierungen von Programmen erméglicht. Diese Arbeit (1) fithrt in die Erweiterun-
gen von CSSM¢ beziiglich CSS 3 ein, (2) beschreibt eine prototypische Implementierung
von CSSYY und (3) demonstriert CSSY® anhand von Beispielanwendungen.

VII

VIII

Acknowledgements

Several people have enriched my work on this diploma thesis. I want to express my
gratitude explicitly to all members of the teaching and research unit Programming and
Modelling Languages for giving precious advice and for offering a family-style atmo-
sphere.

More than any other person, I want to thank my supervisor Prof. Dr. Francois Bry
for his patience, dedication, and thoroughness in reviewing my work on this thesis. His
encouraging motivation during the evolution of this thesis and my studies of Informatics
was beyond comparison.

Another highly important person during the time working on this thesis as well as
during my studies of Informatics was Dr. Norbert Fisinger. He read a draft of this
thesis and always took the time giving me advice and hints. His dedication to his work
made him more than an inspiring example to me.

I am also deeply indebted to Sacha Berger. His diploma thesis led to the idea
for mine. Many of his visionary ideas enriched the work on this thesis. Without his
refreshing and sometimes unconventional views, the thesis would lack many interesting
associations.

I am obliged to the Project “Reasoning on the Web with Rules and Semantics”
(REWERSE) for giving me the possibility to participate in the workshop on Principles
and Practice of Semantic Web Reasoning (PPSWR) in June of 2006, where I will have
the chance to present the results of this thesis.

Last but not least I thank my parents and my partner Anne Katrin for loving and
supporting me.

Christoph Wieser

IX

1 Introduction

3

1.2
1.3
1.4

Shortcomings of Styling Semi-Structured Data Today
Objectives of CSSNC
Advantages of CSSNG ...

Cascading Style Sheets (CSS): A brief Introduction

21
2.2
2.3
24
2.5
2.6
2.7

2.8
2.9

The Origin of CSS
Separating Design from Content using CSS
Structure of CSS
Simple Selectors
Combinators
Grouping
Pseudo-selectors L.
2.7.1 Pseudo-elements
2.7.2 CSS Functions
2.7.3 Structural Pseudo-classes
2.7.4 Dynamic Pseudo-classes
Interpretation of CSS style sheets
Styling at Unknown Depth

Limitations of CSS 2.1 and CSS 3

3.1

3.2
3.3
3.4
3.5
3.6

Transformation vs. Rendering
3.1.1 Deleting XML elements
3.1.2 Deleting parts of XML text nodes
3.1.3 Adding XML text nodes
3.1.4 Adding XML elements
Insertion of Markup
Visualization of Markup
Depth-Dependent Styling
Dynamic Rendering
Hyperlinks

CONTENTS

AW N

o ©

10
11
12
13
13
13
14
14
15
15
16
17

XII

4 How CSSM¢ extends CSS 3
4.1 Framework for the CSSNE extension
4.1.1 Downward Compatibility

4.1.2 Combined Complexity

4.2 Markup Insertion
4.2.1 CSSNC Function element
4.2.2 CSSNC Function attribute.
4.2.3 Prevention of Iterative Insertion of Markup
4.2.4 Well-Formedness

4.3 Markup Visualization oo
4.3.1 Rendering of XML elements
4.3.2 Rendering of XML attributes using CSSVC Attribute Rules . .
4.3.3 Well-Formedness of Insertions using Attribute Rules
434 Openlssues e

4.4 Depth-dependant Styling

4.5 Dynamic Styling Generalized

4.5.1 Recurrence of Events
4.5.2 Dynamic Styling Combined
4.5.3 Extended Input Devices
4.6 Structure-independent Selection

Related Extensions to CSS

5.1 Dynamic HTML (DHTML)
5.2 Action Sheets
5.3 Behavioral Extension to CSS

Prototype of a CSSVC engine
6.1 Requirements
6.2 Implementation of the CSSVE Prototype
6.2.1 Modifying an Existing Rendering Engine toward CS
6.2.2 Using DHTML for extending a Web browser toward CSSV¢
6.2.3 Choice of Technologies for the CSSNE engine

SNG

6.3 Architecture
6.3.1 CSSNC Lexer
6.3.2 CSSNG Parser
6.3.3 Configurator
6.3.4 Styler-Generator oL
6.3.5 Reifier: Representing XML in XHTML
6.3.6 Meta-Initializer oL

6.3.7 Dynamic Styler

7 Proof-of-Concept Applications of CSSV¢
7.1 Rendering of HTML Documents
7.1.1

7.1.3 Displaying annotations to Documents
7.2 Rendering of a FOAF Definition

Temporarily Superimposing the Table of Contents on Keypress
7.1.2 Superimposed Notes — Adapting Footnotes to Web Browsers .

CONTENTS

CONTENTS

7.2.1 A Serialization of RDF data
7.2.2 Rendering of a FOAF Serialization using CSSN¢
7.3 Program Visualization As Textual Program Rendering
7.3.1 Visualization of Xcerpt Data Terms
7.3.2 Superimposing of Context Menus
7.3.3 Visualization of Xcerpt Query Programs
7.3.4 Highlighting Xcerpt Variables
8 Conclusion
8.1 Summary
8.2 Contributions L
8.3 Further Research Directions

A Code of the CSSV¢ engine
Al CSSNC Lexer . . . o oo
A2 CSSNC Parser.
A3 Configurator
A4 Styler-Generator
A.5 Inmsertion Preprocessor
A6 Reifier oL
A.7T Meta-Initializer L
A.8 Dynamic Styler

B Code of the visXcerpt Viewer in CSSNV¢
Index

Bibliography

XIII

73
74
77
7
80
81
81

83
83
84
85

87
87
91
110
124
132
135
138
139

145

149

152

XIV CONTENTS

CHAPTER
ONE

Introduction

Style sheet languages such as CSS [BLLJ98] or XSL-FO [Cla01] have considerably gained in
importance since the Web has become a mass medium. Such languages are widely applied for
a sophisticated rendering of semi-structured data [ABS00] especially expressed using XML
[BPSMMO0]. Controlling the appearance of Web pages in Web browsers has become the most
frequent application of style sheet languages.

This thesis describes CSSNE, which is a rather conservative extension with respect to the
style sheet language CSS 3! [Bos05]. CSSMNC is rooted in a project thesis [Wie05] focusing
on extending stylesheet languages with dynamic document rendering features. The focus of
this work is a proof-of-concept realization of the considered extensions hand in hand with
refinements based on experiences gained in practice using CSSNC.

1.1 What is CSS?

This section introduces informally to basic features of CSS for a better understanding of this
introductory chapter. Refer to Chapter 2 for details on CSS features concerning this thesis.
The specification of CSS 3 can be found in [Bos05].

CSS 3 and its predecessors have been developed to simplify changes of the content as well
as of the presentation of HTML and XML documents by separating content from presentation.
Fig. 1.1 below shows the anatomy of a CSS rule :

Selector
Property

Value
H1 { color: green;}

Declaration

Figure 1.1: Anatomy of a CSS rule.

1CSS 3, the newest version of CSS, is about to receive the status of a W3C recommendation, which is in
fact a standard.

2 CHAPTER 1. INTRODUCTION

This schema underlies static and dynamic CSS rules as demonstrated below. The following
rule demonstrates a well-known static styling feature from Web pages displayed in Web
browsers:

CSS Rule: Rendering in a Web Browser:

’a { text-decoration: underline; } ‘ x @ Mozilla Firefox o _no
Datei Bearbeiten Ansicht Gehe

HTML Code: -

’ CSS ‘ @ -

Figure 1.2: Styling specification via CSS for HTML Code and static rendering.

The left-hand selector of the CSS rule, a above, selects HTML anchors. The so-called
declaration on the right-hand side assigns the styling parameter to XML elements selected
by the selector of a CSS rule. In the example above it specifies that anchors are presented
underlined as customary in Web pages to mark hyperlinks.

Also dynamic styling features are offered in CSS 3. The background color of an HTML
anchor can be switched to yellow while the mouse cursor is hovering (:hover) over it:

CSS Rule: Rendering in a Web Browser:

’a:hover { background-color: yellow; } ‘ X @ Mozilla Firefox o _o

Datei Bearbeiten Ansicht Gehe

HTML Code: -

| Css,

’ CSS

Figure 1.3: Styling specification via CSS for HTML Code and dynamic rendering.

1.2 Shortcomings of Styling Semi-Structured Data Today

ELIVISS R EEE
Aktuelles Institut Studium Forschung Kontakt Impressum Suche EE
3 i . .
Allgemeines \ Studiengang Informatik
¥ Studiengdnge . -~
Uberblick =7\~ Ziele des Informatikstudiums
M Infgrmaﬁk Ziel des Sludiums isl es, Grundlagen des Faches Informalik in

Figure 1.4: Opening a sub-menu on mouse click in a Web browser.

With the emerging trend from static to dynamic Web pages, the expressive power of
the dynamic document rendering features in CSS 2.1 and in CSS 3 as informally introduced
above are no longer sufficient. Sub-menus, for instance, which can be superimposed on a
mouse click, are widespread on Web pages, see Fig. 1.4 above. (In this thesis, mouse clicks
are visualized using star-like lines around the mouse cursor.) They cannot be specified in

1.3. OBJECTIVES OF CSSN¢ 3

CSS 3. Furthermore, CSS 2.1 and CSS 3 are often insufficient for a user-friendly rendering of
XML documents with complex structures.

In practice scripting languages supporting the DOM [HHW 00| interface to XML docu-
ments like ECMA Script [ECM99] are used to obtain dynamic rendering features (see Fig. 1.5).
In XHTML documents, for instance, scripts are rather often invoked in the context of an
XHTML element by XHTML intrinsic event [ABCT99] attributes like onclick. As a con-
sequence the styling specification is not separated from content like in CSS. That means
that

e dynamic styling via scripting is relatively complicated,
e the maintenance of styling programs is expensive, and

e applying dynamic styling to multiple documents is rather difficult.

HTML Code with ECMA Script Code: Rendering in a Web browser:
1 |<html> -J Mozilla Firefox =
2 <body> : .)
Datei Bearbeiten Ansicht Gehe
Change my
4 Change my Cﬁk&{-"’
5 color! - s
6 /N
7 </body>
8 </html>

Figure 1.5: Changing the text color in HTML on mouse click to red using ECMA-script.

1.3 Objectives of CSSY¢

To overcome the shortcomings above, the main goals of CSSM¢ are to provide constructs
for a declarative and, therefore, concise and quite simple specification of dynamic document
rendering by comparison to query languages like XSLT [Cla01] or scripting languages like
ECMA Script [ECM99).

The main goal of CSSVC is to make scripting languages unnecessary for as many ap-
plications as possible such as the visualization of query languages like Xcerpt [SB04] or the
visualization of RDF [LS99] graphs such as FOAF [BMO05] declaration. At the same time
CSSNE is supposed to be a rather limited and conservative extension of CSS 3. Nonetheless
CSSNE should make possible

e to specify dynamic styling,
e to generalize markup visualization, and

e to integrate the keyboard as input device.

Two types of extensions can be distinguished: extensions of the already existing ‘static
styling’ features and extensions towards additional ‘dynamic styling’ features. Static styling
refers to styling without action of a viewer. For instance, all portions of a structured text

4 CHAPTER 1. INTRODUCTION

that are marked up as headings are rendered using bold letters. In contrast, dynamic styling
denotes styling as a consequence of a viewer’s interaction. An example of dynamic styling
supported by the currently implemented style sheet language CSS 2.1 [BLLJ98] is as follows:
A viewer can change the styling of a portion of text in a Web browser by letting the mouse
cursor hover over such a text portion. In other words, static styling refers to a styling that
remains unchanged during viewing, whereas dynamic styling refers to a styling that might
change as a consequence of a viewer’s action during viewing.

1.4 Advantages of CSS"¢

CSSNC achieves these objectives by static and dynamic styling extensions to CSS 3. Let us
briefly discuss four kinds of sample applications of CSSNC that benefit from the extensions
proposed later in this thesis (see Chapter 4).

Styling of Subelements at Arbitrary Nesting Depths

The following HTML document shows an excerpt of the highly nested ‘Tree of Life’?, a well
known classification of living organisms.

Tree of Life
o Eubacteria

e Eukaryotes

— Animals

* Echinoderms (sea urchins, starfish, sea cucumbers, etc)
* Vertebrates (fish etc.)

— Green Plants

* Ferns

* Flowering Plants

Figure 1.6: Tree of Life.

The items of the tree are styled in alternating manner as follows: Items having an odd
nesting depth are styled using bold font, and items having an even nesting depth are styled
using italic font. Obviously, the alternating styling of fonts depending on the nesting depth
helps to recognize the structure of the tree and helps to compare different parts of the docu-
ment.

Such a styling would also be useful for applications such as threads in a discussion forum,
but it is not possible with current CSS. Current CSS allows the styling of items on a given
depth only. Hence, for a correct alternating styling in current CSS, the maximal nesting
depth of a document must be known, and one rule for each level of nesting depth until the
maximum level is necessary as the following CSS program in Fig. 1.7 illustrates.

’http://tolweb.org/tree/home.pages/popular.html

http://tolweb.org/tree/home.pages/popular.html

1.4. ADVANTAGES OF CSSNG 5

{ font-weight : bold; T
* ok { font-style : italic; }

{ font-weight : bold; 1}

* ok { font-style : italic; }

... * { font-weight : bold; 1}
* x ... x { font-style : italic; }

Figure 1.7: Styling until a certain depth in CSS.

As proposed in this thesis, see Section 4.4, extensions make possible an alternating styling
independent of nesting depth. The extensions provide styling rules that can be applied re-
peatedly depending on the nesting depth. Therefore the nesting depth of a document does
not need to be known while writing its style sheet.

Dynamic Styling of Semantically Related Text Portions

Footnotes are often used to annotate text portions. In the Web context, so called ‘side-notes’
are located beside the text like in the following example.

Cascading Style Sheets (CSS) is a simple mechanism for | side-notes:
adding style (e.g. fonts!, colors!, spacing!) to Web docu- | 'Styling Aspects
ments. Tutorials, books, mailing lists for users, etc. can 2Manu&nls
be found on the “learning CSS” page®’. For back-
ground information on style sheets, see the Web style
sheets page?. Discussions about CSS are carried out on
the (archived) www-style@w3.org mailing list®> and on
comp.infosystems.www.authoring.stylesheetsg.

Figure 1.8: Highlighting of semantically related text portions.

Hovering with a mouse cursor over a side-note as in the example above can cause a
highlighting of every semantically related text passage somewhere else in the document. Such
a rendering would provide good support for an easier and better understanding while reading
texts.

Current CSS or XSL-FO does not support such highlighting of related text portions.
Helper tools beyond CSS and XSL-FO such as scripting languages (for instance ECMA script
[ECM99]) are needed to change the styling while viewing a document in a Web browser. A
slight extension to CSS introduced in Section 4.6 allows a declarative way to define such dy-
namic highlighting of semantically related text portions within a style sheet language without
additional tools.

6 CHAPTER 1. INTRODUCTION

Static Visualization of (Parts of) Markup Itself

Viewing XML data such as a timetable of trains in a text editor asks for a more concise
representation (see left column of the following example). An extension proposed in this
thesis (see Section 4.2) can be applied to render markup. Each XML-tag (such as <train>)
can be rendered in a Web browser as demonstrated in Fig. 1.9.

Source Rendering
<trains> e trains
<train number="ICE788"> .
<departure> — train (number ICE788)
<station>Munich</station> * departure
<time>11:36</time> - station Munich
</departure> - time 11:36
<arrival> .
<station>Hamburg</station> * arrival
<time>17:45</time> ... - station Hamburg
</arrival> - time 17:54 ...

Figure 1.9: Rendering of markup.

While current CSS allows to render known XML tags and known XML attributes only,
XSLT allows the visualization also of unknown XML tags. However, such XSLT programs
tend to get rather complex, as the following XSLT program transforming the train timetable
to HTML illustrates. In this short version of the program, the rendering of attributes is not
considered for simplicity reasons.

1 <?xml version="1.0" encoding="iso-8859-1"7>
2 <xsl:stylesheet version="1.0"

3 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
4 <xsl:template match="/">

5 <html>

6 <body>

7 <xsl:apply-templates />

8 </body>

9 </html>

10 </xsl:template>

11 <xsl:template match="*">

12

13 <xsl:for-each select=".">

14 <1li>

15 <xsl:value-of select="name()" />
16 <xsl:apply-templates />

17 </1i>

18 </xsl:for-each>

19

20 </xsl:template>

21 </xsl:stylesheet>

Figure 1.10: XSLT program rendering the XML elements of Fig. 1.9.

The extensions proposed in this thesis offer a more declarative (hence easier to use) way
to render such marked up data as introduced in Section 4.2.

1.4. ADVANTAGES OF CSSNG 7

Dynamic Styling of Text Portions by Folding and Unfolding Them

As data like the train timetable of the latter example can become rather long, a better
overview of the data is highly welcome. Folding undesired data and unfolding desired data
helps to find information more easily.

e train (ICE 788)

— departure

* station Munich
* time 11:36

— arrival

e train (ICE 586)
e train (ICE 584)
e train (ICE 784)

— departure

% station Munich
* time 15:44

— arrival

Figure 1.11: Folded (train (ICE 586)) and unfolded (train (ICE 784)) data items.

In the example in Fig. 1.11 the viewer has folded sub-items of the already known train
timetable by clicking with a mouse cursor on the parent item (the train item). All items
except of two train items are folded. Now, the viewer can compare the information about
these two trains. Since the viewer is interested in departure times, all other information about
the two trains are folded. This rendering makes the comparison of the departure times easy.
The extensions allowing this rendering are introduced in Section 4.5.

Note that all four kinds of sample application mentioned afore are highly useful in practice.
For instance, in office working, tasks like the orientation in large documents, the analysis of
spreadsheets, or the administration of databases should take rather short time. Hence, the
rendering of such data should be optimized for human beings to permit a faster recognition
of facts and their contexts. The extensions proposed in this thesis offer a declarative way to
define such an optimized rendering.

The static and dynamic extensions to style sheet languages proposed in this thesis are in
essence compatible with any style sheet language. In this thesis these extensions are worked
out in CSS. CSS has been chosen because it is convenient to draw on Web standards to reduce
implementation effort. CSS has been chosen instead of XSL, for the following reasons:

e (CSS is widespread because of its simple rule-based syntax. Thanks to this rule-based
syntax only minor extensions of CSS are needed, whereas for style sheet languages such
as XSL-FO, more significant extensions would be needed.

e CSS is implemented in almost every common Web browser and thus it can be easily
used from different environments.

CHAPTER 1. INTRODUCTION

CHAPTER
TWO

Cascading Style Sheets (CSS): A brief Introduction

This chapter gives a brief introduction into the W3C’s Style Sheet Language Cascading Style
Sheets (CSS). Concepts of CSS serving as basis for the extensions proposed in this thesis
(such as CSS selectors) are addressed in detail. For details on the remaining concepts of CSS
(such as font styling or positioning) refer to the full reference of CSS [BLLJ98]. Major parts
of this chapter are taken over from a project thesis [Wie05] for a sound report of the work on
CSshe,

2.1 The Origin of CSS

Separating content from design was already one of the basic principles of HTML. One of the
first Web browsers, the NeX'T browser of Tim Berners-Lee, already had a built-in style sheet
language. This language allowed to determine the appearance of Web pages. Other Web
browsers like Viola (1992) or Harmony (1993) implemented their own style sheet languages as
well but all of these approaches have in common that only the implementor of the current Web
browser could influence the appearance of Web pages via a style sheet language. This fact
provoked the resentment of Web page authors as can be derived from the following posting
of Marc Andreessen, one of the programmers of the NCSA Mosaic Web browser and founder
of Netscape, in the www-talk! mailing list in February 1994:

In fact, it has been a constant source of delight for me over the past year to get to
continually tell hordes (literally) of people who want to — strap yourselves in, here
it comes — control what their documents look like in ways that would be trivial
in TeX, Microsoft Word, and every other common text processing environment:
“Sorry, you're screwed.”

Eight months later in October 1994, Hakon Wium Lee published the first draft of Cas-
cading HTML Style Sheets [Lie94] to satisfy the needs of Web page authors. The at that
time novel principle of cascading styling specifications (see Section 2.8) allowed to provide a
specification of the appearance of Web pages by the author, which could be overwritten by
the viewer of the Web page where wanted.

http://ksi.cpsc.ucalgary.ca/archives/WWW-TALK/www-talk-1994q1.messages/643.html

9

http://ksi.cpsc.ucalgary.ca/archives/WWW-TALK/www-talk-1994q1.messages/643.html

10 CHAPTER 2. CASCADING STYLE SHEETS (CSS): A BRIEF INTRODUCTION

The first one to join Hakan Wium Liu in the work on CSS was Bert Bos. In 1994 he
developed a highly customizable Web browser called Argo with its own styling language. In
contrast to Cascading HTML Style Sheets Argo implemented already attribute selectors (see
Fig. 2.5) and the generation of text, one of the starting-points for extending CSS in this thesis.

Other languages like the styling languages of the Web browsers mentioned above as well
as DSSSL for styling SGML? documents were available at that time. However, none of these
languages allowed the cascading feature of CSS providing styling with respect to the wishes
of the Web page author, the capabilities of the device for viewing, and the preference of the
user/viewer. CSS was not only commended but also criticized for its simplicity at that time.
It was not clear that CSS could master future styling requirements without more powerful
constructs. In 1996 Netscape proposed JSSS?, an Java Script-based? styling language. JSSS
was implemented in the Netscape Navigator 4 but was of little importance in practice®.

The WWW conference in 1995, held in Darmstadt (Germany), was an important event:
CSS level 1 [BW96] (short: CSS 1) was presented and the CSS working group was founded.
Since that conference CSS gained in importance. The industry participated in the W3C and
implemented its standards in their products and CSS became widespread in Web technology.

CSS 1 focused on basic styling feature like font style, colors or text alignment. Having
gained experience with CSS 1 the CSS working group proposed CSS level 2 [BLLJ98] in 1998.
Among various styling features listed in [BWLJ96] were now also dynamic styling features
and an interface for inserting text. Both features are the main foundations of extensions
proposed in this thesis. Currently CSS 3 [Bos05] is about to reach the status of a W3C
recommendation. Refer to [LB99] for a detailed history of CSS.

2.2 Separating Design from Content using CSS

CSS has been developed to simplify changes of the content as well as of the design of HTML
documents by separating design from content. As a consequence of this separation minor
changes on an HTML document (e.g., another styling for headings) require minor changes
on a CSS style sheet. Without separation of design from content such minor changes cause
a complete revision of an HTML document so as to modify, say, each heading in an HTML
document.

According to the W3C recommendation “Associating Style Sheets with XML documents”
[Cla99] CSS style sheets can also be used to render arbitrary XML documents and not only
HTML documents, using an XML processing instruction (PI) , see Fig. 2.1

1 |<7xml-stylesheet type="text/css" href="stylesheet.css" 7>

Figure 2.1: XML Processing Instruction (PI) for using a CSS style sheet in an XML document.

As the Fig. 2.2 illustrates, CSS is capable of styling that is not possible with standard
HTML means. On the left side, the HTML page ‘CSS Zen Garden’® is rendered without a
user defined style sheet according to the guidelines of the HTML specification [PAAT00]. On

*ISO 8879:1986

Shttp://www.w3.org/Submission/1996/1/WD- jsss—-960822
‘http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference
Shttp://virtuelvis.com/archives/2005/01/css-history
Shttp://www.csszengarden. com/zengarden-sample.html

http://www.w3.org/Submission/1996/1/WD-jsss-960822
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference
http://virtuelvis.com/archives/2005/01/css-history
http://www.csszengarden.com/zengarden-sample.html

2.3. STRUCTURE OF CSS 11

the right side, the same HTML document is rendered using a CSS style sheet. (Note that
the excerpt of the original rendering on left side shows less text by comparison to the right
side only because of layout reasons.) Obviously, one HTML page can be styled by various
style sheets. Currently, more than 600 additional style sheets” are available for this example.
Voluntary designers wrote these style sheets on request of Dave Shea, a web designer from
Vancouver (Canada), to demonstrate the advantages of CSS.

HTML Rendering;: CSS Rendering in a Web browser:

css Zen Garden

The Beauty of CSS Design

A demonstration of what can be accomplished visually t.
load it into this page.

4) Littering a dark and dreary road lay the past relies of
Download the sample bt file and css file R

browser-specific tags, incompatible DOMs, and broken CSS

ean be accomplished Love Is In The
The Road to Enlightenment support. Air by Nele
visually through c: {y
s y Goetz
Littering a dark and dreary road lay the past relics of bros 05 based design Seleee Todas, we must clear the mind of past practes. Web
. . . Greece
i dewemustil aifemindo st prcticas Wikhen g style sheet from the PUEMEnment has been aclieved thanks to the tirclss efforts of e Lt
Like the W3C, WaSP and the major browser creators, folk like the W3C, WaSP and the major browser creators. by Pierre-Leo
list to load it into this =
The css Zen Garden invites you to relax and meditate on Bourbonnais

T st forioe ihe (y/be6 be ik mmared reckainnek ine — The css Zen Garden mmvites vou to relax and meditate on the

i ‘ 3 3 Hengarden by
important lessons of the masters, Begin to see with clarity.

Mr. Khmerang

So What is This About?

Download the sample Learn to use the (vet to be) time-honored techniques in new and o
oops -
There is clearly aneed for CSS to be taken seriously by ; and invigorating fashion. Become one with the web. Tournament
encourage participation. To begin, view some ofthe exis Edition by David
sheet into this very page. The code remains the same, th So What is This About? Marshall Jr.

a need for CSS to be taken seriously by graphic

(88 allows complete and total control over the style of Obsequience by [¥

avtiste The Zen (arden aime tn sveite inemine and snemira s marsinatian Trhemn e cnmes

Figure 2.2: Example on separating design from content using CSS.

Currently, the latest CSS version is CSS 2.1. The next version CSS 3 is about to receive
the status of a W3C recommendation, which is in fact a standard. Although CSS 3 is
not yet a recommendation of the W3C, we will also draw on concepts of CSS 3 to reduce
reimplementation efforts after CSS 3 is published.

2.3 Structure of CSS

A Cascading Style Sheet consists of a sequence of CSS rules. Each rule is separated into two
parts: The head of a rule is called selector and the body of a rule is called declaration. The
main structure of a CSS rule is given in EBNF syntax as follows:

1 |RULE : SELECTOR "{" DECLARATION "}"
2 |DECLARATION ::= (TUPLE)=
3 | TUPLE (PROPERTY ":" VALUE ";")

Figure 2.3: Main Structure of a CSS Rule in EBNF.

The SELECTOR part of a rule matches (zero or more) XML nodes, and the DECLARATION
part specifies the styling of the currently selected XML nodes. Concrete aspects of styling
are addressed in the DECLARATION part as so called TUPLEs. Each of these TUPLEs consists of
a PROPERTY (such as font-weight or background-color) combined with adequate VALUEs
(such as 12pt or white).

"http://www.mezzoblue.com/zengarden/alldesigns/

http://www.mezzoblue.com/zengarden/alldesigns/

12 CHAPTER 2. CASCADING STYLE SHEETS (CSS): A BRIEF INTRODUCTION

Comments in CSS are marked by “/#*” as opening tag and “*/” as closing tag. Comments
can appear everywhere in a CSS style sheet.

The following figure demonstrates, how the repository of a library written in XML can be
styled using CSS:

Source: CSS Style Sheet:

1 | <bib> 1 * { display : block; }
2 <book year="1994"> 2 bib { list-style-type : decimal;
3 <title> 3 margin : lem O;

4 TCP/IP Illustrated 4 padding-left : 40px; }

5 </title> 5 | book { display : list-item; }
6 <author> 6 |author { font-style : italic; }
7 <last>Stevens</last> 7 |first, last { display : inline; }
8 <first>W.</first> 8 |price::before { content : "EUR "; }
9 </author>

10 <publisher> .

11 Addison-Wesley, 1994 Renderlng:

12 </publisher> 1. TCP/IP Illustrated

13 <price>65.95</price> Stevens W.

14 </book> Addison-Wesley, 1994

15 R EUR 65.95

16 </bib>

Figure 2.4: Example: Rendering of XML data using CSS.

The rule in the first line of the CSS style sheet above selects all XML nodes by the
wildcard pattern (*). Hence, all XML nodes are primarily styled as specified in the declaration
part of that rule. In this case, all elements are arranged in blocks (and not as continuous
text). In the second line, the bib element is defined as container for a numbered list with
a concrete indentation of 40px and a margin around the list. This numbered list consists of
books stated in the fifth line. In the sixth line, each of the authors is rendered in italic
style but unlike the other elements the first and the last name are arranged in a row in
line seven. The eighth line causes the String "EUR " in front of each price.

The following sections introduce to selected concepts of CSS in detail. In particular,
concepts being extended in Chapter 4 like the CSS selector concept are addressed.

2.4 Simple Selectors

The basis of CSS selectors are so called simple selectors. As already applied in Section 2.3,
simple selectors can select XML elements by pattern matching: The most general pattern
is the star (*) which matches every XML element. A selection can be restricted to XML
elements bearing the same name. For instance, the selector author instead of the star (*)
selects author XML elements only. Further on, selections can be restricted to attribute names
and values. The following rule matches all book elements having an XML attribute year with
1994 as value:

1 |book[year="1994"] { ... }

Figure 2.5: Example: Rendering of XML data using a Simple Selector.

2.5. COMBINATORS 13

2.5 Combinators

Being able to select individual types of XML elements using simple selectors is a first step.
The next step is to select XML elements being in a relationship to other XML elements. Two
simple selectors can by related by the following CSS combinators:

EF Matches any F element that is a descendant of an element E.

E >F Matches any F element that is a child of an element E.

E+F Matches any F element immediately following an element E in
the so-called document order.

E"~F Matches any F element following an element E in the so-called
document order.

Figure 2.6: CSS Combinators.

The following rule selects all title elements within book elements. Other title elements
having no ancestor node book are not selected:

1 |book title { ...}

Figure 2.7: Example: Rendering of XML data using a Combinator.

2.6 Grouping

Obviously, XML elements of different types can be rendered using the same CSS declarations.
Hence, each type of an XML element such as first or last can be rendered using its own
rule like in the first and the second line of the following example:

first { display : inline; }
last { display : inline; }

L N

/* Grouping of the previous rules */
first, last { display : inline; }

ot

Figure 2.8: Grouping of CSS rules.

To simplify writing of CSS style sheets and to simplify changes on a set of elements, CSS
allows grouping of elements. In the fifth line of the example above (see library example 2.4)
the CSS rules of the lines one and two are grouped together.

Note, that the grouping operator “,” can be easily confused with CSS combinators intro-
duced in Section 2.5.

2.7 Pseudo-selectors

Selecting the first (or n-th) child of an XML element cannot be expressed by applying simple
selectors and combinators only. Therefore, CSS offers pseudo-selectors for selections that go
beyond the expressive power of simple selectors and combinators.

14 CHAPTER 2. CASCADING STYLE SHEETS (CSS): A BRIEF INTRODUCTION

In this section both types of pseudo-selectors are introduced: so called ‘pseudo-elements’
and ‘pseudo-classes’ . Pseudo-elements address selections concerning the “surroundings of
one XML element” such as the first letter of a text node. Pseudo-classes refer to the context
of an XML element that cannot be expressed by simple selectors and combinators only, such
as selecting XML elements being the third child in XML document order [BPSMMOO].

2.7.1 Pseudo-elements

According to the specification of CSS [BLLJ98|, pseudo-elements allow ‘language specific’
(e.g., HTML specific) selections such as the selection of the first letter or the first line of a
paragraph. For instance, texts can be rendered using majuscules, where the first character of
a paragraph is rendered differently from the other characters. (This was common in medieval
texts.) Since the first character of a paragraph is usually not surrounded by XML tags, it
cannot be selected by a simple selector. The pseudo-element ::first-letter makes such a
styling possible.

Beside selecting text portions inside an XML element like the first letter or the first line,
pseudo-elements can also select ‘virtual’ XML text nodes before opening XML tags or after
a closing XML tags. The following example renders the XML element price with additional
text defined in the style sheet.

Source (extract): CSS Style Sheet (extract):

1 </publisher> 1 price::before { content : "EUR "; } ‘
2 <!-- virtual XML text node -->

3 <price>65.95</price> .

4 <!-- virtual XML text node --> Renderlng:

5 |</book> | EUR 65.95 \

Figure 2.9: Selecting ‘virtual” XML text nodes.

The CSS rule on the right side (taken from the library style sheet given in Figure 2.4)
demonstrates the insertion of text: The currency EUR is inserted in front of the price of a
book using the pseudo-element ::before. Besides ::before, the pseudo-element ::after
allows insertions of text behind a rendered XML element. In both cases, the inserted content
is part of the style sheet and not part of the source document (unlike all other content such
as 65.95). Hence, another style sheet could insert the currency symbol € instead of EUR.

2.7.2 CSS Functions

Besides the insertion of fixed text, CSS functions grant limited access to the markup of
a source document. For instance, the rendering of HTML ordered lists (...</o0l>)
demands to insert the current number of each list item. CSS offers the following functions to
afford insertions depending on the source document:

e counter (name), counter (name, style), and counter (name, string, style) insert
the numbers of enumerations.

e attr(X) returns the value of an XML attribute X to the subject of the CSS selector as
string. If the subject of the selector does not have an attribute X, an empty string is
returned.

2.7. PSEUDO-SELECTORS 15

These CSS function are used within the content property of a CSS rule in combination
with the pseudo-Elements : :before or : :after. Referring to the library example (see Section
2.4) the XML attribute year of a book could be rendered using the following additional CSS
rule:

Source (extract): CSS Style Sheet (extract):

1 <bib> 1 | book::before{content:"published "attr(year)": ";}
2 <book year="1994">

3 <title> .

1 TCP/IP Illustrated Rendering:

5 </title> 1. published 1994: TCP/IP Illustrated

6 == ... -

Figure 2.10: Example: Rendering of XML data using CSS.

Note, that neither of the offered CSS functions cover computational capabilities.

2.7.3 Structural Pseudo-classes

CSS introduces the concept of structural pseudo-classes to permit “selections that are based
on information lying in the document tree but cannot be represented by other simple selectors
or combinators” [BLLJ98].

The lines of a rendered list such as in the library example (see Section 2.4) can be rendered
using alternating colors to support a better orientation. Since the (even or odd) position of
a list item cannot not be derived using simple selectors, Web designers use XML attributes
to mark up even and odd items in CSS 2.1. CSS 3 offers structural pseudo-classes that can
be used for a rendering depending on the relative position of a list item. The following CSS
rule renders the first item in a bold font (line one) and turns the background color of every
second book item into gray beginning with the second one (line two):

1 |bib:nth-child(2n+1) { font-weight : bold; }
2 |bib:nth-child(2n+2) { background-color : gray; }

Figure 2.11: Structural Pseudo-classes.

The selector :nth-child (An+B) matches an XML element that has “A-n+ B — 1 siblings
before it” [Bos05] in the XML document tree. In other words, the selector matches every
A-th XML element beginning with the B-th sibling. While A and B stand for integers, n+ is
a reserved word. This thesis will refer to the expression An+B as recurrence patterns. Beside
the :nth-child(An+B) selector, other selectors of this category allow to match the XML
document root and siblings beginning with the last XML element. We refer to the CSS
reference [Bos05] of the W3C for a detailed reference on the remaining structural pseudo-
classes.

2.7.4 Dynamic Pseudo-classes

In contrast to pseudo-elements and structural pseudo-classes, dynamic pseudo-classes denote
all selections that cannot be deduced from the document tree, e.g. selections that depend on
interaction of the viewer.

16 CHAPTER 2. CASCADING STYLE SHEETS (CSS): A BRIEF INTRODUCTION

In a Web browser window dynamic rendering of hyperlinks can be observed on many Web
pages®. Hovering with the mouse cursor? over a hyperlink anchor can change its styling such
as underlining the link. Removing the mouse cursor from the hyperlink anchor again activates
the former styling. The following CSS rule causes such a dynamic rendering:

1 |a:hover { text-decoration : underline; }

Figure 2.12: Dynamic Rendering.

Besides the :hover dynamic pseudo-class CSS offers the dynamic pseudo-classes :active
and :focus. The pseudo-class :active selects the hyperlink that points to the current Web
page itself. Finally, the : focus pseudo-class selects the area where the text cursor is focused
on. In XHTML this could be a text field of a form.

2.8 Interpretation of CSS style sheets

The basic interpretation concept of CSS programs is based on the so called ‘cascading styling’
. Similar to the concept of inheritance in object oriented languages (such as Java or C++)
the rendering of the parent XML element is ‘inherited’ by each child XML element. Referring
to the following example (see library example of Fig. 2.4) the first name and the last name
of each author are rendered using an italic font-style, although no CSS rule declaring the
font style matches these XML elements.

Source (extract): CSS Style Sheet (extract):

1 <author> 1 ’author { font-style : italic; }
2 <last>Stevens</last>

3 <first>W.</first> Rendering:

4 </author> ’ Stevens W.

Figure 2.13: Cascading Styling.

Further on, cascading styling allows to modify the scope of a CSS rule. To modify, e.g.,
the rendering of the last name in the example above, an additional CSS rule matching the
last name can be introduced:

Source (extract): CSS Style Sheet (extract):
1 <author> 1 |author { font-style : italic; }
2 <last>Stevens</last> 2
3 <first>W.</first> 3 | /* Additional CSS-Rule: */
4 </author> 4 |last { font-style : normal; }
Rendering;:
’ Stevens W.

Figure 2.14: Overwriting CSS rules in depth.

8see http://www.ifi.lmu.de
9A mouse cursor is controlled by a mouse device like a ‘mouse’, a ‘touch pad’, or a ‘track ball’.

http://www.ifi.lmu.de

2.9. STYLING AT UNKNOWN DEPTH 17

According to the figure above the 1ast name of the author is styled in ‘normal’ font style
and not in italic font style as defined in line one of the style sheet. Hence, the declaration of
the parent XML element author is shaded.

CSS rules can be shaded not only in depth such as in the latter paragraph but also in
breadth. Referring the example in 2.15, a third rule could overwrite the styling of the last
name as follows:

Source (extract): CSS Style Sheet (extract):
1 <author> 1 |author { font-style : italic; }
2 <last>Stevens</last> 2 | /* Additional CSS-Rules: */
3 <first>W.</first> 3 |last { font-style : normal; }
4 </author> 4 |last { font-style : italic; }
Rendering:
’ Stevens W.

Figure 2.15: Shading CSS rules.

The rule in line four of the style sheet frame above, shades the previous rule. As a
consequence, the last name of the author is rendered in italic font style.

In CSS, the most specific rule is used for the rendering. Obviously, the most specific rule
in depth is the rule whose selector is the tag name of the XML element itself or of the nearest
ancestor XML element. In breadth, the most specific rule is the last one matching the same
XML element.

2.9 Styling at Unknown Depth

CSS allows styling at unknown depth. Simple selectors allow to select XML elements inde-
pendent of depth (see Section 2.4). Furthermore, according to the cascading styling paradigm
(see Section 2.8) each XML element is styled depending on the most specific rule. For in-
stance, the author rule of the library example (see Fig. 2.4) defines a default styling of all
author XML elements independent of depth. This styling is inherited by all descendant XML
elements independently of depth such as fist and last.

18 CHAPTER 2. CASCADING STYLE SHEETS (CSS): A BRIEF INTRODUCTION

CHAPTER
THREE

Limitations of CSS 2.1 and CSS 3

CSS 2.1 and CSS 3 both offer many facilities for a sophisticated rendering of semi-structured
data (see Section 2: ‘CSS Zen Garden’). This section shows limitations of CSS, which the
extensions proposed later in this thesis try to overcome.

3.1 Transformation vs. Rendering

A widespread argument against CSS and in favor of XSLT [Cla01] is that CSS, in its current
versions including CSS 3, does not allow significantly to transform the structure of a document
and instead only offers primitives for adding style to structured data while, besides limited
changes, keeping the document’s original structure unchanged.

The author believes that this limitation of CSS is one of its appealing features. The reason
is that transforming up to significantly restructuring a (structured) document is a task that

1. basically is not part of rendering and

2. is not only needed for rendering.

It is the author’s conviction that if a rendering requires a significant restructuring, then it
is preferable to specify this restructuring independently from rendering. Obviously, this leads
to clearer programs and therefore to programs that are easier to maintain. (This is often
called separation of concerns and is a key objective of ‘good’ programming.)

If significant restructuring should, in the authors’ opinion, be kept separated from ren-
dering, slight transformations of a document’s structure are surely desirable within rendering
specifications, e.g.

—_

. “deleting”, or merely “hiding” an XML element (and its sub-elements)

o

“deleting”, or merely “hiding” parts of XML text nodes
3. adding XML text nodes without iteration , and

4. adding XML elements without iteration.

19

20 CHAPTER 3. LIMITATIONS OF CSS 2.1 AND CSS 3

Adding without iteration means that recursively specified addition of XML elements
should be precluded. This restriction prevents the specification of infinite documents in a
CSS style sheet. Refer to Section 3.1.4 for more details.

Note that deleting an XML element does not affect the source document but the visual-
ization of the XML element only. However, the view of deleting is applicable to a (virtual)
intermediary step of the rendering process. This intermediary step is the result of slight
transformations caused by adding and deleting of markup. For instance, an XML element
that is added by a CSS style sheet would appear in the intermediary step while the source
document does not change. Consequently, the XML document of the intermediary step is
rendered (instead of rendering the source XML document directly). In the following we will
use ‘deleting’ in this sense.

As demonstrated in the table below, the rendering specifications ‘deleting XML elements’
and ‘adding XML text nodes’ are already possible in current CSS. However, deleting XML
text nodes and adding XML elements is not possible in current CSS, and there seems to be
no reason for this asymmetry.

‘ Adding Deleting
XML text nodes | yes no
XML elements no yes

One would expect that adding and deleting are permitted or prohibited line by line. The
following sections address each value of the table above in detail:

3.1.1 Deleting XML elements

Deleting XML elements is supported in CSS 2.1 and CSS 3: The CSS declaration display:none
prevents the rendering of all XML elements that are matched by the corresponding CSS se-
lector of a CSS rule, as demonstrated in the following figure:

Source (extract): CSS Style Sheet (extract):

1 <author> 1 |first { display : none; } ‘
2 <last>Stevens</last>

3 <first>W.</first> Rendering:

4 </author> ’ Stevens ‘

Figure 3.1: Deleting an XML element.

The first name ‘W.’ of the author in the Figure above is not displayed because of the rule
in line 1 of the style sheet above. (Since CSS inherits styling declarations to sub-elements
of a XML element, see Fig. 2.13, the sub-elements inherit the declaration display:none.
Consequently, these sub-elements are not rendered except another CSS rule overwrites this
declaration, see Fig. 2.14.)

3.1.2 Deleting parts of XML text nodes

Deleting parts of XML text nodes is not possible in current CSS. Although text nodes can
be selected using pseudo-elements (see Section 2.7.1) such as ::first-letter, XML text
nodes cannot be deleted because the CSS display property cannot be applied to ‘pseudo-
selections’ [BLLJ98]. Hence the CSS rule author::first-letter { display: none; }

3.1. TRANSFORMATION VS. RENDERING 21

is not possible in current CSS. The author is not aware of any reason for this restriction
because this transformation is more limited than deleting XML elements, which is supported
by current CSS as discussed above.

Deleting XML text nodes would be an appealing feature of CSS. For instance, all text
portions surrounded by parentheses could be deleted to get a compact version of a text, for
instance, for rendering on a portable device with small screen. Such a selection would be
possible using extended pseudo-elements to select arbitrary XML text nodes (instead of only
selecting the first letter or the first line like in current CSS). A new pseudo-selector based on
Regular Expressions (e.g., expressed in the POSIX! syntax) can afford such selections. This
extension goes beyond the scope of this thesis and is therefore not addressed here.

3.1.3 Adding XML text nodes

Adding XML text nodes is possible in current CSS. The pseudo-elements ::before and
: :after allow to specify the insertion of context. XML text nodes can be inserted before or
after an XML element as illustrated with the currency symbol Euro in Section 2.7.1.

3.1.4 Adding XML elements

Adding XML elements is not possible in current CSS (see Section 2.7.1). However, adding
XML elements would be a winning feature of CSS because styling would become more flexible.
For instance, tabs could be added to data items (such as person, name, etc., see Fig. 3.2).
If realized with XML elements (instead of XML text nodes), CSS rules could be used to
render the tabs. In particular, dynamic rendering could enrich the facilities of such tabs: For
instance, a mouse click on a tab could fold the data item (and its subtree) and a second mouse
click could reopen the tab.

1 | <tab>person</tab> person|
< >
2 person —
3 <tab>name</tab>
4 <name>Igor</name> Igor
<tab> ic< > -
5 tab sharecllMusm /tab sharedMu51c|
6 <sharedMusic>
7 <tab>music</tab> music
8 <music> ' title
9 <tab>title</tab>
~arrv |

<title>carry</title>

=
[=}

Figure 3.2: Adding XML Elements as Tabs.

Arguably, adding XML elements is not allowed in current CSS because of the following
reasons:

As first reason, the well-formedness of the rendering of an XML document would be
dependant on the style sheet. (The rendering does not affect the source document, see Section
3.1.) For instance, an opening XML tag is inserted by a CSS rule but the corresponding closing
XML tag is not inserted because there is no CSS rule inserting it:

"http://wuw.pasc.org/plato/

http://www.pasc.org/plato/

22 CHAPTER 3. LIMITATIONS OF CSS 2.1 AND CSS 3

Source (extract): CSS Style Sheet (extract):

1 </publisher> 1 price::before {content:"";}
2 <!-- virtual XML text node --> 2

3 <price>65.95</price> 3 | /* Not applied:

4 <!-- virtual XML text node --> 4 |price::after {content:"";}
5 | </book> 5 | %/

Intermediary Step (extract): Rendering:

1 </publisher> ’ not defined

2 <price>65.95</price>

3 <!-- missing closing tag -->

4 </book>

Figure 3.3: Invalid insertion of XML elements.

As a consequence, the source document might not be rendered like in the (hypothetic)
example above. The intermediary step in the rendering process (including the added XML
element) cannot be rendered because rendering of invalid XML documents is not defined in
current CSS.

As second reason, an XML element could be added iteratively using recursive CSS
rules. The following (hypothetic) example demonstrates the declaration of such repetitively
applicable CSS rules:

Source (extract): CSS Style Sheet (extract):

1 </publisher> 1 |price::before {content:"<price />";}
2 <!-- virtual XML text node -->

3 <price>65.95</price>

4 <!-- virtual XML text node -->

5 </book>

Intermediary Step (extract): Rendering:

1 </publisher> ’ not defined

2 <price />...<price /><price>65.95</price>

3 </book>

Figure 3.4: Recursive Insertion of XML elements.

The XML element <price /> is added recursively because the CSS rule in line 1 of
the CSS style sheet adds an XML element, that is styled by the rule itself. Obviously,
<price /> is inserted infinitely. Therefore, the intermediary step would result in an infinite
XML document, and thus the rendering would be undefined. It is assumed that added XML
elements are styled using the CSS rules of the same CSS style sheet?.

As third reason, iterative rendering processes should not be allowed (even if terminating)
because primitives like adding and deleting of XML elements allow significant restructuring
(as discussed above). For instance, XML elements can be grouped by criteria such as the
content of an XML attribute or an XML element as demonstrated in Fig. 3.5. The XML

2Obviously, adding XML elements that are not being styled would make no sense.

3.1. TRANSFORMATION VS. RENDERING 23

document on the left side can be transformed to the XML document on the right side (and
vice versa) using adding and deleting XML elements iteratively.

Trains Grouped by Time of Day: Trains Grouped by City of Departure:
<trains timeOfDay="AM"> <trains departure="Munich">
<train id="ICE111"> <train id="ICE111">
<departure> <departure>
<station>Munich</station> <station>Munich</station>
<time timeOfDay="AM">11:36</time> <time timeOfDay="AM">11:36</time>
</departure> </departure>
</train> </train>
</trains> <train id="ICE888">
<departure>
<trains timeOfDay="PM"> <station>Munich</station>
<train id="ICE333"> <time timeOfDay="PM">21:48</time>
<departure> </departure>
<station>Hamburg</station> </train>
<time timeOfDay="PM">19:47</time> </trains>
</departure>
</train> <trains departure="Hamburg">
<train id="ICE888"> <train id="ICE333">
<departure> <departure>
<station>Munich</station> <station>Hamburg</station>
<time timeOfDay="PM">21:48</time> <time timeOfDay="PM">19:47</time>
</departure> </departure>
</train> </train>
</trains> </trains>

Figure 3.5: Grouping of XML Data (Intermediary Step).

In the left window the trains are grouped according to their time of departure. Hence,
ICE111 belongs to the first group (because it departs before noon) and the remaining trains
ICE333 and ICE888 belong to the second group (because they depart after noon). Obviously,
the XML document in the right window is significantly restructured by comparison to the
left window. The restructuring is the result of a grouping by the city of departure instead of
a grouping by the time of day. Therefore, ICE111 and ICE888 are grouped together on the
right window instead of ICE333 and ICE888.

If CSS allowed recursion, such a significant restructuring could be implemented using
adding and deleting XML elements as follows: For each group iterate over all XML elements
of the source document and add each matching XML element (including its subelements) to
a ‘container XML element’ of the group. As a consequence, if iterative rendering processes
admitted such restructuring, CSS would be extended to the capabilities of Turing-complete
transformation languages such as XSLT or XQuery [Kep04]. Hence, the posited separation of
concerns (see Section 3.1) would be abandoned.

The restriction of forbidding iterative adding of XML elements complies with the author’s
conviction concerning slight transformations of semi-structured data instead of a significant
restructuring (see Section 3.1). However, adding XML elements not iteratively should be
allowed in CSS (as motivated by additive XML elements serving as tabs). Refer to Section
4.2 for concrete extensions.

24 CHAPTER 3. LIMITATIONS OF CSS 2.1 AND CSS 3

3.2 Insertion of Markup

The insertion of XML elements using CSS pseudo-elements as demonstrated in Section 3.1.4
(Fig. 3.4) seems to be natural. Indeed, as explained in Section 2.7.1, CSS 2.1 allows to insert
arbitrary characters (see encoding schemes UTF-8, ISO-8859-15, etc.) using pseudo-elements.
Since markup is composed of XML ‘control characters’ such as < or >, XML tags can be
inserted, too, as demonstrated in the following example:

Source (extract): CSS Style Sheet (extract):
1 </publisher> 1 price::before { content : "<new>€ "; }
2 <!-- virtual XML text node --> 2 price::after { content : "</new>"; }
3 <price>65.95</price> 3 |new { font-weight : bold; }
4 <!-- virtual XML text node -->
5 </book>
Expected Rendering: Actual Rendering:
’ € 65.95 ‘ ’ <new>€ 65.95< /new>

Figure 3.6: Insertion of XML Control Characters.

The rendering frame on the right side of the figure above illustrates the effect of the
insertion of <new> and </new> on the rendering. Obviously, the characters < and > are
not interpreted as expected (see rendering frame on the left side). Even the XML entity
€ is not rendered as expected. Hence, XML elements cannot be added by this construct
and rendered by CSS 2.1 or CSS 3 like elements in XML source documents. Other constructs
to insert XML elements to an XML document are not available in CSS.

3.3 Visualization of Markup

In current CSS, markup being inserted (as discussed in the latter section) as well as markup
of a source XML document can be visualized. Pseudo-elements (see Section 2.7.1) and the
CSS property content can define such a rendering using the selectors : :after and : :before.
For instance, the markup of the train example (see Chapter 1) can be implemented in current
CSS as follows:

3.3. VISUALIZATION OF MARKUP 25

Source: Rendering:
<trains> e trains
<train id="ICE788"> L.
<departure> — train (id ICE788)
<station>Munich</station> * departure
<time>11:36</time> - station Munich
</departure> - time 11:36
<arrival> .
<station>Hamburg</station> * arrival
<time>17:45</time> - station Hamburg
</arrival> - time 17:54

Figure 3.7: Rendering of markup.

In Fig. 3.7 the markup of the source document on the left side (e.g. <trains> or <train
id="ICE788">) is rendered on the right side (e.g. trains or train (id ICE 788)). The specifi-
cation of the rendering is given by the style sheet below (see Fig. 3.8):

1 trains: :before { content : "trains"; }

2 train: :before { content : "train (id " attr(id) ")"; }
3 departure: :before { content : "departure"; }

4 station: :before { content : "station "; }

5 time: :before { content : "time "; }

Figure 3.8: CSS style sheet rendering the markup of the XML file of Fig. 3.7.

Obviously in the style sheet (see Fig. 3.8), each XML element such as train as well as
each XML attribute such as id in line 2 is addressed explicitly. Due to the lack of generic
constructs to access the markup of the source document in the style sheet, the rendering of
each markup construct (such as XML elements) needs to be defined separately. A generic
construct like in XSLT (see Fig. 3.9) to insert the name of a currently selected XML element
in a CSS rule is not available.

1 <xsl:value-of select="name()" />

Figure 3.9: Generic Access to the name of XML elements in XSLT.

CSS functions such as attr(X) (see Section 2.7.1) offer a similar functionality by com-
parison to the XPath function name (). Contrary to expectations, the CSS function attr (X)
does not offer generic rendering capabilities because the name of the parameter (selecting an
attribute) must be known in advance while writing the style sheet. Note that the wildcard
pattern * (see Section 2.3) is not applicable as parameter to the CSS function attr (X).

As a consequence, CSS 2.1 and CSS 3 offer constructs to render XML elements and XML
attributes. However, the rendering capabilities of CSS are restricted to XML elements and
XML attributes that are known in advance. Styling of unknown XML elements and XML
attributes such as covered by XSLT is not possible. An extension introduced in Section 4.3
overcomes this restriction.

26 CHAPTER 3. LIMITATIONS OF CSS 2.1 AND CSS 3

3.4 Depth-Dependent Styling

According to Chapter 1 an alternating styling of highly nested trees such as the ‘Tree of Life’
or threads in a discussion forum is highly welcome in practice. In current CSS, an XML
element on a certain depth can be addressed using CSS combinators (see Section 2.5) as
follows:

* { /* DEFINITION A */ } /* level 1 */
* { /* DEFINITION B =*/ } /* level 2 */
* { /% DEFINITION A */ } /* level 3 */
* K ok ok { /* DEFINITION B */ } /* level 4 */
L. X { /* DEFINITION A */ } /* level n - 1 */

* % ... % { /% DEFINITION B */ } /* level n (maximum level) */

Figure 3.10: Styling on a certain depth in CSS.

Each nesting level in the XML tree needs its own CSS rule. Since CSS style sheets must
be finite, the styling can only be written until a certain depth. Hence, the number of CSS
rules defining an alternating styling in depth must be equal to the maximum depth of a source
document. XML elements exceeding the maximum level of depth are styled depending on
the most specific matching rule (see Section 2.8). Therefore, the styling stays the same for
all depths exceeding the maximum specified in the style sheet. Hence, an alternating styling
of XML elements on unknown depth is not possible using CSS. Note that this restriction is
similar to the restriction of CSS concerning visualization of markup (see Section 3.3).

The parameterization of CSS selectors is available for direct child XML elements in CSS 3
(see Section 2.7.3). The author is not aware of any reason, why a parameterized selection
depending on depth is not offered by CSS 3. Although CSS 3 offers the parameterized selection
for sibling XML elements, it does not offer the symmetric case of parameterized selection of
nested child elements. For instance the :nth-child(An+B) structural pseudo-class allows an
alternating styling in breadth. A corresponding construct for alternating styling in depth is
not offered in current CSS. An extension introduced in section (see Section 4.4) will overcome
this restriction.

3.5 Dynamic Rendering

Obviously, input devices are essential to dynamic rendering (see Chapter 1) because such
devices serve as interface between the viewer of a document and the rendering engine (e.g.,
of a Web browser). In CSS, the mouse (see Section 2.7.4) is the only input device that can
change the rendering of a source document directly. (Indirectly, the history of visited Web
pages of a Web browser is an ‘input device’, too, see Section 2.7.4). Input provided by other
devices such as the keyboard cannot be selected.

A mouse can perform various actions like clicks or movements that can be received by
the rendering engine of a Web browser as so called events. For instance, if the mouse is
moved on the desk such that the mouse cursor enters the rendering of an XML element, the
rendering engine receives a corresponding event message. In the case of the dynamic pseudo-
class :hover, the rendering can be derived directly from the position of the mouse cursor

3.6. HYPERLINKS 27

because :hover affects only the rendering of XML elements the mouse cursor is hovering
above. For instance, tree structures can be rendered dynamically using the following style
sheet in Fig. 3.11:

1. MU —rr

1 *:1root { display . blOCk; } Aktuelles Institut Studium Forschi

2 |*:root * { display:none; }| ¥ Allgemeines Studiengang Informatik

3 *:hover > x* { display : blOCk; } * Stz;:zﬁ::ge Ziele des Informatikstudiums

4 *:active { display : blOCk; } ¥ Informatik Ziel des Studiums ist es, Grundlagen de
Uberblick anwendungsocrientierter Hinsicht zu verr

von Anwendungsproblemen und deren L
» Studienberatung,

Prifungsamt Gliederung des Studiums

Figure 3.11: Dynamic Rendering of Tree Structures.

The CSS rule in line 1 of the CSS style sheet above renders the root XML element of a
source document as block. Since the descendant XML elements of the root element should
not be visible by default, the rule in line two defines that every child element of the root
element is not displayed. Dynamic rendering in this example is defined in the rule of line 3:
Whenever the mouse cursor hovers above an XML element, its children become visible. Note
that this rule works transitively because the rendering of each ‘unfolded’” XML element can
be unfolded again, if the mouse cursor hovers the way down to it.

The CSS style sheet above can be used to define the ‘navigation tree’ of the Web-site on
the right side in Fig. 3.11: If a hyperlink is active, it is displayed by default as defined by
the rule in line 4. Otherwise an item that was dynamically unfolded by the viewer would be
folded again as soon as the mouse cursor has left the rendering of an item.

However, a generic folding and unfolding like in Fig. 3.7 is not possible because the ren-
dering state of each XML element (being folded or not) cannot be realized in CSS. Extensions
of current CSS allowing extended dynamic rendering are introduced in Section 4.5.

3.6 Hyperlinks

In an HTML document a hyperlink is a reference to an Internet resource such as another
HTML document or an e-mail address. Obviously, the declaration of the functionality of such
hyperlinks is not subject of a style sheet language. For instance, CSS does not offer means for
declaring XML elements as hyperlinks. The W3C offers XLink [DMOO01] and HLink [PI02]
for such issues.

However, the styling of hyperlinks is one of the killer applications of CSS (see Section 1.1)
and, of course, hyperlinks can be styled using dynamic style sheets. Thus a hyperlink-like
behavior of the visualization of hyperlinks can be simulated within Web pages. For instance,
menus that allow to change the visible content of a Web page can be provided using CSS but
the Web resource stays the same.

In any case, such simulations have their limits, and CSS is not a language for the dec-
laration of hyperlinks. On this account the declaration of hyperlinks is not covered in this
thesis.

28

CHAPTER 3. LIMITATIONS OF CSS 2.1 AND CSS 3

CHAPTER
FOUR

How CSSVE extends CSS 3

This chapter addresses the concrete extensions proposed in this thesis, which are motivated
in Chapter 1. Each extension proposed in the following sections tries to overcome restrictions
of current CSS (see Chapter 3) respecting principles as introduced in the Section 4.1.

The Sections 4.2 to 4.4 briefly introduce novel static CSS™V¢ rules mainly aiming at visu-
alizing XML markup. Section 4.5 introduces the rule-based interface for dynamic document
styling. Finally, Section 4.6 discusses a novel CSSV® combinator, which is especially apt for
the dynamic but also for static document rendering. These extensions are based on proposals
on extending style sheet languages in a project thesis [Wie05].

4.1 Framework for the CSSYC extension

CSSNC is a rather expressive extension but actually it is a rather conservative extension,
too. All new features of CSSNC are designed with respect to the following guidelines.

4.1.1 Downward Compatibility

CSSNE does not interfere with style sheets written in prior CSS versions CSS 2.1 and CSS 3
because the semantics of existing constructs in current CSS were not changed. Hence, every
style sheet of version 2.1 or 3 can be re-used.

4.1.2 Combined Complexity

One of the main guidelines of the CSSNC extension is to preserve the computational com-
plexity of styling semi-structured data using CSS 3. Hence, the combined complexity of the
CSSNC styling process is linear in the size of the style sheet and the input document.

4.2 Markup Insertion

Markup especially in XML documents often conveys application relevant information. There-
fore, it might be useful to visualize it. However, CSS 2.1 and CSS 3 offer quite limited means
for markup visualization. CSS 3 allows the insertion of plain text specified in a CSS style
sheet. The pseudo-elements : :before and ::after cause insertion of text before and after
a selected XML or HTML element (see Section 2.7.1) as demonstrated below:

29

30 CHAPTER 4. HOW CSSN¢ EXTENDS CSS 3

1 |price::before { content : "EUR "; }

Figure 4.1: Insertion of XML text nodes.

CSSNE extends the value set of the CSS property content, which is associated with the
CSS pseudo-elements of CSS 3 ::before and ::after. CSS 3 can only insert plain text
before and after XML elements. CSSNE can also insert elements using the CSSNE function
element (NAME, VALUE). In order to insert elements that have attributes, the function can
take additional arguments between NAME and VALUE. For these additional arguments CSSV¢
offers another function attribute (NAME, VALUE). The following sections describe these new
features for markup insertion in detail.

4.2.1 CSS™¢ Function element

The CSSMVC function element (NAME, ATTRIBUTES, VALUE) inserts XML elements to the
‘intermediary step’ as demonstrated in Fig. 4.2.

elem
15 inserted before each XML element by the rule
*::before { content: element("span", "elem"); }
elem
elem

Figure 4.2: Insertion of a span element representing a tab.

The parameter NAME specifies the name of the XML element (such as span). The type of
the parameter NAME is String.

The parameter ATTRIBUTES denotes the possibility to add XML attributes that belong
to the current XML element to be inserted. Since an XML element can have zero or more
XML attributes [BPSMMO00], we substitute ATTRIBUTES by a variable number of arguments
(varargs) making element a variadic function!. The only allowed type of input parameters
is an XML attribute. XML attributes can be constructed by the CSSV function attribute
that is addressed in Section 4.2.2.

The last parameter VALUE of the CSSN® function element (NAME, ATTRIBUTES, VALUE)
has the type string expression.

Like in CSS 3, a string expression can be a string literal such as "elem" or a concatena-
tion such as "e" "le" "m". The fact that CSS 3 concatenates strings by simple juxtaposition
without explicit operator can be confusing in large string expressions (especially if the con-
catenated string literals start or end with whitespace). Nevertheless, this is a CSS convention,
so CSSNE adopts it for the sake of downward compatibility.

The extension now is that the VALUE parameter may be a concatenation not only of string
literals, but also of string expressions according to the table in Fig. 4.3.

! A variadic function is a function of variable arity, see ISO/IEC 9899:1999

4.2. MARKUP INSERTION 31

VALUE expression in description element inscribed in
content declaration intermediary step
no value element ("em" empty element |
empty string element ("em", "") empty element |
string element ("em","Hello") element Hello
with content
element(...) | element("em", nested element |

element ("br"))
String element ("em", mixed content |
element (...) "Hello" Hello

element ("br"))

Figure 4.3: Alternatives of the parameter VALUE of the CSSNC function element.

4.2.2 CSSYE Function attribute

The CSSYC function attribute (NAME, VALUE) offers to construct XML attributes that
can be used in the CSSNC function element (see Section 4.2.1). The first parameter NAME
specifies the name of an XML attribute such as class. The second parameter VALUE specifies
the value of the XML attribute such as tab (see Fig. 4.4).

*::before { content: element("span", attribute("class", "tab"), "elem"); }

This rule inserts the following markup:

elem

Figure 4.4: Demonstration of the CSSV¢ attribute function.

Note that in both CSSV¢ functions, element and attribute, double quotes within String
parameters must be paraphrased by XML entities such as " ; or " to avoid ambiguous
expressions such as:

element ("em", "The function "element("br")" inserts the element "br"".)
Thts expresstion must be paraphrased by

element ("em", "The function "element ("br")"
inserts the element "br"".)

Figure 4.5: Escaping of nested command chars.

32 CHAPTER 4. HOW CSSNG EXTENDS CSS 3

4.2.3 Prevention of Iterative Insertion of Markup

As discussed in Section 3.1.4 iterative adding must be avoided. Otherwise recursive non-
terminating CSS rules could be defined (see Fig. 3.4).

To avoid recursive insertion of XML elements, the pseudo-elements : :before and : :after
can be applied only to XML elements of the source document and not to XML elements of
the ‘intermediary step’. As a consequence, inserted XML elements are not styled by CSSV¢
rules that use one of the pseudo-elements : :before or ::after as selector, as demonstrated
in the following example:

Source (extract): CSS Style Sheet (extract):

1 </publisher> 1 price::before {content:

2 <!-- virtual XML text node --> 2 element ("price",
3 <price>65.95</price> 3 "€ ");}

4 <!-- virtual XML text node -->

5 </book>

Intermediary Step (extract): Rendering:

1 </publisher> | €65.95

2 <price>€</price><price>65.95</price>

3 | </book>

Figure 4.6: Restricted Insertion of XML elements.

4.2.4 Well-Formedness

The CSSNE functions element and attribute ensure well-formedness of inserted markup
syntactically. If markup could be written directly as strings, insertions like the following
would become possible. Although constructing XML elements via the new functions means
more code, only well-formed markup can be inserted.

p::before { content: "<samp></samp>"; }‘

Figure 4.7: Counter-example: Insertion of not well-formed markup.

Since XML elements can be inserted before or after each XML element in an XML docu-
ment, XML elements can be inserted before or after the document root, too. Applied to the
source document such a transformation would not be well-formed, because the source docu-
ment would become disrooted, which conflicts with the specification of XML [BPSMMO00].

In current CSS, the insertion of XML text nodes can be applied to root elements (and
in HTML to the body element). Such an insertion does not affect the well-formedness of the
source document because the insertion affects only the ‘intermediary step’ of the rendering
process for rendering issues, while the source document is not changed.

To handle this phenomenon CSSN® introduces a virtual root element that encapsulates
the data of the intermediary step. This virtual root cannot be selected by CSS or CSSNV¢
selectors. The virtual root serves for conceptual well-formedness of the XML document in
the intermediary step only. Consequently, the :root pseudo-class of CSS 3 does not match
the virtual root but the root XML element of the source document. Due to the definition

4.3. MARKUP VISUALIZATION 33

of the ‘intermediary step’ (see Section 3.1) all other CSS selectors such as nth-child() are
applied on the intermediary step after adding and/or deleting XML elements.

4.3 Markup Visualization

Current CSS allows to visualize known markup structures (such as XML elements and XML
attributes) but a generic visualization of markup is not offered (see Section 3.3). The exten-
sions by which CSSNE overcomes these restrictions is markup querying, which is explained
in detail in the following subsections using the example in Figures 4.8 and 4.9.

Even before having read the detailed explanations, the reader may get a better under-
standing by comparing the example with Fig. 3.8. In fact the style sheet of Fig. 4.9 is a
re-implementation of the style sheet of Fig. 3.8 at a generic level. It reduces the program-
ming effort from one rule per XML element name to one single rule for an arbitrary XML
document.

Another informative comparison is also possible before studying all the details: the effect
of the style sheet of Fig. 4.9 can be achieved by an XSLT transformation as given in Fig. 4.10.
The striking difference in conciseness is due to the declarativity of CSSN, which reduces the
amount and the error-proneness of code considerably.

Source: Rendering:
<trains> e trains
<train id="ICE788">
<departure> — train (id ICE788)
<station>Munich</station> * departure
<time>11:36</time> . station Munich
</departure> . time 11:36
<arrival>

]) % arrival
<station>Hamburg</station>

<time>17:45</time>)
</arrival> - time 17:54

- station Hamburg

Figure 4.8: Rendering of markup.

1 *::before { content : element-name()
2 id { content: " (" attribute-name() " " attribute-value() ")" }
3 }

Figure 4.9: CSSM¢ style sheet rendering the markup of the XML file of Fig. 4.8.

The rule in Fig. 4.9 defines the rendering of the XML document on the left side of Fig. 4.8.
The result of the rendering process is shown on the right side of Fig. 4.8. Each XML element
is tagged by its name caused by the CSSN& function element-name () (see Section 4.3.1). In
addition, the XML attribute id is visualized by the attribute rule in line 2. The attribute rule
consists of an attribute selector to select the attribute id and a rule declaration to specify
the rendering of selected attributes (see Section 4.3.2) . If no id attribute is attached to the

34 CHAPTER 4. HOW CSSNG EXTENDS CSS 3

current XML element, an empty string is returned. Otherwise, if the current XML element
has an id attribute, the body of the attribute rule is evaluated to generate a rendering of
the id attribute as follows: the name and the value of the id attribute are queried using the
CSSNC functions attribute-name() and attribute-value() . Furthermore, the results of
these two CSSNC functions are implicitly concatenated with strings containing parentheses
and space yielding a human-readable visualization.

1 |<?xml version="1.0" encoding="iso-8859-1"7>

2 |<xsl:stylesheet version="1.0"

3 xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
4

5 <!-- generate HTML document -->

6 <xsl:template match="/">

7 <html>

8 <body>

9 <!-- render all XML elements -—>

10 <xsl:apply-templates />

11 </body>

12 </html>

13 </xsl:template>

14

15 <xsl:template match="x">

16

17 <!-- render XML elements in breadth -->
18 <xsl:for-each select=".">

19 <1i>

20 <xsl:value-of select="name()" />

21 <xsl:text> </xsl:text>

22

23 <!-- render the id attribute of current XML element, if existing -->
24 <xsl:if test="@id">

25 <xsl:text> (id </xsl:text>

26 <xsl:value-of select="@id" />

27 <xsl:text>) </xsl:text>

28 </xsl:if>

29

30 <!-- render XML elements in depth -->
31 <xsl:apply-templates />

32 </1i>

33 </xsl:for-each>

34

35 </xsl:template>

36

37 |</xsl:stylesheet>

Figure 4.10: XSLT program providing the same rendering as the style sheet in Fig. 4.9.

4.3.1 Rendering of XML elements

XML elements can be visualized by showing their names (see Fig. 4.8). However, current CSS
does not allow to access the name of any XML tag for rendering issues directly. The only

4.3. MARKUP VISUALIZATION 35

solution to visualize XML elements by their names is writing rules for every XML element
with different name (see Fig. 3.7) indirectly. To allow access to the names of XML elements,
we introduce new CSSV¢ functions. Since the CSS function attr (see Section 2.7.1) already
allows to access the values of XML attributes, extending CSS functions toward visualizing
XML elements seems to be natural.

We extend CSS functions by a new function element-name() for getting the name of
the currently selected XML element in a CSS rule as a String. Like all other CSS functions
[BLLJ98| element-name() can only appear in the context of a CSS content declaration
(see Fig. 4.9). The name of the current XML element can be derived from the selection of
the corresponding CSS selector because every CSS rule is applied individually to one XML
element (see Section 2.4).

4.3.2 Rendering of XML attributes using CSSV¢ Attribute Rules

In contrast to XML elements, XML attributes cannot be selected by CSS selectors. Selections
can only be constrained to XML elements having a special XML attribute configuration
using square brackets (see Section 2.4). Consequently, extending CSS functions to a function
attribute-name() (see element-name(), Section 4.3.1) is not sufficient because an XML
element can have more than one XML attribute, and, therefore, no ‘current XML attribute’
can be selected by default like a ‘current XML element’. Therefore, we extend CSS toward
an extended attribute rule concept capable of selecting and rendering XML attributes.

The idea of CSSNE attribute rules is a transfer of the concept of ordinary CSS 3 rules
selecting XML elements to XML attributes. The anatomy of attribute rules stays the same
as the anatomy of ordinary CSS rules (see Fig. 1.1). The following sections 4.3.2.1 - 4.3.2.3
introduce to the head of CSSVC attribute rules. Finally, Section 4.3.2.4 covers the declaration
part of such rules.

4.3.2.1 CSSYCG Attribute Selectors

Since each XML attribute belongs to exactly one XML element, the ‘XML element context’ of
an attribute can be selected by CSS simple selectors selecting XML attribute names instead
of XML element names. Of course, attribute constraints defined with square brackets of CSS
simple selectors are not applicable in this context. XML attributes are flatly structured and
can be seen as a set of keys and values pairs [BPSMMO0].

The position of the attribute selector is located in the declaration part of a CSS rule.
Obviously, the only reasonable place in the declaration part is as value of a CSS content
declaration because the extended selector concept is meant to realize insertions to the ren-
dering of a source document (see Fig. 4.9) using the pseudo-elements : :before and ::after.

Since there is no order defined on XML attributes, visualizing XML attributes cannot be
deterministic. Therefore, if using the wildcard pattern * for selecting all XML attributes, the
XML attributes are rendered as given by the serialization of the source document.

4.3.2.2 CSS"¢ Adopting CSS Grouping

Other selector concepts of CSS (see Section 2) cannot be adopted reasonably except for
grouping (see Section 2.6) and except for parts of the CSS structural pseudo-classes (see
Section 2.7.3).

36 CHAPTER 4. HOW CSSN¢ EXTENDS CSS 3

In current CSS, grouping is syntactic sugar to integrate CSS rules having the same CSS
declaration. This concept can be adopted to attribute selectors. In this case the order of
the rendering of XML attributes can be interpreted, like in the following example (Figures
4.11 and 4.12):

1 a::before { content: element-name()
2 href, title { content: "(" attribute-name() " "
3 attribute-value() ")"
4 }
5 }
Figure 4.11: Attribute Selector using Grouping.
1 a::before { content: element-name()
2 href { content: "(" attribute-name() " " attribute-value() ")" }
3 title { content: "(" attribute-name() " " attribute-value() ")" }
4 }

Figure 4.12: Rule of Fig. 4.11 without Grouping.

The attribute selectors in the example of the Figures 4.11 and 4.12 use grouping indicated
by the “,”. Since href appears before title in the attribute selector, href is rendered before
title.

4.3.2.3 Adopting CSS 3 Structural Pseudo-classes

XML attributes have no order but adopting CSS structural pseudo-classes is reasonable for
rendering issues. Structural pseudo-classes taking into account selection in breadth can be
transferred to the serialized structure of XML attributes. The following example illustrates
how to avoid the insertion of the last separator sign such as a comma, if listing XML attributes:

1 *::before { content : element-name()

2 *:not(:last) { content: "(" attribute-name() " " attribute-value() "), " }
3 *:last { content: "(" attribute-name() " " attribute-value() ")" }

4

}

Figure 4.13: Attribute Selectors with Structural Pseudo-classes.

In Fig. 4.13 a comma is inserted after each XML attribute according to line 2 of the style
sheet. The rendering of the last XML attribute, however, is defined by the rule in line 3,
where no comma is inserted after the rendering of the XML attribute.

The following list itemizes all structural pseudo-classes of CSS 2.1 and CSS 3 that can be
mapped to the structure of XML attributes:

4.3. MARKUP VISUALIZATION 37

CSS (2.1 and) 3.0: ‘ Transfer to Attributes: ‘ New Semantics:
:nth-child () :nth-attribute() the n-th attribute
in document order
:nth-last-child () :nth-last-attribute() the n-th last attribute
in document order

:first-child :first-attribute the first attribute in document order
:last-child :last-attribute the last attribute in document order
rempty rempty matches, if no attribute is defined

:not () :not () selects every attribute of the cur-

rent element except of the at-
tributes specified as parameter (see
Fig. 4.13)

Figure 4.14: Transfer of Existing Pseudo-classes to Attribute Selectors.

4.3.2.4 Declaration of CSSVE Attribute Rules

In addition to the constructs that are allowed in the VALUE of a content declaration , new
CSS functions for accessing the name and the value of XML attributes are needed. In analogy
to the function element-name () (see Section 4.3.1) CSSYV¢ introduces two new functions, see
Fig. 4.15:

CSSYE Function: ‘ Semantics:

attribute-name () Yields the name of the currently se-
lected XML attribute.
attribute-value() | Yields the value of the currently se-
lected XML attribute.

Figure 4.15: Transfer of Existing Pseudo-classes to Attribute Rules.

Note that CSS 2.1 already offers the CSS function attr(X) to access the value of a certain
XML attribute (see Section 2.7.1). Nevertheless, this thesis decides in favor of proposing a new
function instead of extending the existing one because of symmetry reasons to the function
name element-name ().

4.3.3 Well-Formedness of Insertions using Attribute Rules

Introducing attribute rules reminds of extending CSS with the insertion of markup (see
Section 4.2): Extending CSS with insertion of markup was not possible without restrictions to
avoid, infinite and, hence, ill-formed insertion. Extending CSS with XML attribute selectors,
however, does not cause recursive insertion.

Recursive insertion (like in Fig. 3.4) is not possible using attribute rules. Indeed XML
attributes and XML elements can be inserted using attribute rules. The inserted attributes,
however, cannot be selected using the same attribute selector because the space for insertion
is either before or after the corresponding XML element, and is, hence, not in the scope of
the same attribute selector. The following example (see Fig. 4.16) illustrates why recursive
insertion is not possible using attribute selectors.

38 CHAPTER 4. HOW CSSN¢ EXTENDS CSS 3

Source (extract): CSS Style Sheet (extract):
1 </publisher> 1 price::before { content:
2 <!-- virtual XML text node --> 2 newElement {
3 <price newElement="euro">65.95</price> 3 content:element (attribute-value(),
4 <!-- virtual XML text node --> 4 "€");
5 | </book> 5 }
6 |}
Intermediary Step (extract): Rendering:
1 </publisher> | €65.95
2 <euro>€</euro>
3 <price newElement="euro">65.95</price>
4 </book>

Figure 4.16: Insertion of XML Elements via Attribute Rule.

The style sheet in Fig. 4.16 applied to the source document on the left side causes the
intermediary step on the lower left side of the figure as follows: The XML element price is
matched by the CSS simple selector price. Afterwards, the attribute selector (newElement)
matches the only attribute newElement of the XML element price. According to the body of
the attribute rule a new element is inserted. The name of the new element is specified by the
value of the currently selected XML attribute newElement. Hence, the XML element euro is
inserted as can be seen in the intermediary step. Since no new attribute can be inserted to
the currently selected XML element price, no recursive attribute can be specified.

CSSNC attribute insertion cannot violate the well-formedness of XML documents but
CSSNE attribute insertion can violate XML validity constraints [BPSMMO0] because an ele-
ment type must not have more than one id attribute specified and values of type idref must
match the Name production, and values of type idrefs must match Names; each Name must
match the value of an id attribute on some element in the XML document; i.e. idref values
must match the value of some ID attribute. However, this is not an issue for the intermediary
step of the CSSNVE rendering process because only well-formedness is needed for the rendering
of the intermediary step.

4.3.4 Open Issues

The specification of XML [BPSMMO00] offers more constructs than XML attributes and XML
elements. Comments, Processing Instructions, CDATA Sections, the prolog and the document
type declaration are not covered in this thesis. Extensions towards visualizing the remaining
constructs that are possible in XML documents can be done analogously introducing new
functions to CSSNC.

4.4 Depth-dependant Styling

Styling depending on breadth is planned in CSS 3 [Bos05]. Tables, for instance, can be styled
using alternating background colors for each line. CSSNC offers in addition styling depending
on the depth of an element in an XML document : The pseudo-class :nth-descendant (An+B)
restricts selections to XML elements having An + B ancestors before them.

4.5. DYNAMIC STYLING GENERALIZED 39

Fig. 4.17 demonstrates the visualization of a highly nested XML document with colors
repeating on every sixth level. On the left side this rendering is realized using CSSV¢ and
alternatively using CSS 3. Due to its depth-dependant styling features, the upper CSSNV¢
style sheet needs only six rules. The CSS 3 style sheet below needs one rule for every level.
Hence, styling in CSS 3 is possible up to a certain depth only as shown on the right side of
Fig. 4.17 using the CSS 3 style sheet on the lower left side of Fig. 4.17.

CSSVC style sheet: Presentation using CSS 3:
3 | nt

1 *x:nth-descendant (6n+1) { background-color: A; } b ikl
2 *:nth-descendant (6n+2) { background-color: B; } f4fmf'd
3 *x:nth-descendant (6n+3) { background-color: C; } &lamernt
4 *:nth-descendant (6n+4) { background-color: D; } lement]
5 *:nth-descendant (6n+5) { background-color: E; } SR
6 *:nth-descendant (6n+6) { background-color: F; } E4EMCW4

[element]
CSS 3 style sheet: element

element

1 * { background-color: A; } I same Cﬂ'lﬂr el
2 | % { background-color: B; } element] A
3 * ok x { background-color: C; } element j
4 R { background-color: D; } element| ‘/‘/}?(
5 * ok ok ok ok { background-color: E; } 1’3f
6 * ok ok ok ok K { background-color: F; } bl
7 clcmrn? /
8 * %k k ok k ok * { background-color: A; } r‘a;;:;ﬁ
9 * ok ok ok Kk ok ok ok { background-color: B; }
10 * ok ok ok ok Kk Kk Kk ok { background-color: C; }
11 * ok ok ok ok ok ok Kk K X { background-color: D; }
12 * % % x % % *x % x * * { background-color: E; }
13 * % * % * * *x x x x *x * { background-color: F; }

Figure 4.17: Depth-dependent Styling.

4.5 Dynamic Styling Generalized

Dynamic styling in CSS 3 is limited to the dynamic pseudo-class :hover. This construct
allows dynamic styling in the local context of the mouse cursor only as demonstrated in
Section 2. This is not sufficient to implement a behavior like folding a tab as demonstrated
in Figure 4.22: when the mouse cursor moves away, the cursor does no longer hover over the
selected XML element, and its tab would be automatically unfolded again.

CSSNC introduces dynamic pseudo-classes for all HTML intrinsic events [ABC*99] such
as onclick. These intrinsic events allow a better differentiation of events, for instance :hover
in CSS 3 can be expressed using : onmouseover and :onmouseout in CSSMC.

Instead of using HTML intrinsic event attributes like for scripting languages, CSSN¢
allows a standalone specification of dynamic styling in separate text files that can be applied
to multiple documents. The following example shows a rather simple dynamic CSSN®
(Fig. 4.18):

rule

a:onclick(10) { background-color: green; }

Figure 4.18: Dynamic CSSN® rule changing the color after 10 clicks on an a element.

40 CHAPTER 4. HOW CSSNG EXTENDS CSS 3

The rule above implements a ‘private’ adaptive hyperlink. After 10 clicks on the hyperlink
the background color changes to green indicating that the link is popular depending on the
so-called history? of the used Web browser.

This extension makes it possible to apply dynamic styling on different sections of an XML
document at the same time. For instance if two hyperlinks were clicked ten times in a Web
page, both will be presented with the different background color.

Similar extensions using HT'ML intrinsic events have already been proposed by the W3C
(see Chapter 5). The following paragraphs introduce to novel capabilities of CSSNC.

Dynamic pseudo-classes like :hover allow dynamic rendering in current CSS (see Section
2.7.4). For offering a more flexible rendering, CSS™M“ extends CSS by the ability to handle
additional input devices and not only the mouse, and CSSV¢ extends CSS by supporting the
selection of more actions of the input devices and not only hovering of the mouse cursor over
an XML element.

4.5.1 Recurrence of Events

In the following, event selectors the parameter RECURRENCE specifies, how often an event
has happened before. All CSSVC dynamic pseudo classes support recurrence patterns as
parameters. In analogy to the structural pseudo-class :nth-child() of CSS 3 (see Section
2.7.3), the parameter RECURRENCE has the same type of arguments of the form (An+B). The
semantics of that argument is as follows: The event selector matches, if there is a natural
number n such that the event has occurred exactly A -n + B times in the past. For instance
the CSSNVC selector *:onclick(3n+1) detects the first, the fourth, the seventh, etc. click on
an arbitrary XML element.

On one hand such recurrence patterns allow to reuse CS rules for folding and un-
folding as demonstrated below. On the other hand recurrence patterns allow to “delay” the
application of rules up until a number of events, for instance clicks, as demonstrated in the
previous section (see adaptive hyperlink above).

SNG

4.5.1.1 Permanent Changes on Rendering

In contrast to the dynamic pseudo-class :hover, the current state of the rendering cannot
be derived from the state of the input device. For instance, if a mouse cursor was hovering
over the rendering of an XML element, it can be derived that the mouse cursor has hovered
at least once over the rendering of the current XML element. However, it cannot be derived
from the state of the mouse, how often this event occurred exactly. Therefore an accumulator
for the rendering of each XML element is needed in the ‘intermediary state’ of the render-
ing process (see Section 3.1). The accumulator counts how often a rendering event already
occurred. Since various events can be specified. An accumulator for each event such as
:onkeydown (KEY,RECURRENCE) or :onmouseover (RECURRENCE) is needed, as demonstrated
exemplarily in the Fig. 4.19.

The XML elements in the lines 1, 2, and 7 in the example contain XML attributes saving,
how often events occurred during a rendering session. The XML attributes consist of a names-
pace event to avoid conflicts with other XML attributes. The name of each XML attribute
of the namespace event corresponds to the exact name of the event such as event:onclick
for the event onclick. Obviously, the attributes stating the number of occurred events are

2Normally, Web browsers save the addresses of visited Web pages in a list called history.

4.5. DYNAMIC STYLING GENERALIZED 41

1 |<trains event:onkeyup="2" event:onclick="5"> <!-- event accumulators -->
2 <train id="ICE788" event:onclick="4"> <!-- event accumulators -->
3 <departure>

4 <station>Munich</station>

5 <time>11:36</time>

6 </departure>

7 <arrival event:onclick="3"> <!-- event accumulators -->
8 <station>Hamburg</station>

9 <time>17:45</time>

10 </arrival>

11

Figure 4.19: Event Accumulators realized using XML attributes having various initial values.

positioned in the ‘intermediary step’ of the XML document wherever an event was performed
on the rendering of the corresponding XML element. Consequently, the initial value of each
such XML attribute (if not stated) is 0. Note that the attribute event: onkeyup is located in
the root XML element because keyboard events cannot be assigned to a specific XML element
in contrast to a mouse click being assigned to the XML element where the mouse cursor is
hovering on.

4.5.1.2 Acyclic Events

Omitting the first part of the argument (An+) allows to specify acyclic events. For instance,
an adaptive link changing its color depending on its usage can be rendered as follows:

1 |hyperlink { color : black; }
2 |hyperlink:onclick(1) { color : green; }
3 |hyperlink:onclick(2) { color : red; }

Figure 4.20: Acyclic Rendering: Adaptive Rendering of a Hyperlink.

The rules in the style sheet above define the rendering of the XML element hyperlink
depending on the number of mouse clicks on the XML element. According to line 1, the stan-
dard rendering displays the hyperlink in black letters. After one click, the font color changes
to green. Finally, after the second click the color changes to red indicating a frequented hy-
perlink. More than two clicks on the rendering of an XML element lets change the appearance
of its rendering according to the static rules or the standard rendering as given by the current
Web browser. (This behavior of CSSV¢ is discussed in Section 4.5.1.4.) If the rendering should
stay the same after more than 2 clicks, a cyclic selector as hyperlink:onclick(1n+3)3.

4.5.1.3 Cyclic Events

Applications like folding and unfolding of XML elements require a cyclic evaluation of events .
For instance, it should be possible to fold and unfold a data item several times (see Chapter 1).
A cyclic matching of events can be defined as follows:

3Note that 1n+3 matches all natural numbers > 2.

42 CHAPTER 4. HOW CSSNG EXTENDS CSS 3

1 |*:onclick(2n+1) > * { display : block; }
2 |*:onclick(2n+2) > * { display : none; 1}

Figure 4.21: Cyclic Rendering: Folding and Unfolding of XML elements.

According to the rule in line 1 of the style sheet above, an XML element is unfolded
(displayed) if an odd number of clicks have been performed on the rendering of the parent
XML element. Analogously, the rule in line 2 folds (displays not) an XML element, if an even
number of mouse clicks have been performed on the parent XML element.

4.5.1.4 Event Interpretation

The proposed extensions on the dynamic pseudo-classes of CSS require a definition of the
evaluation of CSS for events because in current CSS events are not permanent (see Section
2.7.4). In current CSS, XML elements are rendered taking account of the last and, hence, most
specific CSS rule (see Section 2.8). The same principle can be applied to the interpretation
of extended dynamic pseudo-classes as follows: The most specific rule is applied to render an
XML element.

4.5.2 Dynamic Styling Combined

A noticeable feature of the (novel) dynamic pseudo-classes of CSSNC is their compatibility
with CSS 3 combinators, which allow to specify tree patterns.

A CSS 3 selector is an alternating sequence of so-called simple selectors (already informally
introduced in Section 2) and combinators. For instance, the combinator + means that the
simple selector on its left side must be a preceding sibling of the simple selector on the
righthand side. The CSS declaration (in curly braces) is only applied to the XML element
matched by the right most simple selector.

bib

year1994

title|
TCP/IP lllustrated |

author|
i

_year1994
|

I Stevens

Figure 4.22: Unfolded and folded visualization of the XML element title.

The following example implements alternating folding and unfolding for the visualization
of arbitrary (simple selector *) XML elements (see Fig. 4.22). A click on a tab of a visualized
XML element like folds its visualization. Another click on a tab unfolds it (see
in Fig. 4.23):

1 |tab:onclick(2n+1) + * {display:none} Fold on odd number of clicks.
2 |tab:onclick(2n+2) + * {display:block} Unfold on even number of clicks.

Figure 4.23: CSSNC style sheet implementing folding and unfolding in Fig. 4.22.

4.5. DYNAMIC STYLING GENERALIZED 43

In the CSSMC style sheet in Fig. 4.23 it is assumed, that an XML element tab is inserted
before each XML element containing the name of the corresponding XML element (for details
see Sections 4.2 and 4.3). The lefthand selector of the first CSSV rule above is composed of
the two simple selectors tab:onclick(2n+1) and * combined with the CSS 3 combinator, +.
The visualization of an XML element matched by the simple selector * disappears, if a mouse
click was performed on its preceding sibling XML element, which represents its tab and stays
visible.

4.5.3 Extended Input Devices
4.5.3.1 Mouse

Beside the pseudo-class :hover CSSM¢ introduces new dynamic pseudo-classes taking into
account when a viewer clicks on the rendering. For clicking with a mouse button on the ren-
dering of an XML element, the dynamic pseudo-class :onclick (RECURRENCE) is introduced.
The parameter RECURRENCE is introduced in Section 4.5.1 and can be omitted.

The proposed pseudo-class :onclick (RECURRENCE) admits new rendering capabilities.
For instance, the menu items in a navigation tree (such as in Fig. 3.11) can be opened by a
mouse click instead of being opened, if the mouse cursor hovers over it.

Obviously, the pseudo-class :onclick can be applied to hyperlinks. Hence, clicking with
the mouse on a hyperlink that is styled using :onclick triggers a styling process as well as
loading the linked Internet resource. If the current Web page is substituted by a new one, the
dynamic rendering is still accessible via the history of the Web browser. Basically, the two
actions do not conflict because CSS does not allow to render XML elements as hyperlinks.

4.5.3.2 Keyboard

Since in Web browsers such as Mozilla Firefox* or Microsoft Internet Explorer® browsing
can be controlled by keys of the keyboard, too, this thesis proposes to admit changes of the
rendering caused by keys. The new dynamic pseudo-class :onkeydown (KEY,RECURRENCE)
detects if a key is pressed, and the new dynamic pseudo-class :onkeyup (KEY,RECURRENCE)
detects if a key is released.

The parameter KEY defines a single key that activates the selection of the corresponding
dynamic pseudo-class (such as :onkeydown(KEY,RECURRENCE). The type of the parameter
KEY is character. Hence a single letter such as ‘a’ can be the argument. Combinations of keys
could be proposed, too, but are not addressed here. The parameter RECURRENCE is introduced
in Section 4.5.1. It can be omitted.

Unlike with the mouse device, the keyboard can cause conflicts because two buttons can
be pressed at the same time. As discussed above combinations of keys are not possible for
selection in one rule but two different rules can select the state of two different keys (being
pressed or not). Depending on the interpretation of CSS style sheets (see Section 2.8) conflict
resolution depends on the order of rule activation. In this case, the rendering of the rule of
the second key shades the rendering of the rule of the first key.

These two pseudo-classes allow useful specifications of rendering. A key action such as
hitting a key can show all renderings of XML elements on one level of an XML document.

“http://www.mozilla.org/products/firefox/
Shttp:/ /www.microsoft.com /windows/ie/

44 CHAPTER 4. HOW CSSNG EXTENDS CSS 3

1 |*:root { display : block; }
2 |*:root * { display : none; }
3 |*:root:nth-descendant (1) :onkeydown(’1’) { display : block; }
4 |*:root:nth-descendant(2) :onkeydown(’2’) { display : block; 7}
5 |*:root:nth-descendant(3):onkeydown(’3’) { display : block; }
6 |/* ... %/

Figure 4.24: Dynamic Rendering using the Keyboard as Input Device.

The rules in line 1 and 2 of the example in Fig. 4.24 define the static rendering (without
influence of the keyboard) as follows: The root XML element is rendered but all descendant
elements are deleted. According to the rules in lines 3 to 5, only the XML elements on the
level one, two or three are rendered depending on the currently pressed key ‘17, ‘2°) or ‘3’.

The three dots in line 6 of the style sheet remind of ‘Styling depending on depth’ (see
Fig. 3.10) and ‘Visualization of Markup’ (see Fig. 3.8) because the depth of the source doc-
ument can be higher by comparison to the rules defined in the style sheet. However, the
number of keys on the keyboard is limited, too. Therefore this thesis decides in favor of not
proposing a generic function to bind a key to a corresponding level in the document tree.

Note that the scope of keyboard events is the whole rendering of the source document.
Hence, if a key event happens, the corresponding rules apply to all matching XML elements
of the source document. In contrast, the mouse events introduced in the latter section refer
to the XML elements in the scope of the mouse cursor.

The proposed pseudo-class : onkeyup (KEY ,RECURRENCE) allows to define a rendering sim-
ilar to the CSS pseudo-element ::visited (see Section 2.7.1). Data items that have been
folded and unfolded can be marked as visited, e.g., using another color.

4.6 Structure-independent Selection

CSS 3 allows to constrain selections of XML elements using combinators as introduced in
Section 2.5. The following combinators or in other words structural relations between XML
elements are offered: descendant, child, and following sibling.

However, the support of combinators in CSS 3 is not sufficient for use cases, e.g., given in
the introductory chapter. Fig. 1.8 demonstrates how side-notes can be used to superimpose
information related to the current text. Obviously, the combinators of CSS 3 can specify the
rendering of side-notes being in a descendent, in a child or in a following sibling relation.
However, side-notes that are referred from several text portions cannot be implemented.

CSSNC introduces the new combinator ? , pronounced then. This novel combinator
allows selections independent of structural relations. Like the selectors of CSS 3 it is an infix
selector of the form a 7 b. If the lefthand part (a) was matched then the righthand part
will be evaluated. The following example demonstrates this new combinator:

The example on the lefthand side of Fig. 4.25 demonstrates static selection using the ?
selector. The CSSMC rule implements support for developing XHTML documents. During
the development process text portions can be marked using a CSS class called todo. For
instance, if a paragraph is not finished yet, the opening tag could be <p class="todo">. If
such a class is matched by the left part of the CSSM¢ rule, all indicator XHTML elements

4.6. STRUCTURE-INDEPENDENT SELECTION 45

Static rendering example: Dynamic rendering example:
.todo ? .ready { .sidenote-ref:hover ? .sidenote {
background-color: red; } display: block; }

Figure 4.25: The CSSN® combinator ?.

like ready are marked red. This indicates that an unfinished
part is still existing in the document.

The example on the righthand side of Fig. 4.25 demonstrates dynamic selection using the
7 selector. If the mouse-cursor hovers over a reference to a side-note (marked by the class
sidenote-ref), its side-note (marked by the class sidenote) is superimposed immediately.

A strength of the ? combinator is that the selection is directed. An approach considered
in [Wie05] called panorama and monorama allowed only bidirectional selections as in the
following example: .side-note(panorama):hover { ... }. This rule selected all XML
elements belonging to the class sidenote. This turned out to be a problem. While su-
perimposing a side-note by hovering over an XML element of the class sidenote could be
easily specified, hiding side-notes affected also the references to side-notes. As consequence,
side-notes could be superimposed only once because the reference was not visible anymore.
However, the 7 combinator allows also such selections by repeating the simple-selector as
follows: sidenote:hover ? sidenote { ... }. This technique works because of the cas-
cading feature of CSS. The righthand simple selector of the example matches a sidenote,
even if the mouse-cursor is hovering over it.

A drawback of the ? combinator is that the lefthand side and the righthand side cannot
be connected, e.g. using variable bindings, for offering more generic selections. This is a
deliberate restriction with a view to keep CSS™V¢ simple. In our side-note example this
means that a CSSVC rule for each side-note is needed.

46

CHAPTER 4. HOW CSSNG EXTENDS CSS 3

CHAPTER
FIVE

Related Extensions to CSS

This chapter introduces approaches related to CSSN, which achieve dynamic rendering fea-

tures in Web-browsers. The described extensions related to CSSV afford dynamic styling for
XML data. Plug-in technologies like Macromedia Flash!, Shockwave?, or Apple Quicktime?,
which are widespread used for providing dynamic Web sites, lie beyond the scope of this
thesis. These technologies provide own approaches with their own rendering engines different
from a Web browser.

5.1 Dynamic HTML (DHTML)

Dynamic HTML is a buzzword of the industry subsuming the combination of HTML data,
scripting languages, and DOM [HHW00]. In practice, scripting languages supporting the
DOM interface to XML documents like ECMA Script [ECM99] are used to obtain dynamic
rendering features as demonstrated in the following example:

1 <html><body>
2 Change my : . -
Datei Bearbeiten Ansicht Gehe
3 \
4 color! Change my c&lc&{f
5 </body></html> ..--"lIF "‘h.

Figure 5.1: Changing the text color in HTML on mouse click to red using ECMA-script.

In the example in Fig. 5.1 the HTML so-called intrinsic event attribute [ABC*99] onclick
is used to install an event listener to the XML element span. The value of the attribute
onclick is ECMA Script code using the DOM interface. In this case the text color is set to
red on mouse click.

Obviously, this technique is very powerful because

"http://macromedia.com/software/flash/flashpro/?promoid=BINT
2http://www.shockwave . com/
3http://www.apple.com/quicktime/

47

http://macromedia.com/software/flash/flashpro/?promoid=BINT
http://www.shockwave.com/
http://www.apple.com/quicktime/

48 CHAPTER 5. RELATED EXTENSIONS TO CSS

e HTML intrinsic event elements (onmouseover, onkeypress, etc.) offer rich support for
keyboard and mouse events,

e ECMA-Script is a Turing-complete programming language, and
e the DOM interface allows to change XML documents arbitrarily.

The scripting approach has several drawbacks.

As a first problem, a standard interface for styling HTML exists but there is no standard
styling interface for XML data to the best of the author’s knowledge. In HTML so-called
Intrinsic HTML attributes can appear in the context of an HTML element. In XML, there is
a fallback construct for such cases called processing instructions (PI). Such Pls allow to link
external technologies to XML documents. However, evaluating Pls is sparsely supported in
Web browsers.

As a second problem, dynamic styling encoded in an HTML intrinsic event attribute is
quasi interwoven with the HTML content making maintenance difficult. In practice such
DHTML Web pages are therefore often generated using proprietary approaches. Use cases
like coloring each span element, if it is clicked would be hard to implement without gen-
erating DHTML Web pages because query language like XPath [CD99] are not part of the
DHTML technologies. Hence querying always means programming scripts using DOM instead
of writing declarative queries?.

As a third problem DOM turns out to be not suitable for accessing XML data in order to
achieve dynamic document rendering. The granularity of DOM is too fine. DOM supports
more than ten so-called nodes ranging from an XML element up to a text node, that need
to be considered in scripts. For instance, inserting whitespace between two adjacent XML
elements means inserting a new DOM text node. Hence, the position of the second XML
element as a DOM child node is increased. Such effects make programming correct queries
rather difficult.

As a forth problem another difficulty of DHTML is, that software producers tend to
support their own interface to XML documents. The following table® shows a comparison
of functions of the W3C DOM interface and their Microsoft counterparts. Obviously, such
differences complicate providing interoperable DHTML pages on arbitrary Web browsers in
practice.

Method or property ‘ IE5 Win IE 6 Win IE 5.2 Mac Mozilla 1.75 Safari 1.3

insertRule() (W3C) | No No error Yes No
addRule () (MS) | Yes Yes No No No
deleteRule() (W3C) | No No No Yes No
removeRule() (MS) | Yes Yes No No No

Figure 5.2: Support of selected functions of the DOM interface and their Microsoft counter-
parts in Web browsers.

The DHTML approach can express everything CSS™V¢ can and much more but according
to the problems discussed above CSSNVE provides

4This restriction is by-passed in the prototypical CSSMY engine in Chapter 6 by an XPath processor
implemented in ECMA-Script.
Shttp://www.quirksmode.org/

http://www.quirksmode.org/

5.2. ACTION SHEETS 49

e a standard interface for styling XML documents,
e separation of content from static and dynamic design, and
e declarative styling rules that can be adopted rather easily

The freedom of DHTML to calculate also complex styling problems in terms of computability
is bought dearly: DHTML styling specifications are rather hard to implement and to maintain
by comparison to CSSNVE style sheets specifying the same styling.

5.2 Action Sheets

Action Sheets [AEGR98]| eliminate some of the drawbacks of the DHTML approach. Ac-
tion Sheets provide a mechanism for separating or in other words factoring out event-based
behavior from the structure of HTML and XML documents. This is similar to the way in
which style sheets provide a separation between visual presentation properties and document
structure. This concept allows a document author to introduce script-based event handling
into an XML document, without modifying the document.

The following example gives an impression of Action Sheets. The example is taken from
the specification of Action Sheets and is re-implemented using CSSNC.

Action Sheets:

1 |<!DOCTYPE actionsheet SYSTEM "asheet.dtd" [] >
2 |<actionsheet>
3 <action type="text/css" codetype="text/javascript">
4 .collapsible { onClick: "changeVisibility(event)" }
5 </action>
6
7 <script type="text/javascript">
8 function changeVisibility(event) {
9 var list = event.target.nextSibling;
10 var style = list.style;
11 if (style.display == "none")
12 style.display = "block";
13 else
14 style.display = "none";
15 }
16 </script>
17 | </actionsheet>
CSSNG;
1 | .collapsible:onclick(2n+1) + * { display: none; }
2 |.collapsible:onclick(2n+2) + * { display: block; }

Figure 5.3: Collapsible List Use Case of Action Sheets re-implemented in CSSNC.

50 CHAPTER 5. RELATED EXTENSIONS TO CSS

The Action Sheet in Fig. 5.3 lets fold or unfold the next sibling of an XML element being
part of the class collapsible. Like in the DHTML approach, scripting in combination with
the DOM interface is used to achieve dynamic document rendering features. One of the main
drawbacks of the DHTML approach is eliminated by using the CSS selector mechanism in
line 4 of the Action Sheet in Fig. 5.3. The approach is still very expressive but at the same
time it is still quite difficult to read the code.

The Action Sheet example is re-implemented using CSSMY below. Only two lines of
code are needed to provide the same dynamic styling. This comparison is not fair in some
sense because specialized languages can offer concise constructs because of their restrictions.
However, CSSNC provides concise constructs for many requirements in the practice of dynamic
styling, and moreover offers a scripting interface via markup insertion (see Section 4.2).

One strength of CSSN becomes clearly visible in the example above. Dynamic selec-
tors (using :onmouseclick) can be combined in CSSVY. Rather complex workarounds as
implemented in the Action Sheet function changeVisibility are not needed here.

5.3 Behavioral Extension to CSS

The so-called Behavioral Extension to CSS [AGW99] , a derivative of Action Sheets [AEGR98],
is a proposal for extending CSS toward dynamic styling features. Like in the Action Sheet
approach the main idea is to separate scripts from content using the selector mechanism of
CSS. The novelty of the Behavioral Extension to CSS approach is to specify events in the
declaration of a CSS rule.

Rather simple dynamic tree patterns of CSSVY, as demonstrated in Section 4.5.2, can
only be simulated in the Behavioral Extension of CSS using rather complicated scripts. The
following use case of Behavioral Extension of CSS is taken from the working draft of the W3C:

Behavioral Extension of CSS: CSSNG,

1 .Rollover { 1 .Rollover {

2 border : thin solid blue; 2 border:thin solid blue;}
3 onmouseover: "this.src= 3 .Rollover:onmouseover {
4 this.getAttribute(’oversrc’); 4 borderColor:red; }

5 this.style.borderColor= ’red’; 5 .Rollover:onmouseout {
6 statusText.data= 6 borderColor:blue; }

7 this.getAttribute(’status’);"

8 onmouseout : "this.src=

9 this.getAttribute(’outsrc’);

10 this.style.borderColor= ’blue’;

11 statusText.data= ’’;" }

Figure 5.4: Comparing the Behavioral Extension of CSS and CSSVC.

The right side of the example above shows a CSSN® style sheet that re-implements the
style sheet implemented with the Behavioral Extension of CSS on the left side. This example
demonstrates how scripting, which is also possible in CSSN® via insertion of markup, can be
avoided in many use cases (see [Wie05] for more use cases).

CHAPTER
SIX

Prototype of a CSSV engine

6.1 Requirements

The prototypical CSSNC engine is designed according to requirements stated in this section.
The main goal of the prototype is to provide a proof-of-concept implementation of CSSNG,
which can serve for demonstrating CSSVY. The prototype of a CSSV¢ engine is supposed to
process a CSSNC style sheet and an XML or HTML document for rendering issues.

For reducing implementation effort and for allowing demonstrations on various operat-
ing systems, the prototype is supposed to draw on established and widespread open source
technologies. Since CSSNE does not provide new “graphical features” like new borders or
transparent shapes, the CSSVY prototype can draw on an existing rendering engine.

The focus of the prototype is not to provide an efficient implementation of the CSSN¢
engine. Therefore there are no peculiar requirements concerning memory or response time of
the CSSNE engine.

In fact, the challenge of the prototype is to develop a system that can be easily maintained
and that is robust to unexpected changes caused by adjustments of the CSSVC language.
Convenient tools and data structures for debugging issues are indispensable.

6.2 Implementation of the CSSY® Prototype

This section discusses alternative ways of extending a Web browser and its rendering engine
toward interpreting static and dynamic extensions of CSS such as proposed in this thesis.
Basically, two ways of extending a Web browser are possible: Extending the code of a ren-
dering engine or influencing the output of a Web browser by using a scripting language such
as ECMA script. Each of these alternatives is suited for different purposes as follows.

6.2.1 Modifying an Existing Rendering Engine toward CSSV¢

Changing the rendering engine of a Web browser assumes that its source code is available and
can be compiled. The source code of proprietary Web browsers like the Microsoft Internet
Explorer is usually not available and, therefore, such rendering engines are not amenable to
our extensions. Open source browsers like the Mozilla Web browser or the Konqueror of KDE,
however, can be extended in that way.

o1

92 CHAPTER 6. PROTOTYPE OF A CSSNY ENGINE

The following tables give a review on current proprietary (see Fig. 6.1) and open source
(see Fig. 6.2) rendering engines and their usage in Web browsers:

Rendering Engine: Web browser:

Trident for Internet Explorer on Windows
Tasman for Internet Explorer on Macintosh
Presto for Opera 7 and above, Macromedia Dreamweaver MX and above,

and Adobe Creative Suite 2
Figure 6.1: Proprietary and, hence, ineligible technologies.

The following technologies are open source software and are therefore basically suitable
for extensions of the source code:

Rendering Engine: Web browser:

Gecko for Firefox, Camino, Mozilla Application Suite, and other Gecko-
based browsers

Amaya experimental rendering engine of the W3C

WebCore for Safari and OmniWeb based on KHTML

GtkHTML rendering/editing library to be easily embedded into applica-
tions that require lightweight HTML functionality and based on
KHTML

KHTML for Konqueror

Swing rendering engine for Java applications

Figure 6.2: Open source rendering engines.

Gecko implements CSS 2.1 and parts of CSS 3. This rendering engine is implemented
in C4++ and, hence, it can be used on many operating systems such as Windows, Linux,
and Mac OS. The source code is almost not commented and the documentation on the CSS
rendering engine is outdated since March 2002. Furthermore, problems in the source code
especially concerning dynamic rendering are known. Those structural problems of the source
code are meant to be solved in one of the next versions' . According to the documentation,
the implementation of the dynamic styling

is probably the biggest flaw in the design of this part of the system?.

Due to several optimizations concerning the rendering process, the source code is hard to
understand.

Amaya is an experimental Web browser of the W3C. It is used as sandbox to develop
new standards and languages by the W3C. For instance, many languages such as SVG or
MathML were available in Amaya at first. The source code is written in C+-+. The structure
of the code seems to be quite clear. Tests, however, showed that some CSS properties are not
correctly implemented. In order to extend Amaya its code would need a revision concerning
the standard of CSS 2.1.

WebCore and GtkHTML are based on KHTML, which is the rendering engine of KDE3.
Therefore, both rendering engines are subsumed in this paragraph. KHTML is implemented

"http://www.heise.de/newsticker/result.xhtml?url=/newsticker/meldung/66968&words=Gecko
2http://www.mozilla.org/newlayout/doc/style-system.html
Shttp://www.kde.org

http://www.heise.de/newsticker/result.xhtml?url=/newsticker/meldung/66968&words=Gecko
http://www.mozilla.org/newlayout/doc/style-system.html
http://www.kde.org

6.2. IMPLEMENTATION OF THE CSSN¢ PROTOTYPE 93

in C++ and supports CSS 2.1. Furthermore, major parts of CSS 3 such as most of the
selectors are supported. The source code is well documented and seems to be well suited for
programming extensions. Since KHTML is based on KDE, it needs a common X Window
environment®, and can be ported to any operating system having a C++ compiler.

Java Swing® offers an HTML rendering engine, which can be used in most operating
systems. CSS is supported, too, but only in version 1. An implementation of the extensions
proposed in this thesis would require for an implementation of many features of CSS 2.1 and
CSS 3 such as dynamic pseudo-classes because many of the extensions are based on CSS 2.1
and CSS 3.

The author is convinced that extending the implementation of KHTML is the best choice,
if deciding in favor of implementing the extension toward CSS directly in a Web browser
for the following reasons: The time needed to become acquainted with the source code of
KHTML seems to be the shortest by comparison to the other engines listed above. Since
(to the best of the author’s knowledge) no other rendering engine provides better support
of CSS 3, the implementation of the extensions can be based on existing code easily and
therefore save much implementation effort.

Extending one of the rendering engines mentioned above toward our static and dynamic
extensions of CSS yields a proof of concept and provides with a software that is suitable for the
purpose of demonstrations. Much time, however, is needed for recognizing the existing source
code to find the interfaces for extensions. Experiences in the field of Software Engineering
showed that recognizing foreign code takes 4/5 of the time in a software project. Another
disadvantage is the lack of interoperability as follows: Since Web browsers are using different
rendering engines, an implementation of our extensions cannot be used in other Web browsers.

6.2.2 Using DHTML for extending a Web browser toward CSSV¢

An alternative to extending the rendering engine of a Web browser directly, is to use a scripting
language such as ECMA script, while the implementation of the used Web browser stays the
same. In other words, DHTML is an alternative approach to extending a Web browser toward
dynamic document rendering features.

Obviously, it is assumed that an implementation of the same scripting language is available
in all Web browsers. Since all of the technologies discussed in the latter section offer an ECMA
script implementation, an implementation of the extensions offers higher interoperability by
comparison to a direct implementation.

As consequence, proprietary Web browsers like the Microsoft Internet Explorer can profit
from our extensions. Furthermore this alternative is well suited for rapid prototyping because
the source code does not need to be compiled. The time for implementing our extensions that
way is most likely significantly shorter because no foreign source code needs to be recognized
in advance.

An implementation of our extensions using ECMA script in a Web browser can be realized
in several stages as follows. Obviously, the style sheet of a Web page needs to be transformed
to a version of CSS supported by the Web browser in order to be interpreted correctly. Our
extensions can be classified into the following groups:

e Extensions needing a source-to-source transformation from CSSN¢ to current CSS only.

“http://www.x.org/
Shttp://java.sun.com/products/jfc/tsc/articles/index.html

http://www.x.org/
http://java.sun.com/products/jfc/tsc/articles/index.html

54 CHAPTER 6. PROTOTYPE OF A CSSNY ENGINE

e Extensions needing CSS source-to-source transformation and a change of the source
document.

e Extensions needing CSS source-to-source transformation and the ECMA script event
model.

e Extensions needing changes on the CSS style sheet, the source document, and the event
model of ECMA script.

6.2.3 Choice of Technologies for the CSSV“ engine

For achieving the goals of the project as declared in Section 6.1, the author decided in favor of
implementing the prototypical CSSNE engine according to the DHTML approach (see Section
6.2.2. The main reasons for this decision are

e platform independence,
e support for rapid-prototyping, and

e longevity.

The point longevity aims at the rather fast development in software engineering. In
particular the implementation of Web browsers needs to be changed very often mainly because
of security reasons. The CSSNC prototype implemented for the specific version of a Web
browser would most likely be outdated soon.

This approach also offers good opportunities for debugging, if using the Mozilla Firefox
Web browser. Firefox offers an extension facility where the Java Script Debugger Venkman®
can be plugged in. Furthermore Firefox has a Java Script console providing a user interface
for error messages and for interpreting single lines of code. A third factor making Firefox a
good choice is the so-called DOM inspector, which allows to examine changes on the DOM
tree of a document rendered in a browser’. Finally, Firefox is reckoned as respecting W3C
standards.

It is self-evident, that using DHTML for the CSSV¢ engine requires pre-processing of
the input document of the engine and of the CSSNC style sheet. Since the input document
is always in XML format, standard W3C processors can be used for pre-processing. The
standard technologies of the W3C concerning XML transformations are XSLT [Cla01] and
XQuery [BCFT05]. Certainly both technologies are appropriate to master the requirements
in this project. However, XSLT has the advantage that its template mechanism allows for im-
plementing transformations that are rather similar to the cascading feature of CSS, therefore
XSLT was chosen.

XSLT processors are implemented in many programming languages but in particular in
Java and C++. Since XSLT programs do not depend on the implementing language of the
XSLT processor, the choice of the XSLT processor is of little importance. However, an XSLT
processor implemented in Java allows an easy client-side adoption of XSLT processing using
a so-called Java Applet®. Hence, the CSSVE engine could run server-side and client-side.

Shttp://www.mozilla.org/projects/venkman/
"Note that the changes on the DOM tree in a Web browser do change the rendered document
8http://java.sun.com/applets/

http://www.mozilla.org/projects/venkman/
http://java.sun.com/applets/

6.3. ARCHITECTURE 95

Tests using the upcoming AJAX technology implementing XPath, XSLT, and DOM in
ECMA Script failed. The author tested the AJAX frameworks Sarissa 0.9.6° and Google
AJAXSLT! . Needed functionalities of XSLT were not correctly implemented. However, a
stable implementation of AJAX would be a good choice for implementing a CSSV¢ engine.

In contrast to the input document of a CSSN® engine, the CSSVC style sheet cannot be
processed using W3C technology because it is not provided in XML format. Section 6.3.1
and 6.3.2 introduce to the translation of plain text from the W3C’s point of view to XML.
For simplicity reasons the choice of the concerning technologies is discussed there.

6.3 Architecture

The CSSVE extension of CSS 3 is planned and implemented for proving the concept of CSSVNC.
Therefore we draw on established components for getting a transparent and easily scalable
prototype instead of implementing a high-performance extension of a single Web browser.

gNe Parser} | Configurator Styler-Generator Web browser

CSS-NG Abstract Styler T e
Style Sheet Syntax Tree Configuration \/I: E

' Relfler Meta-Initializer Styler
h XML- Input™ N XHTML-Input p Unstyled Document :
_ Document , Document o ZStV'Ed Documenty =
-~ I T T T -

Figure 6.3: CSSVE styling of an X(HT)ML document and rendering.

This system compiles XHTML as well as XML ‘Input Documents’ according to rules in
‘CSSNC style sheets’ for rendering in standard Web browsers such as Mozilla Firefox ' or
MS Internet Explorer 2

The upper row in Fig. 6.3 manages the compilation of an input ‘CSSVE Style Sheet’ to
a ‘Styler’ (see Section 6.3.4). On the lower row, this ‘Styler’ is responsible for compiling a
preprocessed (see Input Preprocessing below) ‘XML input document’ to a ‘Styled Document’
that can be rendered by the Web browser. All further dynamic styling activities such as trig-
gered by mouse clicks in a Web browser window update meta-data of the ‘Styled Document’.
Changes on these meta-data are evaluated by the ‘Styler’ and are finally rendered by the Web
browser. The following sections address the components of the CSSNE prototype in detail.

6.3.1 CSSM¢ Lexer

The Lexer lexer of the CSSNE prototype is based on the specification of CSS 2.1'3. Since
the specification of CSS 3 is almost finished but not yet stable and the CSS 3 grammar is very

http://sourceforge.net/projects/sarissa
Ohttp://goog-ajaxslt.sourceforge.net/
"http://www.mozilla.com/firefox/
2http://www.microsoft.com/windows/ie/default .mspx
Bhttp://www.w3.org/TR/CSS21/grammar . html

http://sourceforge.net/projects/sarissa
http://goog-ajaxslt.sourceforge.net/
http://www.mozilla.com/firefox/
http://www.microsoft.com/windows/ie/default.mspx
http://www.w3.org/TR/CSS21/grammar.html

o6 CHAPTER 6. PROTOTYPE OF A CSSNY ENGINE

complex, this thesis extends the grammar of CSS 2.1 toward CSS™VC constructs. However, all

needed CSS 3 features for the use cases are embedded in the grammar of CSSNC.

The CSS 2.1 grammar is supposed to use a Flexible Lexical Scanner (Flex)'* syntax.
When trying to compile the W3C specification using JFlex ' it turned out that the CSS 2.1
grammar needed to be modified for the needs of JFlex as described in Fig. 6.4. The lack of
documentation made these differences hard to discover. Examining the source code of JFlex
was the only chance to compensate the missing documentation. See Appendix A.1 for the
complete Lexer specification.

Semantic H Flex ‘ JFlex

Case sensitivity %hoption case-insensitive | jignorecase
Separation of head and body of rules || white space =

Escaping of quotes \\" \"

Figure 6.4: Flex vs. JFlex syntax.

JFlex was chosen instead of the original implementation Flex because it is implemented
in Java. In the context of Web browsers this is an advantage because Java programs can be
used easily as client software wrapped in so-called Java Applets.

Only few new tokens needed to be inserted in the existing specification of the CSS 2.1
specification. All extensions are marked via comments in Appendix A.1. For debugging
purposes all tokens of the CSSNC lexer yield values in contrast to the original CSS 2.1 lexer.

6.3.2 CSSM¢ Parser

[CSSNG Parser] Configurator Styler-Generator Web browser
CSS-NG Abstract Styler ‘
Style Sheet Syntax Tree Configuration VL
' Reifier Styler
N XML-input™
, 'Document ,

Figure 6.5: CSSNY Parser with implicit lexer.

Analogous to the CSSNVC lexer the design of the CSSNC parser tries to stay as close
as possible to the W3C standards for writing specifications. Therefore, this thesis uses a
Yacc Parser whose extended syntax was used to specify the CSS 2.1 grammar (Code given
in Section A.2). The extensions of the Yacc syntax used by the W3C are analogous to the
extensions of the Extended Backus-Naur Form (EBNF) to the standard Backus-Naur form.
These extensions allow for a more concise description of the CSS 2.1 grammar.

It was not possible to take over grammars of open source rendering engines of standard
Web browsers like Gecko or KHTML because the grammars diverge from the standard W3C
grammar for CSS.

Mhttp://dinosaur. compilertools.net/
Bhttp://www. jflex.de

http://dinosaur.compilertools.net/
http://www.jflex.de

6.3. ARCHITECTURE o7

6.3.2.1 Translation of the CSS Grammar to Yacc syntax

Since Yacc only supports BNF constructs, the CSS 2.1 grammar needed to be translated to
BNF. Hence the following EBNF constructs needed to be re-implemented by BNF constructs:

e *: () or more

1 Sx
e +: 1 or more 2 15 implemented by
3 |s_star
e 7:0orl 4 : /* empty */
) 5 | /* recursion */ s_star S
e [1: grouping

Figure 6.6: Translation of EBNF in BNF.

The example on the right side of Fig. 6.6 exemplarily shows how an EBNF expression is
translated to BNF. The plus operator (+) is analogously implemented having the symbol itself
as base case (in this case 8). The question mark is another modification of the example in
Fig. 6.6 offering no recursion (S instead of s_star S). The grouping construct of the CSS 2.1
grammar is implemented by factoring out the content of a group being in brackets to new
rules.

For a better orientation the new rules have generic names denoting their origin and details
of the reason for the new rule. For instance the rule with the head import_ext2opt implements
an optional non-terminal (lower case) import being the second new rule in the context of
the origin rule body of import. Additionally to opt, the keywords plus for + and paren for
grouping are used. Nested EBNF constructions are implemented using nested extensions to
non-terminals such as import_ext2opt_extlstar. New rules are always placed indented after
their origin rule except if the terminals and non-terminals are very often used. Rules for often
used terminals and non-terminals are placed after the CSS 2.1 grammar. The extensions to
the CSS 2.1 grammar can be found in the end of the specification. Obviously, these extensions
are linked in the original CSS 2.1 grammar.

Note that control characters of XML like < or > are escaped during the parsing process.

6.3.2.2 Abstract Syntax Tree (AST)

The CSSMC Parser generates a so-called Abstract Syntax Tree (AST) . This tree is the
first representation of the CSSNE style sheet in XML format. The grammar of the AST
corresponds to the grammar of CSSVC. Terminals and non-terminals are represented by
equally named XML elements. Obviously, non-terminals are represented by XML elements
having non-terminals or terminals as children. Terminals at the end of a branch in the AST
have the corresponding content from the former CSSN& style sheet. In other words, without
the XML elements the AST looks like the former CSSVC style sheet.

This technique is rather convenient for developing such a prototype especially because the
CSS 2.1-based CSSME grammar has oddities like white space being a token. The resulting
AST from a parsing process can be debugged easily. For a highly efficient implementation of
the CSSNE modern table-based techniques need to be used.

An example of the input and the output of such a parsing process can be seen in the
following Fig. 6.7:

o8

Part of a CSSVC style sheet:

1

CHAPTER 6. PROTOTYPE OF A CSSNY ENGINE

Abstract Syntax Tree:

. background-color: ... T I
2 |<declaration>
3 <property>
4 <IDENT>background-color</IDENT>
5 </property>

6 <COLON>:</COLON>

Figure 6.7: Parsing of a part of a CSSNC style sheet to an AST.

6.3.3 Configurator

NG

Parser Configurator

>s

CSS-NG Abstract
tyle Sheet Syntax Tree

Styler
Configuration

XML- Input
Document/

7/

Meta-Initializer Styler
- Unstyled Document »
Event >

Styler-Generator Web browser

e

ZSterd Document > s

Figure 6.8: Configurator.

The Configurator is a preprocessor generating a human-readable representation of a
CSSNE Abstract Syntax Tree. The resulting Styler Configuration (Code given in Appendix
A.3) is used to generate a transformation that applies the CSSM¢ style-sheet to an XHTML

document (or a reified XML document).

The structure of the Styler Configuration (see Fig. 6.9) is similar to the structure of a
CSSME style sheet. The root XML element stylesheet has a list of rules as children. Each
rule offers structured styling information, which are optimized for the configuration of the

Styler.

<?xml version="1.0" encoding="IS0-8859-1"7>
<stylesheet>
<rule>
<selector> ... </selector>
<declaration> ... </declaration>
<insert type=" ... "> ... </insert>
</rule>
</stylesheet>

Figure 6.9: Main Structure of a Style Configuration.

6.3. ARCHITECTURE 99

6.3.3.1 Translation of CSS"VC selectors to XPath

One of the major tasks of the Configurator is translating CSS selectors to XPath'®. Such
XPath selectors are needed for the Styler component of the prototype. This Styler checks for
each XHTML element of its input document whether a CSS™M¢ rule needs to be applied or
not.

CSS selectors are very similar by comparison to XPath expressions. A translation is
therefore rather simple as the following table demonstrates.

CSS Selector: XPath expression:

alatt="x"] al@att=’x"]

.folded *[Qclass=’folded’]

#42 *[@id="42"]

#42[att="x"] *[@att="x’ and @id=’42’]
ab a/descendant: :b

a>b a/child::b

a+hb a/following-sibling::b

Figure 6.10: Translation of CSS selectors to XPath expressions.

For efficiency reasons the Styler, while checking XML elements for matching CSSNE rules,
does not evaluate XPath expressions from the root of the document. Each XML element is
checked locally during a traversal of the Styler through the complete input document. Hence,
the XPath expressions needed for the Styler needed to be “flipped”. Such a flip affects only
the CSS combinators in the second part of the table in Fig. 6.10. CSS combinators are simply
translated to the reverse XPath axis and the order of simple selectors and combinators is
reversed as follows:

CSS Selector: XPath expression:

ab self::b[anchestor::a]

a>b self::b[parent: :a]

a+b self::b[preceding-sibling: :al]
abc self::c[anchestor: :b/anchestor: :a]

Figure 6.11: Translation of CSS selectors to XPath expressions.

6.3.3.2 Declaration

The declaration XML element is not specially structured. It contains the declaration as
provided by the CSSMNC style sheet with one exception: The specification of markup inser-
tion (see Section 6.3.3.3) is separated from the declaration part of a CSSNY in the Styler
Configuration. This design decision separates declarations that cannot be interpreted by a
standard Web browser from standard CSS 3 declarations. The example in Fig. 6.12 shows
the representation of a rather simple CSSN® rule in the Styler Configuration format.

The CSSYE combinator ? can not be translated to XPath.

60 CHAPTER 6. PROTOTYPE OF A CSSNY ENGINE

1 |* { color:red; background-color:green }

2 15 represented by
3 |<?xml version="1.0" encoding="IS0-8859-1"7>

4 |<stylesheet>

5 <rule>

6 <selector>self::xhtml:*</selector>

7 <declaration>color:red;background-color:green</declaration>
8 </rule>

9 |</stylesheet>

Figure 6.12: Rather simple CSSN® rule represented in Styler Configuration Format.

6.3.3.3 Markup-Insertion

Markup Insertion is a bit complex by comparison to the specification of the declaration.
First of all, the position of the insertion before or after an XHTML element is specified by a
conforming value of the XML attribute type (see Fig. 6.13). Markup that does not depend
on the input X(HT)ML document of the CSSV¢ engine like the XHTML div element in
Fig. 6.13 is directly materialized in the Styler Configuration.

Other markup insertions depend on the input document as caused by the CSSNE function
element-name, attribute-name, and attribute-value. Such insertions are encoded using
XML elements as place-holders, which are specially translated by the Styler-Generator.

1 *::before { content: element("div",

2 attribute("class", "tab"),
3 element-name()); }
4 1s represented by

5 |<?xml version="1.0" encoding="IS0-8859-1"7>
6 |<stylesheet>

7 <rule>

8 <selector>self: :xhtml:*</selector>

9 <declaration/>

10 <insert type="before'">

11 <div xmlns="http://www.w3.o0rg/1999/xhtml" xhtml:class="tab">
12 <ELEMENT_NAME xmlns=""/>

13 </div>

14 </insert>

15 </rule>

16 | </stylesheet>

Figure 6.13: Insertion of tabs.

6.3. ARCHITECTURE 61

6.3.4 Styler-Generator

(CSSNG Parser) | Configurator Styler-Generator Web browser

Styler

CSS-NG Abstract
Style Sheet Syntax Tree Configuration VI:

Styler

XML-Input”
Document/

y

Figure 6.14: Styler-Generator.

According to Fig. 6.3 the next logical step is the Styler-Generator (Code given in Appendix
A.4). Since this processor is conceptually rather complex, we give a brief introduction to the
output of the Styler-Generator to give a more gentle access to this complex topic.

The Styler is a processor applying styling declarations of a CSSNC style sheet to an
X(HT)ML input document. Hence, there is no generic Styler for all CSS™V style sheets.
Depending on the CSSVE the Styler is generated but can be applied without restriction to
arbitrary XHTML documents.

During a styling process each XHTML element is visited in XML document order (see
[BPSMMO00]). Now, for each rule of the CSSVC style sheet is tested whether its selector
matches the element. If the selector matches the current XHTML element, the rule declaration
of the CSSNVE rule is appended to the value of the XHTML style attribute of the element.
Hence, former declarations are not lost but regarded in the styling process via the cascading
feature of CSSVC.

The content of the style attribute of an XHTML element describes its current styling.
Inactive styling declarations depending on events are only inserted, if required. Such dynamic
styling information is encoded in special meta-data.

Fig. 6.3 implies that the Styler-Generation is a special transformation. Like the other
transformations in the diagram the Styler-Generator has an XML input stream that is trans-
formed. The anomaly is the output. The output is also XML data but this XML data is a
transformer itself. That makes the Styler Generator a kind of compiler compiler.

6.3.5 Reifier: Representing XML in XHTML

(ghG Parser Configurator Styler-Generator Web browser
CSS-NG Abstract Styler :
Style Sheet Syntax Tree Configuration \/I:
L Relfler | Meta-Initializer Styler

N XML- Input N XHTML-Input 2 Unstyled Document
b Styled Document
Document , Document :
[— Event e
—— ————]

Figure 6.15: Reifier.

62 CHAPTER 6. PROTOTYPE OF A CSSNY ENGINE

Since standard Web browsers generally do not offer rendering of XML data and further-
more they do not offer a standard interface for applying scripts (see Section 5.1), we reify
XML documents to XHTML documents (Code given in Appendix A.6).

The challenge of reifying XML documents in this prototype is modeling all capabilities
of XML in XHTML, an instance of XML. At the same time the cascading feature of CSS
needs to be respected to avoid an expensive re-implementation of the cascading feature in the
prototype.

According to the specification of XHTML [PAAT00] no additional elements or attributes
can be added to the language. Hence, only existing elements and attributes in XHTML can
be used to encode general XML documents.

Several XHTML attributes are stated in the specification as the following table shows:

Classification Name Content Type

core id unambiguous 1D
class CSS styling class
style CSS declarations
title tool-tip content

i18n lang language code
xml:lang language code
dir text orientation

intrinsic event attributes onclick interpretable script code
Figure 6.16: XHTML attributes that can occur in the context of every XHTML element.

The only two attributes admitting unrestrained content are class and title. However,
the XHTML attribute title has an unwanted side-effect. If the mouse cursor hovers over
an XHTML element with defined title attribute, the value of the title attribute is super-
imposed in a small window. This window is a so-called tool-tip. Hence, regarding XHTML
attributes only the class attribute is left for encoding XML data.

XML data like tag names or attributes can be encoded in the value of the XHTML
class attribute. Since attributes cannot be nested an encoding scheme would be needed for
structuring XML data. An extreme example is shown in the following Fig. 6.17.

1 PO

2 <body>

3 <div class="|<a>Content of b<c/>|" />
4 </b0dy>

5 | </html>

Figure 6.17: Encoding XML data in an XHTML attribute.

The example in Fig. 6.17 demonstrates that a reification of XML in XHTML is generally
possible. This first approach, however has two major drawbacks: An extra parser is needed in
the prototype to decode the XML data and furthermore the cascading feature of CSS needs
to be re-implemented.

The advantage of XHTML elements over XHTML attributes is that they pass the cas-
cading property of CSS and that they can have the same content as XML elements. The
disadvantage is that the new elements can not be introduced in XHTML. Hence, an adequate

6.3. ARCHITECTURE 63

dummy XHTML element and a place for encoding the markup (like the XML element name
and the XML attribute name) is needed.

Since, XHTML elements are assigned to special purposes (like the p-element for encoding
a paragraph) the only choice for encoding XML are the XHTML elements div and span
specifying the rendering as block element (like p) or as in-line element (like i for italic)
only. However, CSS offers the property display to re-define the rendering of these XHTML
elements. We take div XHTML element as dummy element for no special reasons.

The place for encoding the markup is still needed. As mentioned above the XHTML
attribute class is a candidate for encoding arbitrary data. Since the value of the class
attribute means linear modeling, once again a parser in the prototype would be needed to
decode a String containing information about the XML element name and XML attributes.

Therefore, we encode the XML markup using XHTML elements and XHTML attributes.
This solution allows for structuring markup data with an easy access to the markup via query
languages like XPath [CD99] as consequence. Furthermore the cascading feature of CSS does
not need to be re-implemented in the prototype.

Source XML:

1 |<book year="1994">

2 <my:title>TCP/IP Illustrated</my:title>
3 |</book>

reified XML:

1| <div>

2

3 book

4

5

6 year

7 1994

8

9 <div>

10

11 my
12 title
13

14 TCP/IP Illustrated

15 </div>

16 </div>

Figure 6.18: Reification of XML data to XHTML.

The example of a reification shown in Fig. 6.18 demonstrates the reification of sample
XML data. As mentioned above the XHTML div element is used as dummy element. The
corresponding markup information is encoded in child XHTML span elements where the
XHTML class attribute serves as key for selecting markup information like the attribute

64 CHAPTER 6. PROTOTYPE OF A CSSNY ENGINE

value. Obviously, the XHTML span elements must not be rendered in a Web browser. This
behavior can be specified using a CSS rule like span { display:none; }.

6.3.6 Meta-Initializer

(CSSNG Parser Configurator Styler-Generator Web browser
CSS-NG Abstract Styler B
Style Sheet Syntax Tree Configuration

_______ g=Spd!

| Y
' Reifier Meta-Initializer Styler

~ JXML- Input N XHTML-Input 2 Unstyled Document :
_ Document , Document — DIVIETIDOCUNIS) ww-=
== L"_r i

Figure 6.19: Meta-Initializer.

XHTML input documents can be initialized directly without reification: The 'Meta-
Initializer’ installs listeners and histories for relevant XHTML elements (Code given in Ap-
pendix A.7). An XHTML element is called dynamically relevant with respect to the CSSN¢
Style Sheet, if a dynamic rule (see Dynamic Styling) defines its styling.

6.3.7 Dynamic Styler

(CSSNG Parser 1 Configurator Styler-Generator Web browser
CSS-NG Abstract Styler Gt B O R T e
Style Sheet Syntax Tree Configuration \/I: E
' Relfler Meta-Initializer Styler

> JKML- Input N XHTML-Input 2 Unstyled Document F
_, ‘Document , Document — piviscipoeument =
e Ll_r i
[

Figure 6.20: Styler.

The precondition for dynamic styling in the CSSN¢ engine is the ‘Styled Document’ as
produced by the static lefthand part (see Fig. 6.3) of the CSSV engine. This section focuses
on the dynamic styling part while viewing a document in a Web browser (Code given in
Appendix A.8). An example of such a ‘Styled Document’ is shown in the following Fig. 6.21:

The example in Fig. 6.21 introduces to the main principles of dynamic styling in the
prototype. The ‘Styled Document’ is compiled according to the ‘Input Document’ and the
‘CSSNE style sheet’.

Fist of all new attributes are added to the XHTML element p. The attribute onclick is
the so-called event handler. (Depending on the type of the event any other intrinsic event
[ABC%99] can appear here.) The event handler depends on the specification in the CSSN¢
style sheet. In this case the event onclick is of interest and needs to be detected. If an

6.3. ARCHITECTURE 65

Input XHTML document:

2 |<p>Omnia Gallia divisa est in partes tres.</p>

CSS/NC style sheet:

2 p:onclick() { color: green; }

Styled Document:

1 “ e

2 |<p onclick="increment (this,’onclick’);commit();" style="">
3

4

5 styleMe(’element’,’self: :xhtml:p’, ’onclick() ’,’color:green’)
6

7 3

8 0

9 @

10

11 Omnia Gallia divisa est in partes tres.

12 </p>

13

Figure 6.21: A CSSN style sheet is applied to an XHTML input document resulting a Styled
Document that can be rendered by a Web browser.

66 CHAPTER 6. PROTOTYPE OF A CSSNY ENGINE

onclick event occurs, the function increment (implemented in ECMA Script) is called for
incrementing the corresponding onclick counter in line 9 of the ‘Styled Document’.

The incrementation of an event counter, for instance for onclick events, changes the state
of the ‘Styled Document’. Depending on the current state of the document only the set of
matching CSSNE rules can change. In the example of Fig. 6.21 the CSSVC rule can only be
applied if an XHTML p element was clicked once. Such changes of the state of the ‘Styled
Document’ are evaluated using the function commit. Since dynamic styling (for instance using
ronclick(1)) can affect different portions of an ‘Input Document’ independently, the function
commit traverses the whole ‘Styled Document’ trying to apply CSSNC rules represented by a
list of styleMe functions.

6.3.7.1 Run-time evaluation of CSSV¢ rules

Dynamic Styling requires an evaluation of CSSN¢ rules in a Web browser at run-time (or in

other words at view-time). Due to technical restrictions, such an evaluation is rather difficult
to implement.

Since the Styler solves the problem of applying a CSSNC style sheet to an XSLT transfor-
mation, applying the Styler XSLT program once more would be the easiest way of dynamic
styling in our approach. There are two opportunities of applying XSLT transformations to
XHTML pages in a Web browser. Firstly, the internal XSLT processor of the Web browser
could be used, if existing. However, this option objects to the goal of the implementation
being Web browser independent. Secondly, an XSLT processor implemented in ECMA Script
could be used. As discussed in Section 6.2.3 the upcoming XSLT processors implemented in
ECMA Script are not mature yet.

Although the ‘Styler’ is the consequent way for fulfilling dynamic styling requirements, the
restrictions mentioned above force us to provide a workaround until adequate XSLT processors
will be available. Obviously, an extreme workaround would be a complete re-implementation
of the Styler XSLT transformation in ECMA Script, which is not realistic at all.

The most challenging problem of applying a CSS™V¢ rule is evaluating the CSSNC selector
against the current XHTML document. In pure DHTML this had to be done using the DOM
interface. As consequence all CSSVC selectors had to be translated to DOM. However, accord-
ing to Section 6.3.3 such a translation is rather complex but in contrast to complete XSLT
processors implemented in ECMA Script there are implementations of XPath!” processors
only available in ECMA Script that can solve the problem.

An important issue for the choice of the ECMA Script XPath processor is the ability to
return references to the DOM nodes selected by an XPath expression'®. This requirement
filters out the XPath processors of AJAX projects because in AJAX projects implement their
own DOM model instead of using the DOM model of the current Web browser. This de-
sign decision guarantees Web browser independency. To the best of the author’s knowledge
XPathJS' is the only available XPath processor implemented in ECMA Script, that fulfills
our requirement. XPathJS seems to work perfectly expcet for one exception: The auto-
matic recognition of the name spaces does not work??. An extension of the XPath processor

1"XPath is used in the XSLT standard for selections

18These DOM references are the interfaces for changing styling parameters of match DOM nodes.

Yhttp://mcc.id.au/xpathjs/

20Namespaces in the ‘Styler’ are needed to avoid naming conflicts between original XML or XHTML input
data and meta-data, e.g., specifying the history of events occurred.

http://mcc.id.au/xpathjs/

6.3. ARCHITECTURE 67

(see Appendix A.8) solves this problem.

The minor problem of evaluating CSSN rules in a Web browser is applying the declaration
of CSSMC rules. During the first styling process via the XSLT ‘Styler’, the set of all dynamic
CSSNE rules is preprocessed for each XHTML element that could match in future depending
on user interaction with the Web browser. An example of a preprocessed CSSNC rule can be
seen in Fig. 6.21.

68

CHAPTER 6. PROTOTYPE OF A CSSNY ENGINE

CHAPTER
SEVEN

Proof-of-Concept Applications of CSSN¢

7.1 Rendering of HTML Documents

This section discusses three use cases on how CSSNE can be beneficial for HTML documents.
The CSSNC style sheets in this section are applied to the W3C recommendation XHTML 1.0
[PAAT00], which is written as an XHTML document.

7.1.1 Temporarily Superimposing the Table of Contents on Keypress

The table of contents is an important source for orienting oneself in a large document. For
instance, recommendations of the W3C give such a table of contents in the beginning of the
text. Obviously, this table of contents moves out of sight very soon, when reading text. How-
ever, many Web pages use a whole column for the table of contents allowing such navigation
tools independently of the current scrolling position in the text. This column approach is not
completely sufficient because the space for the column is lost. Furthermore the menu column
offers rather often only a few menu items. Hence, the space below it is given away.

) XHTML 1.0: The Extensible HyperText Markup Language (Second Edition) - Moziila Firefox <)

1 t o C { Datei Bearbeiten Ansicht Gehe Lesezeichen Extras Hiffe
. . . c Note that in order to produce a Canonical XHTML document, the rules above must be applied and the
2 po S 1t i0on: f 1xed ; ,g rules in [XMLC14N] must also be applied to the document
]
5))
P . .] 4. Differences with HTML 4 1. What is XHTML?
3 top: Sem; g 2 Defintions
. % This section is informative. 3. Normative Definition of XHTML 1.0
4 ri ght M 5em 5 3 4. Differences with HTML 4
Due to the fact that XHTML is an XML application 5. Compatibility Issues
Q SGML-based HTML 4 [HTML4] must be changed A DTDs
5 } 2 B. Element Prohibitions
4.1. Documents must be well-forme € Al AT ey G R E T
.)) +) { D. Acknowledgements
6 N t ocC: Onkeypre S8 (c > 211 1 Well-formedness is a new concept introduced b E. References. must
. either have closing tags or be written in a specia. ... \wx —wx. [)
7 display: block; must nestpropety
Although overlapping is illegal in SGML, it is widely tolerated in existing browsers.
s |}
CORRECT: nested elements.
9 |.toc:onkeypress(’c’,2n+2) {
l<p>here is an emphasized paragraph</ems.</p>
10 display: none;
p y 4 INCORRECT: overlapping elements
1 |} [5

Figure 7.1: CSSNC rule superimposing the table of contents on keypress.

69

70 CHAPTER 7. PROOF-OF-CONCEPT APPLICATIONS OF CSSN¢

The use case of CSSNE in Fig. 7.1 implements superimposing of the table of contents
on keypress. The first rule (lines 1-5) specifies basic styling of the table of contents, which
is marked by the CSS class toc in the XHTML document. If superimposed, the table of
contents appears in the upper right corner of the Web browser windows (lines 3-4).

The dynamic rendering of this use case is specified in the second and the third CSSN¢
rule of Fig. 7.1. The second rule (lines 6-8) makes the table of contents visible, if the key ’c’
(table of contents) was pressed on the keyboard once, thrice, and so on. According to the
third rule (lines 9-11) the table of contents is not visible after an even number of key presses
on 'c’.

Using a style sheet like this, the viewer of a Web page can superimpose the table of
contents on demand and the whole Web browser window can be used for text. Note that in
contrast to tool-tips’ [ABCT99] this technique of superimposing allows to use not only plain
text but allows also to use normal markup such as hyperlinks.

7.1.2 Superimposed Notes — Adapting Footnotes to Web Browsers

Texts that are published in traditional media such as books or in digital media like PDF
documents use footnotes for giving additional explanations on text portions for instance on
the bottom of the same page. Footnotes are rather convenient because additional information
can be accessed easily without turning the page. Since, there is no such page concept in
HTML documents viewed on Web browsers, footnotes mean scrolling to the bottom of the
whole document. Looking at a document as long as the specification of XHTML [PAA100]
this would be rather inconvenient.

1 * {
. . . = Note that in order to produce a Canonical XHTML document, the rules above must be applied and the
2 posi tion: relative 5] tules in [XMLG14N] must also be applied to the document
]
S
3 } E 4. Differences with HTML 4
£
. o This section is informative.
4 |*[title] :hover::after { 8
%) Due to the fact that XHTML is an XML application, certain practices that were perfectly legal in
. & SGML-based HTML 4 [HTML4] must be changed
5 content: 2
4.1. Documents must be well-formed
n3s<n Ny 3 n .
6 element (dlv , attr (tltle)) ; XML s a data format of the W3C, 1999,

Well-formedness is a new concept introduced by [XML]. Essentially this means that all elements must
sither have closing tags or be written in a special fomt¥as described below), and that all the elements
} must nest properly.

Although overlapping is illegal in SGML, itis widely tolerated in existing browsers.

s |*[title] :hover + div {

CORRECT: nested elements.

0 position: absolute; Lo -here 0 omphasind amspararaph s <
10 display: block; NCORRECT:verapping slamens
11 top: lem; |
12 left: 2em;
13 background-color: yellow;
14 }

Figure 7.2: CSSMNC rule superimposing (yellow) notes on keypress.

In this use case (see Fig. 7.2) notes are inserted, if the mouse cursor is hovering over
an HTML element having a title attribute. The specification of the place of the insertion

L Tool-tips are small boxes that can be superimposed, if the mouse cursor hovers over an image or a hyperlink.

7.1. RENDERING OF HTML DOCUMENTS 71

is relative (line 9) to the parent HTML element?. This type positioning allows to insert
markup overlaying without displacing the rendering of following HTML elements. In other
words, this is relative superimposing. Finally, the CSSNC declaration in the lines 5 and 6
insert the content of the title attribute. Note that the CSS declarations in lines 9-13 apply
to the inserted part, which in CSS 3 could only be text, but which in this CSSN¢ example is
markup.

The CSS™E rules on the left side of Fig. 7.2 can be seen as the specification of an extended
tool-tip [ABCT99] that are specified using the text attribute in XHTML. In addition to
HTML tool-tips CSSNVE allows

e to specify the place, where notes should be inserted,
e to use CSS-styled HTML markup and not only plain text,

e to insert notes on keyboard events or on mouse clicks.

The same technique can be used to superimpose notes as so-called side-notes. Here, notes
are superimposed on an extra column (for instance specified using the CSS margin property)
on the same height as their references. In other words, side-notes are footnotes displayed
beside the document.

Note that according to the use cases in this section CSSV¢ allows to specify stylings for
various requirements by only a few variations on the style sheets.

7.1.3 Displaying annotations to Documents

The third use case concerning rendering of HTML documents addresses authors of HTML
documents. Some authors tend to mark text portions with a "todo” notice to indicate that
the text portion is not finished yet. In practice authors sometimes forget to revisit and delete
such labels. CSSN¢ allows to visualize or not the status of an HTML document still having
todo areas as implemented using the following style sheet.

=) XHTML 1.0: The Extensible HyperText Markup Language (Second Edition) - Mozilla Firefox =)

HTML TODO message: Dol Gebeten gt e Lesereiben Fgras- tife
- Note that in order to produce a Canonical XHTML document, the rules above must be applied and the
K rules in [XMLC14N] must also be applied to the document
< 3 =n n > <
1 div class="ready H 4. Differences with HTML 4
=
2 TODO g This section is informative.
3
</div> 5 Due to the fact that XHTML is an XML application, certain practices that were perfectly legal in
3 iv g SGML-based HTML 4 [HTML4] must be changed
4.1. Documents must be well-formed
Well-formedness is a new concept introduced by [XML]. Essentially this means that all elements must
C S S NG St le Sheet . either have closing tags or be written in a special form (as described below), and that all the elements
y . must nest properly

Although overlapping is illegal in SGML, itis widely tolerated in existing browsers.

CORRECT: nested elements.

1 |.todo 7 .ready {
2 display: block;

} INCORREGT: overlapping elements

<p>here is an emphasized paragraph</ems.</p>

Figure 7.3: CSSNVC rule indicating, if todo areas are existing.

The CSSME combinator 7 in the selector of the CSSMC style sheet in Fig. 7.3 allows to
open an HTML TODO message, if at least one HTML element belongs to the CSS class todo.

2Obviously, the naming of position values in CSS 3 might be confusing.

72 CHAPTER 7. PROOF-OF-CONCEPT APPLICATIONS OF CSSN¢

Note that this example was already used for motivating structure-independent selections
in Section 4.6. It is repeated in more detail for a sound demonstration of the features of
CSSNC in this section.

7.2 Rendering of a FOAF Definition

This section describes an approach of visualizing a so-called Friend-of-a-Friend (FOAF)
[BMO5] network as a proof-of-concept application for CSSN®. FOAF is a data model for
social networks consisting of persons. Information about such persons like name or gender
can be specified using attributes of persons. Here the word “attribute” denotes a model-
ing concept of the FOAF data model, which has nothing to do with an “attribute” in XML
lingo. One of the FOAF attributes is called knows and models which persons a given person
knows. Putting together such information yields a social network (see Fig. 7.4), which can
be expressed using the Resource Description Framework (RDF) [LS99] .

igor clara egon o anna
christina franzi aya takashi
emma simon sarah jose naomi

kaoru ginerva david juliette tom

dietmar natascha

Figure 7.4: Example of a Friend-of-a-Friend (FOAF) network.

RDF is a family of specifications for a meta-data model that is often implemented as an
application of XML. The RDF meta-data model is based upon the idea of making statements
about resources in the form of a subject-predicate-object expression, called a triple in RDF
terminology. The subject is the resource, the “thing” being described. The predicate expresses
a relationship between the subject and the object. The object is the object of the relationship.
Since RDF documents can describe graphs and not only trees, a smooth two-dimensional
visualization of general RDF documents is a rather challenging problem.

7.2. RENDERING OF A FOAF DEFINITION 73

7.2.1 A Serialization of RDF data

RDF triples: An XML serialization of RDF triples:
1 | (aya, knows, jose) 1 |<person name="aya">

2 <knows>

3 <person name="jose" />

4 </knows>

5 | </person>

Figure 7.5: RDF Serialization of the FOAF network in Fig. 7.4.

An approach to visualizing RDF data is a pure rendering of its serialization in XML
format using CSSNVE. RDF data can be serialized, e.g., as tree as follows: The subject and
the object of an RDF triple are nested XML nodes. The relation between subject and object
is expressed via another XML node nested between subject and object (see Fig. 7.5). If a
subject has more than one object, a new predicate XML element holding the object is added.

Obviously, the serialization of RDF data as demonstrated in Fig. 7.5 is better suited for
a direct rendering by comparison to a set of RDF triples like on the left side of Fig. 7.5. The
following Fig. 7.6 specifies a part of the FOAF network of Fig. 7.4.

RDF triples: An XML serialization of RDF triples:
1 (aya’ knows, j ose) 1 <person name="egon">
5 (egon, knows, aya) 2 <relation type="knows "'>
. 3 <person name="franzi">
3 (egon, knows , franzi) 4 <relation type="knows">
4 | (franzi,knows, simon) 5 <person name="simon" />
5 | (franzi,knows,sarah) 6 </relation>
6 (jose , knows, egon) 7 <relation type="knows">
8 <person name="sarah" />
9 </relation>
10 </person>
11 </relation>
12 <relation type="knows">
13 <person name="aya'">
14 <relation type="knows">
15 <person name="jose">
16 <relation type="knows">
17 <person name="egon" />
18 </relation>
19 </person>
20 </relation>
21 </person>
22 </relation>
23 | </person>

Figure 7.6: Serialization of a FOAF network.

In the RDF data of Fig. 7.6 the person egon is duplicated because the expressivity of tree
structures (like in a serialization) is not sufficient to specify graphs directly. The duplication
allows to connect links to RDF resources that are already used in other parts of the tree.

74 CHAPTER 7. PROOF-OF-CONCEPT APPLICATIONS OF CSSN¢

7.2.2 Rendering of a FOAF Serialization using CSS™V¢

CSSNC is a styling language that can be used to specify the rendering of semi-structured data.
Hence, the result of a styling process depends much on the underlying data. For instance, an
RDF graph can have several serializations. Some of them may be better suited by comparison
to others. Visualizations such as shown in Fig. 7.4 are beyond the scope of CSSVC because
NP-complete transformations are needed for getting such a visualization. The main idea
of rendering a FOAF network in a Web browser is to render the serialization of a FOAF
specification (see Section 7.2.1) using CSSNC features as follows:

7.2.2.1 Markup Visualization

More than twenty various serializations of RDF data are available®. Many of these serializa-
tions are using not only X(HT)ML attribute values for encoding RDF data. Hence, the CSS 3
function attr (X) for visualizing the values of known X(HT)ML attributes (see Section 2.7.2)
is not sufficient for visualizing FOAF networks.

CSSNG offers means for markup visualization (see Section 4.3). The following CSSV¢
rules specify the visualization of the markup.

* { .person { // box for persons
text-align: center; border: thin solid black;
display: block; border-radius: lem;
width: 5.2em; ¥
margin-left: 6.5em;

} .relation { // relation with arrows

position: relative;
person: :before { // markup visualization left: -4em;
content: element("span", background-image: url(arrows.png);
attribute("class","person") background-repeat: no-repeat;
attribute("idref",attr(name)), padding-left: 3.8em;
attr(name)) ; padding-right: 3em;

} padding-top: 1.2em;

padding-bottom: 1.5em;

knows: :before { // markup visualization }
content: element("span",

attribute("class","relation"), .person[idref="egon"] :hover {
element-name()); background-color: green;

} }

Figure 7.7: Markup Visualization.

In Fig. 7.7 the first CSSNE rule specifies general rendering properties. The actual markup
visualization is implemented in the second and the third rule: New markup is inserted before
each RDF subject, predicate, and object lifting markup to content. The styling of the inserted
markup is specified in the last two rules of Fig. 7.7. A box with round corners marks the name
of a person. The styling of the relation is more complex because of arrows indicating the
relationship between subject and object. The visualization of a relation box (see Box-Model
[BLLJ98]) is widened with the name of the relation knows in the middle of the box. Around

3http://www.fakeroot.net/sw/rdf-formats/

http://www.fakeroot.net/sw/rdf-formats/

7.2. RENDERING OF A FOAF DEFINITION 75

the name is enough space for the arrows of the relation. These arrows are inserted via a
background image. The result of this basic rendering is shown in Fig. 7.8.

Unfolded subtree: Folded subtree:
T Wiczila Firerox O
Datei Bearbeiten Ansicht Gehe Lesezeichen Extras Hilfe Datei Bearbeiten Ansicht Gehe Lesezeichen Extras Hilfe
egon egon
knows —\ \, knows \
ranay
\’ \. R
knows _\\ knows \ A
simon) aya)
\~> Kknows —\ \—b Kknows \
sarah) jose)
\, knows \‘ \, knows —\
22) (o
7 5
\v Kknows -—\
knows _\
(“egon
;

Figure 7.8: FOAF rendering.

7.2.2.2 Folding of parts of a FOAF specification

Since social networks such as specified using the FOAF format tend to become rather complex,
a concept for visualizing only parts of the network is useful. The dynamic rendering features
of CSSNC can master such requirements using folding and unfolding. The following style
sheet allows to hide branches of the FOAF network, which is visualized as tree.

1 |person:onclick(2n+1) > * { display: none; }
2 |person:onclick(2n+2) > x { display: block; }

Figure 7.9: CSSMC style sheet folding branches of the RDF serialization.

Fach click on the visualization of a person causes alternating folding and unfolding of
the relations of this person. Fig. 7.8 on the right side shows, how the unfolded branch of
franzi (see left side) is folded after a click. Note that the branch is not just invisible but
also the branches below moved up. This behavior saves space and, hence, different parts of
the network can be compared easily in a Web browser window.

7.2.2.3 Graph-Visualization

A key issue in visualizing RDF graphs and in particular FOAF networks is handling cycles like
egon knows aya knows jose knows egon. In CSSM¢ this problem can be handled similar
to the serialization of RDF graphs im XML format: Links are used to specify circles. CSSV¢
cannot be used to implement hyperlinks allowing to follow links but it allows to visualize all
occurrences of the same name. The following style sheet implements this visualization for
egon.

76 CHAPTER 7. PROOF-OF-CONCEPT APPLICATIONS OF CSSN¢

CSSNC style sheet: Dynamic Rendering;:

) Mozilla Firefox <

know:
1 |egon:hover 7 egon I
aya)
2 { background-color: green; } Hoows
—
{ Joi’
know

Figure 7.10: FOAF Graph-Visualization.

The question mark (?7) in Fig. 7.10 is a CSSNY combinator (see Section 4.6), which is
used to combine X(HT)ML nodes independently of their position in their documents. In this
case each egon XML element is selected, if the mouse cursor hovers over one visualization of
one egon XML element.

7.3. PROGRAM VISUALIZATION AS TEXTUAL PROGRAM RENDERING 7

7.3 Program Visualization As Textual Program Rendering:
An application to Xcerpt Programs

CSSNC can be applied to implement query visualization as textual query rendering as shown
in Fig. 7.15. Here, the viewer of the visual interface visXcerpt [Ber03] [BBSW03] for the XML
query and transformation language Xcerpt [SB04] is re-implemented by only a few CSSN¢
rules. It is worth stressing that

e the original implementation of visXcerpt is much longer and much more complex,

e CSSNE is a high level styling language applicable not only to visualize Xcerpt programs
but more generally any XML document,

e specifying advanced visual features using CSSN® does not require programming skills
as required by ECMA script

e but instead offers much more limited programming capabilities sufficient for styling
using CSS.

The following sections discuss the re-implementation of visXcerpt using CSSVC. The full
CSSNC style sheet specifying the rendering of Xcerpt programs is given in Appendix B.

7.3.1 Visualization of Xcerpt Data Terms

Data terms are used to represent semi-structured data such as XML documents. They are
similar to ground functional programming expressions and logical atoms. In addition data
terms offer to specify whether the child nodes of an element are ordered or unordered [SB04].

In particular since CSSVC allows markup visualization, data terms can be rendered as
specified in the style sheet in Fig. 7.12. The following paragraphs discuss this style sheet
considering the rendering of data terms in Fig. 7.11 as example.

bib|

year1994
title|
TCP/IP lllustrated |

=
|

author|
e

I Stevens

Figure 7.11: Rendering of an XML document using the CSSVE style sheet in Fig. 7.12.

78 CHAPTER 7. PROOF-OF-CONCEPT APPLICATIONS OF CSSN¢
1 /* ### Basic Styling Specifications ### */

2 * {

3 display: block;

4 position: relative; /* allow relocating elements */

5 z-index: 0; /* neutral overlay position */

6 border-width: thin; /* borders */

7 border-style: solid;

8 margin-left: 2em; /* indentation of elements */

9 margin-right: 2em;

10 padding-left: 0.5em; /* space around text nodes */

11 padding-right: 0.5em;

12 padding-top: 0.5em;

13 padding-bottom: 0.5em; }

14 .unordered { border-style: dotted; } /* ordered data terms */

15 .ordered { border-style: solid; } /* unordered data terms */

16

17 /* ### Insertion of Tabs ### */

18 *::before {

19 content: element("tab", /* insert element "tab" *x/

20 attribute("order", attr("order")),

21 element-name () /* value of the tab element */

22 element ("attribute", *{ content: " " attribute-name()
23 " " attribute-value(); })); }
24

25 /* ### Basic Tab Styling ### */

26 tab {

27 top: 0.04em; /* set tabs *deeper* to */

28 z-index: 1; /* *overlay* top border of element bodies */
29 border-bottom: mnone; /* no border bottom (linking tab and body) */
30 padding-top: Oem; /* no space above tab names and tab border */
31 padding-bottom: Oem; /* no space below tab names and tab border */
32 margin-top: lem; /* interspace to elements above */

33 width: Sem; } /* tab width */

34 attribute { /* styling of attribute visualizations */
35 border: thin dotted gray;

36 color: black;

37 background-color:white; }

38

39 /* ### Folding elements on odd number of clicks ### */

40 tab:onclick(2n+1) { /* ## Folded Tab Styling ## */

41 display: inline; /* juxtaposing of folded tabs */

42 margin-left: Oem; /* distance between folded tabs */

43 left: 0.5em; /* indent folded tabs a bit */

44 z-index: -1; } /* disconnect tab with body */

45 tab:onclick(2n+1) + * { /* ## Folded Body Styling ## */

46 display: none; } /* hide element */

47

48

49 /* #i#t# Unfolding elements on even number of clicks ### */

50 tab:onclick(2n+2) { /* ## Unfolded Tab Styling ## */

51 display: block; /* juxtaposing of folded tabs */

52 margin-left: 2em; /* standard indentation */

53 left: Oem; /* same indentation of tab and body */
54 z-index: 1; } /* connect tab with body */

55

56 tab:onclick(2n+2) + * { /* ## Unfolded Body Styling ## */

57 display: block; /* show element */

58

59 /* ### Color Definition of nested Elements ### */

60 *:nth-decendent (6n+1) { background-color: #bfbfff; color: #3f3f7f; }

61 *x:nth-decendent (6n+2) { background-color: #bfffbf; color: #3f7f3f; }

62 *:nth-decendent (6n+3) { background-color: #ffbfbf; color: #7f3f3f; }

63 *x:nth-decendent (6n+4) { background-color: #ffffbf; color: #7f7f3f; }

64 *:nth-decendent (6n+5) { background-color: #ffbfff; color: #7f3f7f; }

65 *x:nth-decendent (6n+6) { background-color: #bfffff; color: #3f7f7f; }

Figure 7.12: CSSNE style sheet for rendering data terms.

7.3. PROGRAM VISUALIZATION AS TEXTUAL PROGRAM RENDERING 79

The Basic Styling Specifications in line 1-15 of the CSSNVE style sheet in Fig. 7.12
specify styling that applies to all XML elements of the source XML document. Further CSS
rules, which are discussed below, will overwrite these basic styling specifications using the CSS
cascading feature. The main goal of the rule starting in line 2 is to specify the rendering of the
bodies (and not the tabs) of XML elements in visXcerpt. Beside specifications of spacing, the
nesting of XML elements is specified in the lines 3, 8, and 9. T'wo interesting CSS declarations
are left in this rule: position:relative (line 4) allows to displace the rendering of XML
elements relatively to the standard position using the properties top, bottom, left, and
right later on. The other interesting CSS declaration is given in the next line 5: z-index:0
sets all renderings on the same level concerning overlay. The larger a z-index the higher
is the level of a rendering (shading renderings on lower levels). This feature is needed for
connecting or disconnecting tabs and bodies of the renderings of XML elements as discussed
below.

According to the CSS rules in lines 14 and 15 unordered data terms are rendered using
dotted borders and ordered data terms are rendered using solid lines.

The first CSSNE rule in this use case appears in the block Insertion of Tabs. It is
a key specification of this use case. The rule beginning in line 18 inserts an XML element
tab in front of each XML elements. The inserted tab element has an attribute order (line
20) taking over the same order as the body of the XML element. This attribute of tab is
needed to render the element and the corresponding tab the same way like using a dotted or
a solid line for both. The lines 21-23 specify the content of the inserted tab element. First of
all it contains the name of the corresponding XML element (markup visualization) followed
by a list of the XML element’s attributes. This list consists of attribute XML elements
allowing to apply individual styling for the rendering of XML attributes. Each attribute
XML element holds the name and the value of its XML attribute. The list of attributes is
generated using an attribute rule (line 22). This attribute rule iterates over the attributes of
the currently selected XML element (line 18) in XML document order.

The Basic Tab Styling specifies the initial static styling of tabs. Once again various
spacing specifications are needed. The lines 27-29 explain the connected rendering of tabs
and bodies: In line 27 the tab is set down a little bit using the top property*. The next line
sets the tab on a higher overlay level so that the body of the XML element lays below. The
illusion of a connection between tab and element is completed in line 29, where the border on
the bottom of the tab is removed. Hence, it seems that tab and element are connected because
the background color of the tab shades the border of the body (see author in Fig. 7.11).

The basic appearance of attributes is specified in the second rule in this block (lines 34-
37). According to the example in Fig. 7.11 attributes are rendered in black color, white
background color, and a dotted border around their visualizations.

After standard CSS rendering CSSN¢ is used again in the blocks (Un)Folding elements
on odd(/even) number of clicks. Since the second block (line 50-59) is analogously
specified and simply restores the initial rendering specifications it is not specially discussed.

The first rule of this block (lines 40-44) specify the styling of folded tabs. According to
line 41 they are styled inline meaning that folded tabs appear in a row like the title tab on

4This property can be used only for XML elements with relative position.

80 CHAPTER 7. PROOF-OF-CONCEPT APPLICATIONS OF CSSN¢

the right side of Fig. 7.11. Line 43 causes a minor indentation to emphasize that a folded tab
does not belong to the body below.

The property z-index in line 44 is associated with its counterpart in line 54. If the
rendering of an XML element is folded, its tab needs to be disconnected from the body of a
following sibling XML element. Therefore the bottom of folded tabs is minimally shaded using
the lower z-level -1 by comparison to the standard level as specified in line 5. The counterpart
of this rule in line 54 sets the tab on the higher level 1 to connect tab and unfolded body
again.

Having specified the rendering of folded tabs, the folding of the corresponding body of an
XML element is handled in line 45 and 46. The CSSNE selector matches, if an odd number
of mouse clicks were performed on a tab. In this case, the following XML element is not
displayed anymore, while the tab is still visible?. Analogously, the body is unfolded caused
by the rule starting in line 56 again on an even number of mouse clicks.

The last block of the style sheet in Fig. 7.12 specifies the colors of nested XML elements.
Current CSS allows to specify colors only down to a certain depth. This is not sufficient
for arbitrary XML documents, which can be highly nested. The CSSN¢ rules in lines 60 to
65 specify a recurring coloring of nested XML elements on arbitrary depth. The same color
appears on every sixth nesting level.

7.3.2 Superimposing of Context Menus

The editor of visXcerpt offers a context menu that can be superimposed on demand. The
context menu allows to commit changes on the XML document. However, since CSSNVE does
not offer means for changing input X(HT)ML document, the functionality of the menu needs
to be implemented using another technology. The following CSSNC style sheet allows to
superimpose such a context menu (see Fig. 7.13).

1 x:root::before { bib

2 content: element("menu", ...); } baok

3 tab:hover 7 menu { year1994

4 postion: fixed; | author [publisher copy

5 top: 5em; cut
book

5 left: Sems [_book] book] book] paste before

7 width: 10em;

8 z-index: 2; }

Figure 7.13: CSSNC rule superimposing the visXcerpt context menu on the right side.

The first rule in the style sheet of Fig. 7.13 demonstrates how the context menu of
visXcerpt can be “linked” to visXcerpt using CSSVC. According to the selector in line 1,
the menu is (virtually) inserted before the root XML element using the CSS 3 pseudo-class
:root. The following line specifies the insertion of the context menu. (The three dots stand
for the visXcerpt menu items like copy or cut.)

The dynamic aspect of the visXcerpt context menu is specified in the second rule of the
CSSNG style sheet of Fig. 7.13 as follows: if the mouse cursor is hovering over a tab (line 3),

5Otherwise unfolding the body again would be impossible.

7.3. PROGRAM VISUALIZATION AS TEXTUAL PROGRAM RENDERING 81

the menu is superimposed according to the CSS declaration in lines 5-9. The context menu
is positioned relatively to the Web browser window on the upper left. Finally, according to
line 8 the context menu hovers over all other rendered XML elements.

7.3.3 Visualization of Xcerpt Query Programs

Xcerpt data terms, which are introduced in the latter section, are the foundation of Xcerpt
query terms and construction terms. Further rendering specifications are needed for additional
constructs like Xcerpt variables and grouping constructs.

The static rendering of those constructs is already specified in the diploma thesis of Sacha
Berger [Ber03] and can be re-used in this use case with only a few additional rules given in
Fig. 7.14:

1 |all, and, or {

2 padding-left: 3em;

3 background-repeat: no-repeat; }

4 |all {

5 background-image: url(all.png); 7}
6 |and {

7 background-image: url(and.png); }
s |or {

9 background-image: url(or.png); }
10 |head, query {

11 width: 40%; }

12 |query {

13 position: absolute;

14 right: Oem;

15 top: lem; }

16 |rule, goal {

17 background-image: url(left-arrow.png);
18 background-position: center;

19 background-repeat: no-repeat; 1}

Figure 7.14: Rendering of Xcerpt query programs.

The style sheet in Fig. 7.14 renders the Xcerpt constructs and, or and all using back-
ground images. To avoid a rendering of Xcerpt rules using blind HTML tables® (like in the
visXcerpt prototype [Ber03]) the CSS position declaration is used to visualize the query part
on the righthand side of the visualization of an Xcerpt rule (line 14) while the construction
part is implicitly rendered on the lefthand side with a reduced width (line 11). The result of
a rendering using these rules is demonstrated in Fig. 7.15.

7.3.4 Highlighting Xcerpt Variables

In the following example the identifiers Title and Author are used for Xcerpt variables. It
is possible to understand the example without knowing what Xcerpt variables are used for.

SHTML tables without border for arranging the layout of Web pages.

82 CHAPTER 7. PROOF-OF-CONCEPT APPLICATIONS OF CSSN¢

In visXcerpt all occurrences of a variable can be highlighted. The following Fig. 7.15
shows, how a variable can be highlighted using a CSS™¢ style sheet.

rule : Return title/author pairs

in http://localhost/~vidb/DB/xmp-bib. xml

resultsl bibi
Author:hover 7 Author, 560K
Title:hover 7 Title { result

background-color: white;
} Title

all

s oW N =

Author

(&
Author Q

Figure 7.15: Query Visualization as Textual Query Rendering. All occurrences of Author are
highlighted by white background color.

The CSSNC style sheet on the left side of Fig. 7.15 groups selectors for every visXcerpt
variable, saying that all occurrences of a variable are highlighted, if the mouse cursor is
hovering over one occurrence of a variable.

CHAPTER
EIGHT

Conclusion

8.1 Summary

The research topic investigated in this thesis is to extend the Cascading Style Sheets language
(CSS) toward dynamic document rendering features. First of all, this thesis gives an intro-
duction to CSS including its fundamental principles. Then it discusses the shortcomings and
limitations of CSS concerning dynamic document rendering and markup visualization. This
discussion leads to CSSV, an extension to CSS 3, trying to overcome these shortcomings and
limitations. Furthermore CSSN¢ is compared to related approaches that extend CSS with
dynamic document rendering features. Finally, this thesis provides a prototypical implemen-
tation of CSSNE, which is used for testing proof-of-concept applications to demonstrate the

benefits of CSSNVE.

A first extension of CSSNC is markup insertion. In a CSSNVC style sheet well-formed
markup (or in other words XML data) can be specified using CSSN& functions. Such markup
can be inserted before and/or after arbitrary XML (and XHTML) elements for visualization
purposes (while the input document remains the same). The advantage by comparison to
CSS 3 is that such insertions can be styled using CSS rules offering a broad field for applica-
tions. In CSS 3 a differentiated styling of inserted text is not possible.

A second extension of CSSNC is markup visualization. This extension is a generalization of
markup insertion because it allows to insert markup depending on the input XML document
and not on “constant” markup that is specified in the style sheet. This feature is achieved
using CSSNC functions that allow to query the markup of the input document. In other
words markup querying in combination with markup insertion allows to visualize markup.

A third extension of CSSNY is depth-dependant styling. This is a minor extension in the
framework of CSSVC. It does not only allow breadth-dependant styling like CSS 3, as used
for an alternating coloring of table rows, but also depth-dependant styling as needed for the
styling of highly nested structures like threads in discussion forums.

A forth and highly important extension of CSSNC is the generalization of dynamic styling.
This extension adopts the intrinsic events of HTML for achieving dynamic styling in CSS.
These intrinsic events allow a better differentiation of events, for instance :hover in CSS 3 can

83

84 CHAPTER 8. CONCLUSION

be expressed using :onmouseover and :onmouseout in CSSNVC. Furthermore the adoption of
HTML intrinsic events make the keyboard a new input device in cascading styling. So-called
recurrence patterns allow to specify cyclic events (as can be used for alternating folding and
unfolding) or acyclic events (as can be used for indicating a specific number of click on a
hyperlink). A noticeable feature of this adaption is its compatibility to CSS combinators (in
contrast to other approaches to CSS).

A fifth extension of CSS™¢ is the Structure-independent Selection. This extension allows
to select XML (or XHTML) elements, if a simple selector matches an element that is part
of the input XML (or XHTML) document. There are no constraints on structural relations
between elements for those selections. For instance, the background of a document is styled in
red color, if at least one paragraph in the document is marked as “unfinished”. This extension
is compatible with extensions concerning dynamic styling because it is realized by introducing
a CSSNG combinator.

8.2 Contributions
The above mentioned extensions of CSSV¢ are on the one hand designed as natural extensions
to CSS 3 and on the other hand as rather slight and conservative extensions to CSS 3. This
allows an easy adoption of CSSNC for authors of CSS 3 style sheets. Furthermore CSSV¢
preserves the purpose of CSS being a styling language and not a transformation language like
XSLT or XQuery. From the author’s point of view, concerning the extensions of CSSNE the
simplicity of the CSS language is preserved.

In contrast to extensions related to CSSNVC (like Action Sheets and in the Behavioral
Extension to CSS using scripting) CSSNE is rather constrained, but as shown by several use
cases CSSNC makes scripting needless for many applications. Furthermore CSSNV¢

e causes no schema changes of the document to be styled,
e can be provided as standalone definition independently of the document to be styled,
e is applicable to multiple documents, and

e can be re-used easily.

One of the main advantages of CSSN¢ is the declarativity of its rules. Implementing styles
with comparatively complex programming languages like ECMA Script is no longer needed
for many applications.

A comparison of the implementation of visXcerpt particularly using DHTML [Ber03] (2060
lines of code) and the implementation given in Appendix B makes clear that CSSN¢ allows a
much more concise implementation of visXcerpt with a range of 131 lines of code. Obviously,
if using CSSN¢ instead of a scripting approach, no additional language needs to be learned
to achieve dynamic styling.

The prototypical implementation of CSSNC fulfills the requirements laid down in Sec-
tion 6.1 of a proof-of-concept implementation. Due to the various interchange formats of
the prototype’s processors (like the Styler Configurator) and the used standards for the im-
plementation, debugging and changing syntax and semantic of CSSN® was rather easy. An
advantage of using those standards is that the prototype can be used to demonstrate CSSV¢

8.3. FURTHER RESEARCH DIRECTIONS 85

on many platforms. A drawback of the prototypical implementation is the run-time perfor-
mance by comparison to the efficient rendering engines of modern Web browsers. The author
is convinced that a specialization of the prototype for a single Web browser like using the
Web browser’s XSLT processor would yield a significantly better run-time performance of the
prototype.

8.3 Further Research Directions

The author believes that CSSNC allows generic visualizations of programming languages.
Such visualizations realized as textual document rendering (see Fig. 7.15) could help making
visual programming more widespread than today because the huge quantity of tools for textual
programming languages can still be used. To the best of the author’s knowledge further
approaches of visual languages never allow visual and textual programming as well.

A second research issue is to investigate how CSSN might fit in editor applications. This
thesis investigated viewer applications exclusively, such as the visualization of FOAF defini-
tions or the implementation of the visXcerpt interface to Xcerpt. However, these applications
of CSSNE would most likely profit, if their data could be edited in a WYSIWYG! mode.

"What You See Is What You Get

86

CHAPTER 8. CONCLUSION

L8

APPENDIX
A

A.1 CSSY¢ Lexer

© 0w N O U W N

L T T
X = O 0O G W N = O

Code of the CSSNC engine

hh

/%
* Due to differences of the syntax between flex and jflex,
* I modified this Tokenizer (given in
* http://wuw.w3.org/TR/CSS21/grammar .html#q2 in flex syntax)
* as follows for gaining jflex compatibility:
*
* flex vs. jflex
*
* Joption case-insensitive %ignorecase
* rules without "=" rules with "="
* \\l! \II
*
* Running jflex:
* java JFlex.Main <options> <inputfiles>
* jaflex <options> <inputfiles>
*/
%byaccj
%ignorecase

13t

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

/* store a reference to the parser object */
private Parser yyparser;

/* constructor taking an additional parser object */
public Yylex(java.io.Reader r, Parser yyparser) {

this(r);
this.yyparser = yyparser;
}

Y3
h = [0-9a-f]
nonascii = [\200-\377]
unicode = \\{h}1,63(\r\n| [\t\r\n\£fl)?
escape = {unicode}|\\["\r\n\f0-9a-f]
nmstart = [_a-z] |{nonasciil}|{escape}
nmchar = [_a-z0-9-] |{nonascii}|{escape}
stringl = \"(["\n\r\£\"]1 I\\{n1}|{escapel}) *\"
string2 = 2 (["\n\r\£\\’] [\\{n1}|{escapel}) *\’
invalidl = \"(["\n\r\£f\"] [\\{nl}|{escapel})*
invalid2 = \? (["\n\r\£\\’] \\{n1} [{escapel}) *
ident = -7{nmstart}{nmchar}x*
name = {nmchar}+
num = [0-9]1+| [0-9]*"."[0-9]+
string = {stringl}|{string2}
invalid = {invalidi}|{invalid2}
url = (['#$%&*-"] |{nonasciil}|{escapel})*
s = [\t\r\n\f]
W = {s}*
nl = \n|\r\nl\r|\f
A = al\\0{0,4}(41161) (\r\nl [\t\r\n\f1)?
C = cI\\0{0,43}(43163) (\r\n| [\t\r\n\£f])?
D = dI\\0{0,4}(44164) (\r\n| [\t\r\n\£f])?
E = e|\\0{0,4}(45165) (\r\n| [\t\r\n\f])?
G = gl\\0{0,43}(47167) (\r\n| [\t\r\n\£f1)?|\\g
H = h|\\0{0,4}(48168) (\r\n| [\t\r\n\£f])7|\\h
I = 11\\0{0,43}(49169) (\r\n| [\t\r\n\£f1)7|\\i
K = kI\\0{0,4}(4bl6b) (\r\n| [\t\r\n\£f])7I\\k
M = m|\\0{0,4}(4d16d) (\r\n| [\t\r\n\£]1)?|\\m
N = nl|\\0{0,4}(4el6e) (\r\n| [\t\r\n\£])7I\\n
P = pl\\0{0,4}(50170) (\r\n| [\t\r\n\£f1)?|\\p
R = r|\\0{0,43}(52172) (\r\n| [\t\r\n\£f1)?|\\r
S = s|\\0{0,4}(53173) (\r\n| [\t\r\n\£f]1)?|\\s
T = t1\\0{0,4}(54174) (\r\n| [\t\r\n\£f]1)7|\\t

88

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

106
107
108
109
110
111
112
113
114
115

X
z

hh

/* extensions */
"element ("
"element-name ("
"attribute ("
"content"

{W}"?"

/% ——mmmmmmmm */

{s}+

N\ [x]\t ([/%] ["*T+\x+) ¥\ /
{sH\/*k [T*Tx\k+ ([/%] [T*] % *+) ¥\ /

ngl——n
no_sn

O
{w}n4n
{W}">"
{W}","

{string}
{invalid}

{ident}

u#n{name}
"@import"

"@page"

"@media"
"Qcharset"
"1"{w}"important"
{num}{E}HM}

{num}{EHX}
{num}{P}{X}

= x1\\0{0,4}(58178) (\r\nl| [

z|\\0{0,4} (6al7a) (\r\n| [

{yyparser.yylval =
{yyparser.yylval =
{yyparser.yylval =
{yyparser.yylval =
{yyparser.yylval =

{yyparser.yylval =

{yyparser.yylval =
{yyparser.yylval =
{yyparser.yylval =
{yyparser.yylval =

{yyparser.yylval =
{yyparser.yylval =
{yyparser.yylval =
{yyparser.yylval =

{yyparser.yylval =
{yyparser.yylval =

{yyparser.yylval =
{yyparser.yylval =
{yyparser.yylval =
{yyparser.yylval =
{yyparser.yylval =
{yyparser.yylval =
{yyparser.yylval =
{yyparser.yylval =

{yyparser.yylval =
{yyparser.yylval =

\t\r\n\£])71\\x
\t\r\n\£1)?|\\z

new ParserVal(yytext());
new ParserVal(yytext());
new ParserVal(yytext());
new ParserVal(yytext());
new ParserVal(yytext());

new ParserVal(yytext());

{/* ignore comments */3}
{/*unput (* ’);*/ /+replace by spacex/}

new ParserVal(yytext());
new ParserVal(yytext());
new ParserVal(yytext());
new ParserVal(yytext());

new ParserVal(yytext());
new ParserVal(yytext());
new ParserVal(yytext());
new ParserVal(yytext());

new ParserVal(yytext());
new ParserVal(yytext());

new ParserVal(yytext());
new ParserVal(yytext());
new ParserVal(yytext());
new ParserVal(yytext());
new ParserVal(yytext());
new ParserVal(yytext());
new ParserVal(yytext());
new ParserVal(yytext());

new ParserVal(yytext());
new ParserVal(yytext());

return
return
return
return
return

return

return
return
return
return

return
return
return
return

return
return

return

return

return

return

return

return

return

return

return
return

Parser.
Parser.
Parser.
Parser.
Parser.

Parser.

Parser.
Parser.
Parser.
Parser.

Parser.
Parser.
Parser.
Parser.

Parser.
Parser.

Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.

Parser.
Parser.

ELEMENT_FN; }
ELEMENT_NAME; }
ATTRIBUTE_FN; }
CONTENT; }
QUESTIONMARK;}

S;}

CDO;}
CDC;}
INCLUDES;}
DASHMATCH; }

LBRACE; }
PLUS;}
GREATER;}
COMMA; }

STRING; }
INVALID;}

IDENT;}

HASH;}
IMPORT_SYM;}
PAGE_SYM;}
MEDIA_SYM;}
CHARSET_SYM; }
IMPORTANT_SYM; }
EMS;}

EXS;}
LENGTH; }

TV

YAXAT 5pSSO

68

116
117
118
119
120
121
122
123
124
125
126
127
128
129

131
132
133
134
135
136

138
139
140
141
142
143
144
145
146
147
148
149
150
151

{num}{CHM}
{num}{MHM}
{num}{IHN}
{num}{PHT}
{num}{P}{C}
{num}{D}E}G}
{num}{R}{A}{D}
{num}{GHR}AD}
{num}{M}{S}
{num}{S}
{num}{HHZ}
{numH{K}{HMZ}
{num}{ident}

{num}%

{num}

"url ("{w}{string}{w}")"
llurl (n {w}{url}{w} n) n
{ident}" ("

/7.

{yyparser.
{yyparser.
{yyparser.
{yyparser.
{yyparser.
{yyparser.
{yyparser.
{yyparser.
{yyparser.
{yyparser.
{yyparser.
{yyparser.
{yyparser.

{yyparser.
{yyparser.

{yyparser.
{yyparser.
{yyparser.

{yyparser.

yylval
yylval
yylval
yylval
yylval
yylval
yylval
yylval
yylval
yylval
yylval
yylval
yylval

yylval
yylval

yylval
yylval
yylval

yylval

= new

new

= new

new
new

= new

new
new
new

= new

new
new

= new

= new
= new

= new

new

= new

new

/* extra tokens for byacc/j compatibility */

ll}u
n/n
]
nn
un
ll) n

n=n

{yyparser.
{yyparser.
{yyparser.
{yyparser.
{yyparser.
{yyparser.
{yyparser.
{yyparser.
{yyparser.
{yyparser.
{yyparser.

yylval
yylval
yylval
yylval
yylval
yylval
yylval
yylval
yylval
yylval
yylval

= new

new

= new

new
new

= new

new
new

= new

new

= new

ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());

ParserVal(yytext());
ParserVal(yytext());

ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());

ParserVal(yytext());

ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());
ParserVal(yytext());

return
return
return
return
return
return
return
return
return
return
return
return
return

return
return

return
return
return

return

return
return
return
return
return
return
return
return
return
return
return

Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.

Parser.
Parser.

Parser.
Parser.
Parser.

LENGTH; }
LENGTH; }
LENGTH; }
LENGTH; }
LENGTH; }
ANGLE; }
ANGLE; }
ANGLE;}
TIME;}
TIME;}
FREQ;}
FREQ; }
DIMENSION;}

PERCENTAGE; }
NUMBER; }

URI;}
URI;}
FUNCTION;}

*yytext;}

Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.

COLON;}
SEMICOLON;}
RBRACE; }
SLASH;}
MINUS;}
DOT;}
STAR;}
LBRACKET; }
RBRACKET; }
RPAREN; }
EQUALS;}

06

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

A.2 CSSYC¢ Parser

/* Used right recursion for a friendly stack */

1
2
3 | %
4 import java.io.*;

h}

%token CDO

%token CDC

10 Jitoken INCLUDES

11 Jtoken DASHMATCH
12 %token LBRACE

13 %token PLUS

14 J%token GREATER

15 %token COMMA

16 J%token STRING

17 %token INVALID

18 J%token IDENT

19 %token HASH

20 Jtoken IMPORT_SYM
21 J%token PAGE_SYM

22 Jitoken MEDIA_SYM
23 %token CHARSET_SYM
24 Jitoken IMPORTANT_SYM
25 J%token EMS

26 J%token EXS

27 J%token LENGTH

28 J%token ANGLE

29 %token TIME

30 Jtoken FREQ

31 %token DIMENSION /* Note: This token is used in the lexer but not in the parser */
32 Jtoken PERCENTAGE
33 %token NUMBER

34 J%token URI

35 Jtoken FUNCTION

5
6
7 J%token S
8
9

37 /* extra tokens for byacc/j compatibility */
38 %token COLON

39 J%token SEMICOLON

40 %token RBRACE

41 J%token SLASH

42 %token MINUS

43 J%token DOT

44 J%token STAR

YASYVA 5ySSO TV

16

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90

%token LBRACKET
%token RBRACKET

%token RPAREN /* Note: There is no token LPAREN, since left parentheses are included in the token FUNCTION. */

%token EQUALS

/* new tokens */
%token ELEMENT_FN
%token ELEMENT_NAME
%token ATTRIBUTE_FN
%token CONTENT
%token LPAREN
%token QUESTIONMARK

hh

stylesheet
stylesheet_extlopt s_cdo_cdc_star stylesheet_ext2star stylesheet_ext3star

stylesheet_extlopt
/* empty */
| CHARSET_SYM s_star STRING s_star SEMICOLON

5
stylesheet_ext2star
/* empty */
| /* recursion */ stylesheet_ext2star import s_cdo_cdc_star

String[][] ruleBody = {

{$1.sval, "stylesheet_extlopt", "false"},
{$2.sval, "s_cdo_cdc_star", "false"},
{$3.sval, "stylesheet_ext2star", "false"},
{$4.sval, "stylesheet_ext3star", "false"} };

result = new StringBuffer();
result.append("<?xml version=\"1.0\" ");
result.append("encoding=\"IS0-8859-1\" 7>");
result.append("<stylesheet>");
result.append(encode (ruleBody)) ;
result.append("</stylesheet>");

/* System.out.println(result.toString()); */

new ParserVal(); }

String[][] ruleBody = {

{$1.sval, "CHARSET_SYM", "true"},
{$2.sval, "s_star", "false"},
{$3.sval, "STRING", "true"},
{$4.sval, "s_star", "false"},
{$5.sval, "SEMICOLON", "true"} };
new ParserVal(encode(ruleBody)) ;

new ParserVal(); }
String[]1[] ruleBody = {
{$1.sval, "stylesheet_ext2star", "false"},

¢6

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

91
92
93
94
95
96
97
98
99
100
101
102
103
104

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

134
135
136

I
stylesheet_ext3star
/* empty */
| /* recursion */ stylesheet_ext3star
stylesheet_ext3star_extlparen s_cdo_cdc_star

H
stylesheet_ext3star_extlparen
: ruleset

| media
| page

H
s_cdo_cdc_star
/* empty */
| /* recursion */ s_cdo_cdc_star s_cdo_cdc_star_extlparen

5
s_cdo_cdc_star_extlparen
HEN]

| CDO

-~

-~

-

$$

$3

$$

$$

3

$$

$$

$$

3

$$

{$2.sval, "import", "false"},
{$3.sval, "s_cdo_cdc_star", "false"} };
new ParserVal(encode(ruleBody)) ;

new ParserVal(); }

String[][] ruleBody = {

{$1.sval, "stylesheet_ext3star", "false"},

{$2.sval, "stylesheet_ext3star_extlparen", "false"},
{$3.sval, "s_cdo_cdc_star", "false"} };

new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "ruleset", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "media", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "page", "false"} };
new ParserVal(encode(ruleBody)) ;

new ParserVal(); }

String[][] ruleBody = {

{$1.sval, "s_cdo_cdc_star", "false"},

{$2.sval, "s_cdo_cdc_star_extlparen", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "S", "true"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "CDO", "true"} };
new ParserVal(encode(ruleBody));

YASYVA 5ySSO TV

€6

144

164

170
171
172
173
174
175
176
177
178
179
180
181
182

| ¢DC

import
IMPORT_SYM s_star

import_extlparen s_star import_ext2opt SEMICOLON s_star

import_extlparen
: STRING

| URI

5
import_ext2opt
/* empty */
| medium import_ext2opt_extlstar

import_ext2opt_extlstar
1 /* empty */
| /* recursion */ import_ext2opt_extlstar COMMA s_star medium

-~

-~

~ -

A

$$

$$

3

$$

$$

3

$$

$$

3

String[]1[] ruleBody = {
{$1.sval, "CDC", "true"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {

{$1.sval, "IMPORT_SYM", "true"},
{$2.sval, "s_star", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {

{$1.sval, "import_extlparen", "false"},
{$2.sval, "s_star", "false"},

{$3.sval, "import_ext2opt", "false"},
{$4.sval, "SEMICOLON", "true"},
{$5.sval, "s_star", "false"} };

new ParserVal(encode(ruleBody)) ;

String[]1[] ruleBody = {
{$1.sval, "STRING", "true"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "URI", "true"l} };
new ParserVal(encode(ruleBody)) ;

new ParserVal(); }

String[] [] ruleBody = {

{$1.sval, "medium", "false"},

{$2.sval, "import_ext2opt_extlstar", "false"} };
new ParserVal(encode(ruleBody)) ;

new ParserVal(); }

String[][] ruleBody = {

{$1.sval, "import_ext2opt_extlstar", "false"},
{$2.sval, "COMMA", "true"},

{$3.sval, "s_star", "false"},

{$4.sval, "medium", "false"} };

new ParserVal(encode(ruleBody)) ;

76

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

184
185
186
187
188
189

191
192
193
194
195
196

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

}
media
: MEDIA_SYM s_star medium media_extlstar LBRACE
s_star ruleset_star RBRACE s_star { String[][] ruleBody = {
}
media_extlstar
/* empty */ {
| /* recursion */ media_extlstar COMMA s_star medium {
}
medium
IDENT s_star {
}
page
: PAGE_SYM s_star pseudo_page_opt s_star LBRACE
s_star declaration page_extlstar RBRACE s_star {

$$

$$

3

3

{$1.sval, "MEDIA_SYM", "true"},
{$2.sval, "s_star", "false"},
{$3.sval, "medium", "false"},
{$4.sval, "media_extlstar", "false"},
{$5.sval, "LBRACE", "true"},
{$6.sval, "s_star", "false"},
{$7.sval, "ruleset_star", "false"},
{$8.sval, "RBRACE", "true"},
{$9.sval, "s_star", "false"} };

new ParserVal(encode(ruleBody)) ;

new ParserVal(); }

String[]1[] ruleBody = {

{$1.sval, "media_extlistar", "false"},
{$2.sval, "COMMA", "true"},

{$3.sval, "s_star", "false"},
{$4.sval, "medium", "false"} };

= new ParserVal(encode(ruleBody)) ;

String[1[] ruleBody = {
{$1.sval, "IDENT", "true"},
{$2.sval, "s_star", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {

{$1.sval, "PAGE_SYM", "true"},
{$2.sval, "s_star", "false"},
{$3.sval, "pseudo_page_opt", "false"},
{$4.sval, "s_star", "false"},
{$5.sval, "LBRACE", "true"},

{$6.sval, "s_star", "false"},
{$7.sval, "declaration", "false"},
{$8.sval, "page_extistar", "false"},
{$9.sval, "RBRACE", "true"},

YASYVA 5ySSO TV

g6

229
230
231
232
233
234
235

237
238
239
240
241
242
243
244
245
246
247
248
249

251
252
253
254
255
256

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

page_extlstar
: /x empty */

| /* recursion */ page_extlstar SEMICOLON s_star declaration

pseudo_page
: COLON IDENT

operator
: SLASH s_star

| COMMA s_star

| /* empty */

combinator
: PLUS s_star

| GREATER s_star

| s_plus

~ -

-~

-~

-~

~

3

$$

$$

$$

$$

$$

$$

3

$$

{$10.sval, "s_star",} };
new ParserVal(encode(ruleBody)) ;

new ParserVal(); }

String[][] ruleBody = {

{$1.sval, "page_extlstar", "false"},
{$2.sval, "SEMICOLON", "true"},
{$3.sval, "s_star", "false"},
{$4.sval, "declaration", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "COLON", "true"},
{$2.sval, "IDENT", "true"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "SLASH", "true"},
{$2.sval, "s_star", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "COMMA", "true"},
{$2.sval, "s_star", "false"} };
new ParserVal(encode(ruleBody)) ;

new ParserVal(); }

String[1[] ruleBody = {
{$1.sval, "PLUS", "true"},
{$2.sval, "s_star", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "GREATER", "true"},
{$2.sval, "s_star", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {

96

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

275 {$1.sval, "s_plus", "false"} };
276 $$ = new ParserVal(encode(ruleBody)) ;
277 }

278 | QUESTIONMARK s_star /* CW: Extension */ { String[][] ruleBody = {

279 {$1.sval, "QUESTIONMARK", "true"},
280 {$2.sval, "s_star", "false"} };
281 $$ = new ParserVal(encode(ruleBody)) ;
282 }

283 ;

284 unary_operator

285 : MINUS { String[][] ruleBody = {

286 {$1.sval, "MINUS", "true"} };

287 $$ = new ParserVal(encode(ruleBody));
288 }

289 | PLUS { String[1[] ruleBody = {

290 {$1.sval, "PLUS", "true"} };

291 $$ = new ParserVal(encode(ruleBody)) ;
292 }

293 H

294 property

295 : IDENT s_star { String[][] ruleBody = {

296 {$1.sval, "IDENT", "true"},

297 {$2.sval, "s_star", "false"} };
298 $$ = new ParserVal(encode(ruleBody)) ;
299 }

300 H

301 ruleset

302 : selector ruleset_extlstar LBRACE s_star

303 declaration ruleset_ext2star RBRACE s_star { String[]1[] ruleBody = {

304 {$1.sval, "selector", "false"},
305 {$2.sval, "ruleset_extlstar", "false"},
306 {$3.sval, "LBRACE", "true"},

307 {$4.sval, "s_star", "false"},

308 {$5.sval, "declaration", "false"},
309 {$6.sval, "ruleset_ext2star", "false"},
310 {$7.sval, "RBRACE", "true"},

311 {$8.sval, "s_star", "false"} };
312 $$ = new ParserVal(encode(ruleBody)) ;
313 }

314 ;

315 ruleset_extlstar

316 : /* empty */ { $$ = new ParserVal(); }

317 | /* recursion */ ruleset_extlstar COMMA s_star selector { String[][] ruleBody = {

318 {$1.sval, "ruleset_extlstar", "false"},
319 {$2.sval, "COMMA", "true"},

320 {$3.sval, "s_star", "false"},

YASYVA 5ySSO TV

L6

334

344

364

ruleset_ext2star
/* empty */
| /* recursion */ ruleset_ext2star SEMICOLON s_star declaration

5
selector
simple_selector selector_extlstar

5
selector_extlstar
/* empty */
| /* recursion */ selector_extlstar combinator simple_selector

H
simple_selector
: element_name hash_class_attrib_pseudo_star

| hash_class_attrib_pseudo_plus

hash_class_attrib_pseudo_star
1 /* empty */
| /* recursion */ hash_class_attrib_pseudo_star hash_class_attrib_pseudo

~ -

A

-~

-~

3

$$

$$

$$

3

$$

$$

$$

$$

{$4.sval, "selector", "false"} };
new ParserVal(encode(ruleBody)) ;

new ParserVal(); }

String[][] ruleBody = {

{$1.sval, "ruleset_ext2star", "false"},
{$2.sval, "SEMICOLON", "true"},
{$3.sval, "s_star", "false"},

{$4.sval, "declaration", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {

{$1.sval, "simple_selector", "false"},
{$2.sval, "selector_extlstar", "false"} };
new ParserVal(encode(ruleBody)) ;

new ParserVal(); }

String[]1[] ruleBody = {

{$1.sval, "selector_extlstar", "false"},
{$2.sval, "combinator", "false"},
{$3.sval, "simple_selector", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {

{$1.sval, "element_name", "false"},

{$2.sval, "hash_class_attrib_pseudo_star", "false"} };
new ParserVal(encode(ruleBody)) ;

String[1[] ruleBody = {
{$1.sval, "hash_class_attrib_pseudo_plus", "false"} };
new ParserVal(encode(ruleBody)) ;

new ParserVal(""); }
String[]1[] ruleBody = {
{$1.sval, "hash_class_attrib_pseudo_star", "false"},

86

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

367
368
369
370
371
372
373
374
375
376
377
378
379

385

394

404

411

hash_class_attrib_pseudo_plus
: hash_class_attrib_pseudo

| /* recursion */ hash_class_attrib_pseudo_plus hash_class_attrib_pseudo

>

hash_class_attrib_pseudo

: HASH
| class
| attrib
| pseudo
class ;
: DOT IDENT

element_name
IDENT

| STAR

-~

-~

~

3

$$

$$

$$

3

$$

$$

$$

$$

{$2.sval, "hash_class_attrib_pseudo", "false"} };
new ParserVal(encode(ruleBody)) ;

String[1[] ruleBody = {
{$1.sval, "hash_class_attrib_pseudo", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {

{$1.sval, "hash_class_attrib_pseudo_plus", "false"},
{$2.sval, "hash_class_attrib_pseudo", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "HASH", "true"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "class", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "attrib", "false"} };
new ParserVal(encode(ruleBody)) ;

String[1[] ruleBody = {
{$1.sval, "pseudo", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "DOT", "true"},
{$2.sval, "IDENT", "true"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "IDENT", "true"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {

YASYVA 5ySSO TV

66

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

456
457
458

B

attrib

: LBRACKET s_star IDENT s_star attrib_extlopt RBRACKET

attrib_extlopt
/* empty */

| attrib_extlopt_extlparen s_star attrib_extlopt_ext2paren s_star

attrib_extlopt_extlparen
: EQUALS

| INCLUDES

| DASHMATCH

attrib_extlopt_ext2paren
IDENT

| STRING

A

-~

-~

-~

3

$$

$$

3

$$

$$

$$

$$

{$1.sval, "STAR", "true"} };
new ParserVal(encode(ruleBody)) ;

String[]1[] ruleBody = {

{$1.sval, "LBRACKET", "true"},
{$2.sval, "s_star", "false"},
{$3.sval, "IDENT", "true"},

{$4.sval, "s_star", "false"},
{$5.sval, "attrib_extlopt", "false"},
{$6.sval, "RBRACKET", "false"} };
new ParserVal(encode(ruleBody)) ;

new ParserVal(); }

String[][] ruleBody = {

{$1.sval, "attrib_extlopt_extlparen",
{$2.sval, "s_star", "false"},
{$3.sval, "attrib_extlopt_ext2paren",
{$4.sval, "s_star", "false"} };

new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "EQUALS", "true"} };
new ParserVal(encode(ruleBody));

String[]1[] ruleBody = {
{$1.sval, "INCLUDES", "true"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "DASHMATCH", "true"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "IDENT", "true"} };
new ParserVal(encode(ruleBody)) ;

String[1[] ruleBody = {
{$1.sval, "STRING", "true"} };

"false"},

"false"},

00T

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

460
461
462
463
464
465

467
468
469
470
471
472
473
474
475
476
477
478
479

481
482
483
484
485
486

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

pseudo
: COLON pseudo_extlparen

| COLON COLON pseudo_extlparen /* CW: added COLON */

pseudo_extlparen
IDENT

| FUNCTION s_star params_opt
/* CW: instead of: ident_opt for numbers as args */ s_star RPAREN

declaration
: CONTENT s_star COLON s_star content_value /* CW: extension */

| property COLON s_star expr prio_opt

-~

$$

$$

$$

$$

$$

$$

new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {

{$1.sval, "COLON", "true"},

{$2.sval, "pseudo_extlparen", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {

{$1.sval, "COLON", "true"},

{$2.sval, "COLON", "true"},

{$3.sval, "pseudo_extlparen", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "IDENT", "true"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {

{$1.sval, "FUNCTION", "true"},
{$2.sval, "s_star", "false"},
{$3.sval, "params_opt", "false"},
{$4.sval, "s_star", "false"},
{$5.sval, "RPAREN", "true"} };
new ParserVal(encode(ruleBody));

String[][] ruleBody = {

{$1.sval, "CONTENT", "true"},
{$2.sval, "s_star", "false"},
{$3.sval, "COLON", "true"} ,

{$4.sval, "s_star", "false"},
{$5.sval, "content_value", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {

{$1.sval, "property", "false"},
{$2.sval, "COLON", "true"},
{$3.sval, "s_star", "false"},
{$4.sval, "expr", "false"},
{$5.sval, "prio_opt", "false"} };

YASYVA 5ySSO TV

10T

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

| /* empty */
prio
IMPORTANT_SYM s_star

H
expr
: term expr_extlstar

5
expr_extlstar
/* empty */
| /* recursion */ expr_extlstar operator term

H
term
: unary_operator_opt term_extlparen

| STRING s_star

| IDENT s_star

| URI s_star

~ -

-~

-~

$$

$$

3

3

$$

3

3

$$

$$

new ParserVal(encode(ruleBody)) ;

new ParserVal(); }

String[1[] ruleBody = {

{$1.sval, "IMPORTANT_SYM", "true"},
{$2.sval, "s_star", "false"} };
new ParserVal(encode(ruleBody)) ;

String[1[] ruleBody = {

{$1.sval, "term", "false"},

{$2.sval, "expr_extlstar", "false"} };
new ParserVal(encode(ruleBody)) ;

new ParserVal(); }

String[][] ruleBody = {

{$1.sval, "expr_extistar", "false"},
{$2.sval, "operator", "false"},
{$3.sval, "term", "false"} };

new ParserVal(encode(ruleBody)) ;

String[1[] ruleBody = {

{$1.sval, "unary_operator_opt", "false"},
{$2.sval, "term_extlparen", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "STRING", "true"},
{$2.sval, "s_star", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "IDENT", "true"},
{$2.sval, "s_star", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "URI", "true"},
{$2.sval, "s_star", "false"} };

¢0T

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

592

594
595
596

| hexcolor

| function

term_extlparen
: NUMBER s_star

PERCENTAGE s_star

| LENGTH s_star

| EMS s_star

| EXS s_star

| ANGLE s_star

| TIME s_star

~

-~

-~

-~

-~

$$

$$

3

3

$$

$$

$$

$$

3

3

new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "hexcolor", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "function", "false"} };
new ParserVal(encode(ruleBody)) ;

String[]1[] ruleBody = {
{$1.sval, "NUMBER", "true"},
{$2.sval, "s_star", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {

{$1.sval, "PERCENTAGE", "true"},
{$2.sval, "s_star", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "LENGTH", "true"},
{$2.sval, "s_star", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "EMS", "true"},
{$2.sval, "s_star", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "EXS", "true"},
{$2.sval, "s_star", "false"} };
new ParserVal(encode(ruleBody)) ;

String[]1[] ruleBody = {
{$1.sval, "ANGLE", "true"},
{$2.sval, "s_star", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "TIME", "true"},
{$2.sval, "s_star", "false"} };
new ParserVal(encode(ruleBody)) ;

YASYVA 5ySSO TV

€01

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642

| FREQ s_star

function
: FUNCTION s_star expr RPAREN s_star

/%

* There is a constraint on the color that it must
* have either 3 or 6 hex-digits (i.e., [0-9a-fA-F])
* after the "#";

*/

hexcolor
: HASH s_star

/% skskokokok ok sk ok s ok ok sk ok sk ok ok ok sk ok ook sk sk ok skook ok sk ok skok ok kkokkok k- k /

/* extensions */
/% sokskoskokskokokosk ok ok ok ko sk kot sk ok ok skok ok ok okok kb ok kok ok % /

content_value
: /* empty */
| STRING s_star content_value

| ELEMENT_FN s_star element_params s_star RPAREN s_star content_value

-~

$$

$$

$$

String[][] ruleBody = {
{$1.sval, "FREQ", "true"},
{$2.sval, "s_star", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "FUNCTION", "true"},
{$2.sval, "s_star", "false"},
{$3.sval, "expr", "false"},
{$4.sval, "RPAREN", "true"},
{$5.sval, "s_star", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "HASH", "true"},
{$2.sval, "s_star", "false"} };
new ParserVal(encode(ruleBody));

new ParserVal(); }

String[]1[] ruleBody = {

{$1.sval, "STRING" ,"true"},

{$2.sval, "s_star" ,"false"},
{$3.sval, "content_value" ,"false"} };
new ParserVal(encode(ruleBody));

String[][] ruleBody = {

701

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688

| ELEMENT_NAME RPAREN s_star content_value

H

element_params

: STRING

| STRING s_star attribute_star COMMA s_star content_value s_star

H
attribute_star

: /x empty */
| /* recursion */ attribute_star COMMA s_star attribute

B

attribute
: ATTRIBUTE_FN s_star STRING s_star COMMA s_star STRING s_star RPAREN

$$

$$

$$

$$

$$

3

{$1.sval, "ELEMENT_FN", "true"},
{$2.sval, "s_star", "false"},
{$3.sval, "element_params", "false"},
{$4.sval, "s_star", "false"},
{$5.sval, "RPAREN", "true"},

{$6.sval, "s_star" ,"false"},
{$7.sval, "content_value" ,"false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {

{$1.sval, "ELEMENT_NAME" ,"true"},
{$2.sval, "RPAREN" ,"true"},

{$3.sval, "s_star" ,"false"},
{$4.sval, "content_value" ,"false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "STRING" ,"true"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {

{$1.sval, "STRING" ,"true"},
{$2.sval, "s_star" ,"false"},
{$3.sval, "attribute_star" ,"false"},
{$4.sval, "COMMA" ,"true"},

{$5.sval, "s_star" ,"false"},
{$6.sval, "content_value" ,"false"},
{$7.sval, "s_star" ,"false"} };

new ParserVal(encode(ruleBody)) ;

new ParserVal(); }

String[1[] ruleBody = {

{$1.sval, "attribute_star", "false"},
{$2.sval, "COMMA" ,"true"},

{$3.sval, "s_star" ,"false"},
{$4.sval, "attribute", "false"} };
new ParserVal(encode(ruleBody)) ;

String[1[] ruleBody = {
{$1.sval, "ATTRIBUTE_FN" ,"true"},

YASYVA 5ySSO TV

Q0T

689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734

params_opt
1 /* empty */
| IDENT

| NUMBER

| NUMBER COMMA NUMBER

/* 3k 3k 3k 3k 5k >k 3k 3k 5k 3k >k 3k >k 3k >k >k 3k >k 3k >k 5k %k 5k %k 5k 3k >k 3k %k >k %k >k %k >k %k %k 5k %k >k k

/% wokskokokokokkok Kok okok ok ok ok ok ok ok ok okok ok ok ok ok Kok ok
/* ebnf2bnf tools
/% wokkokokokokkok Kok kR Kok ok ok ok Kok ok ok ok ok ok Kok kK ok Kok

[kR kKRR KK KRRk Kok KKKk Kok KRRk KKK Kok Kok
/* ebnf2bnf for token

s_star

: /x empty */
| /* recursion */ s_star S

s_plus

*/

*/
*/
*/

*/
*/

~ -

-~

~ -

3

$$

3

$$

3

$$

$$

{$2.sval, "s_star" ,"false"},
{$3.sval, "STRING" ,"true"},
{$4.sval, "s_star" ,"false"},
{$5.sval, "COMMA" ,"true"},
{$6.sval, "s_star" ,"false"},
{$7.sval, "STRING" ,"true"},
{$8.sval, "s_star" ,"false"},
{$9.sval, "RPAREN" ,"true"} };
new ParserVal(encode(ruleBody)) ;

new ParserVal(); }

String[][] ruleBody = {
{$1.sval, "IDENT", "true"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "NUMBER", "true"} };
new ParserVal(encode(ruleBody)) ;

String[1[] ruleBody = {
{$1.sval, "NUMBER", "true"},
{$3.sval, "NUMBER", "true"} };
new ParserVal(encode(ruleBody)) ;

new ParserVal(); }

String[][] ruleBody = {
{$1.sval, "s_star", "false"},
{$2.sval, "S", "true"} };

new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {

90T

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
77
778
779
780

| /* recursion */ s_plus S

ident_opt
1 /* empty */
| IDENT

/* 3k 5k 3k >k 3k >k 5k 3k >k 3k >k 3k >k 3k >k >k 3k >k 3k >k 5k >k 5k 5k >k 3k >k 3k >k >k k >k %k >k %k %k 5k >k >k k */

/* ebnf2bnf for rules

prio_opt
: /* empty */
| prio

pseudo_page_opt
: /* empty */
| pseudo_page

5
ruleset_star
: /* empty */
| /* recursion */ ruleset_star ruleset

5
unary_operator_opt
: /x empty */

| unary_operator

*/

-~

~ -

~

~

~

~ -

3

3

3

$$

3

$$

$$

$$

$$

3

$$

{$1.sval, "s_plus", "false"} };
new ParserVal(encode(ruleBody)) ;

String[][] ruleBody = {
{$1.sval, "s_plus", "false"},
{$2.sval, "S", "true"} };

new ParserVal(encode(ruleBody)) ;

new ParserVal(); }

String[][] ruleBody = {
{$1.sval, "IDENT", "true"} };
new ParserVal(encode(ruleBody)) ;

new ParserVal(); }

String[]1[] ruleBody = {
{$1.sval, "prio", "false"} };
new ParserVal(encode(ruleBody)) ;

new ParserVal(); }

String[]1[] ruleBody = {

{$1.sval, "pseudo_page", "false"} };
new ParserVal(encode(ruleBody)) ;

new ParserVal(); }

String[1[] ruleBody = {

{$1.sval, "ruleset_star", "false"},
{$2.sval, "ruleset", "false"} };
new ParserVal(encode(ruleBody)) ;

new ParserVal(); }
String[][] ruleBody = {

YASYVA 5ySSO TV

20T

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826

/% sokoskokskokokokok ok ok sk ok kok ok ok kok sk ok kok sk sk ok kok sk ok skok sk kkkokk ok k /
T

private Yylex lexer;
private static StringBuffer result;

private static String encode(String[][] ruleBody) {
StringBuffer result = new StringBuffer();
for(String[] symbol : ruleBody) {
String symbolValue = symbol[0];
String symbolName = symbol[1];

boolean isTerminal = symbol[2].equals("true");
/* Does this symbol exist and does it have a value? */
if (symbolValue != null && !symbolValue.equals("")) {

/* encode to XML */
if (isTerminal) {

symbolValue = symbolValue.replaceAll("&", "&");

symbolValue =
symbolValue =

}

result.append("<"

symbolValue.replaceAll(">", ">");
symbolValue.replaceAll("<", "<");

+ symbolName + ">");

result.append(symbolValue) ;
result.append("</" + symbolName + ">");

}
}

return result.toString();

private int yylex () {
int yyl_return = -1;
try {

yylval = new ParserVal(O0);
yyl_return = lexer.yylex();

}
catch (IOException e) {

System.err.println("I0 error :"+e);

}

}

{$1.sval, "unary_operator", "false"} };
new ParserVal(encode(ruleBody)) ;

80T

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870

return yyl_return;

public void yyerror (String error) {
System.err.println ("Error: " + error);

}

public Parser(Reader r) {
lexer = new Yylex(r, this);

}

static boolean interactive;

public static String parse(Reader reader) {
Parser yyparser = new Parser(reader);
yyparser.yyparse();
return result.toString();

public static void main(String args[]) throws IOException {
Parser yyparser;
if (args.length > 0) {
// parse a file
yyparser = new Parser(new FileReader(args[0]));

else {
// interactive mode
System.out.println(" [Quit with CTRL-D]");
System.out.print ("Expression: ");
interactive = true;
yyparser = new Parser(new InputStreamReader(System.in));

}

yyparser.yyparse() ;
System.out.println(result.toString());
if (interactive) {

System.out.println();
System.out.println("Have a nice day");

YASYVA 5ySSO TV

60T

A.3 Configurator

O O T W N+

<!—— % Abstract: Transformation of the CSS Abstract Syntax Tree (CSS AST) to XCSS. * ——>
<l— % CSS AST : XML Tree with CSS grammar as schema. x ——>
<!— % Modes : Templates are qualified using modes to control their output formats: x ——>
<l— % css: transformation to CSS x ——>
<l— x cssStatic: transformation to CSS without pseudo selectors * ——>
<l— x XPathForward: transformation of CSS selectors to XPath x ——>
<l— x XPathContext: view from a XML element: Do | match this CSS selector? x ——>
<I— x% (equivalent to XPath looking backward and deleting the first axis. * ——>
<I— x XPath: Where XPathForward and XPathContext would yield the same. * ——>
<!— % Example : AST("a b { }") becomes * ——>
<l— % <stylesheet> * ——>
<I— x <rule> * ——>
<I— x <selector type="css">a b:hover</selector> * ——>
<I— x <selector type="cssStatic”">a b</selector> * ——>
<l— % <selector type="XPathForward">a/descendant::b</selector> * ——>
<l— x <selector type="XPathContext">/ancestor::a</selector> k ——>
<I— x <declaration /> * ——>
<I— x </rule> * ——>
<I— x </stylesheet> k ——>
<l— % where AST(String css) transforms css to its CSS AST x ——>

<xsl:stylesheet version="1.0"

xmlins:xsl="http://www.w3.0rg/1999/XSL/Transform”
xmlns:xhtm|="http://www.w3.0rg/1999/xhtml">

<xsl:param name="STRUCTURE" />
<xsl:variable name="NAMESPACE—PREFIX">xhtml</xsl:variable>

<xsl:output method="xml"
indent="yes"

media—type="text /xml"
encoding="1S0-8859—-1"

01T

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
%]
o4
95
56
o7
98
99

60
61
62
63
64
65
66
67
68
69

/>
P sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk ok ok sk ok ko ok ok ok sksk ok sk k . ——>
<l— XCSS — Data Format —

<xsl:template match="/">
<xsl:element name="stylesheet”>
<xsl:attribute name="structure">
<xsl:value—of select="$STRUCTURE" />
</xsl:attribute>

<l— (CSS5—Rules —>
<xsl:for—each select="//ruleset”">
<rule>
<selector>
<xsl:apply—templates mode="XPathContext" select="selector” />
</selector>
<xsl:apply—templates mode="dynamic” select="selector” />
<declaration>
<xsl:apply—templates mode="standard” select="declaration” />
</declaration>
<xsl:element name="insert">
<xsl:attribute name="type">
<xsl:copy—of select="selector/simple_selector/hash_class_attrib_pseudo_star/
hash_class_attrib_pseudo/pseudo/pseudo_extlparen/IDENT" />
</xsl:attribute>
<xsl:apply—templates mode="insert"” select="declaration” />
</xsl:element>
</rule>
</xsl:for—each>
</xsl:element>
</xsl:template>

1

<l stokosk sk ook ok ok ok ok ok ok ok ok ook ok ok ook ok ok ok ok ok ok ok ok ok sk ok sk R okok kR ok ok k ok ok ok ——>
<l stk sk ook ok ok ook ok ok okok ok ook ok ok ook ok ok ok ok ook ok sk ok ok R ok kR ko kR ok ok kR ok ok k. ——>

HOLVHNDIANOD €V

TTIT

70
71
72
73
74
(0]
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

<l
<l
<l

<l
<l
<l

<l
<l
<l
<l
<l
<l
<l
<l
<l
<l

Transformation of selectors —_—
>k 3k 3k >k 3k sk sk 3k sk sk >k sk sk sk skosk sk skosk sk sksk sk ksk sk kskosk kskosk kskosk ok kskok kskosk kksk ok ksk ok ——>
sk ok 5k 5k 5k 5k 5k 5k sk ok ok sk sk sk sk sk sk ok sk ok ok ok ok ok ok ok 5k 5k ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ——>

Transpose CSS selectors to XPathContext selectors —>
e.g.: abc{ ...} —>
becomes self::c[ancestor::b/ancestor::a] { ... } —>

Input from css—ast.xml ++4+4+++++++ text nodes ++ —>

/

T
selector + —
simple_selector + c —_—
selector_extlstar + —>
selector_extlstar + —
(... selector_extlstar...) + —>
combinator + n —
simple_selector + b —_—
combinator + n —_—
simple_selector + a —>

N At —

<xsl:template mode=" XPathContext” match="selector”>

<l— "self::" for the first selector —> <!—— self::c[ancestor::b/ancestor::a] —>
<l— xxxxxx -

<xsl:text>self::</xsl:text>

<l— Tree selectors —> <l—— self::c[ancestor::b/ancestor::a] —>
<|—— XXXXXXXXXXXXXXXXXXXXXXXX —

<xsl:apply—templates mode="XPathContext"” select="selector_extlstar” />
<!— self::c[ancestor::b/ancestor::a] —>
<l— X —>

<xsl:apply—templates mode="XPath" select="simple_selector” />

<l—— Closing bracket for tree selections —> <!— self::c[ancestor::b/ancestor::a] —>
<l— X —>

<xsl:if test="selector_extlstar">

¢lt

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134
135
136
137
138
139
140

<xsl:text>]</xsl:text>
</xsl:if>
</xsl:template>

<xsl:template mode="XPathContext” match="selector_extlstar">
<xsl:apply—templates mode="XPath" select="simple_selector” />

<!— Opening bracket for tree selections —> <|!— self::c[ancestor::b/ancestor::a] —>
<l— X —_
<xsl:if test="parent::selector”">
<xsl:text>[</xsl:text>
</xsl:if>

<l— Combinators —> <!— self::c[ancestor::b/ancestor::a] —>
<l— XXXXXXXXXX — XXXXXXXXXX —~— —>
<xsl:apply—templates mode=" XPathContext" select="combinator” />

<l—— Left recursion —> <!— self::c[ancestor::b/ancestor::a] —>
<l— XXXXXXXXXXXXX ———>
<xsl:apply—templates mode="XPathContext” select="selector_extlstar” />
</xsl:template>

<!— selector/dynamic —>
<xsl:template mode="dynamic” match="selector">
<xsl:choose>
<!— one colon stands for dynamic pseudo—class —>
<xsl:when test="count(simple_selector/hash_class_attrib_pseudo_star/hash_class_attrib_pseudo/
pseudo /COLON)=1"><!— static —>
<xsl:apply—templates mode="dynamic” />
</xsl:when>
<xsl:otherwise><!— static —>
<xsl:apply—templates mode="dynamic" select="selector_extlstar/simple_selector” />
</xsl:otherwise>
</xsl:choose>
</xsl:template>

HOLVHNDIANOD €V

€1l

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

koo s s s KKK KRR R SR SR R R SR R K R R KRR K KKK KRR KRRk ok ok ——>
<!— Transformation of combinator/x —>
sk ok o s s kKKK KKK R R R R R R R R R R R R KK KK KRR KRR R R Rk ok ——>

<xsl:template mode="XPathContext” match="PLUS">
<!— Avoid '/' after opening a constraint —>
<l— e.g.: "self::a[child::b]" instead of "self::a[/child::b]" ——
<xsl:if test="not(parent::combinator/parent::selector_extlstar/parent::selector)”>
<xsl:text>/</xsl:text>
</xsl:if>
<xsl:text>preceding—sibling::</xsl:text>
</xsl:template>

<xsl:template mode=" XPathContext” match="GREATER">
<!— Avoid '/' after opening a constraint, e.g. self::a[/child::b] —>
<xsl:if test="not(parent::combinator/parent::selector_extlstar/parent::selector)”>
<xsl:text>/</xsl:text>
</xsl:if>
<xsl:text>parent::</xsl:text>
</xsl:template>

<xsl:template mode="XPathContext” match="s_plus”>
<!— Avoid '/' after opening a constraint, e.g. self::a[/child::b] —>
<xsl:if test="not(parent::combinator/parent::selector_extlstar/parent::selector)”>
<xsl:text>/</xsl:text>
</xsl:if>
<xsl:text>ancestor::</xsl:text>
</xsl:template>

<!— Transformation of simple_selector —>

<xsl:template mode="XPath” match="simple_selector[element_.name][hash_class_attrib_pseudo_star]">

VIl

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

<xsl:apply—templates mode="XPath” select="element_name” />
<xsl:apply—templates mode="XPath" select="hash_class_attrib_pseudo_star” />
</xsl:template>

<xsl:template mode="XPath” match="simple_selector[hash_class_attrib_pseudo_plus]">
<xsl:if test="$STRUCTURE="hxml|'"><xsl:text>xhtml:div</xsl:text></xsl:if>
<xsl:if test="$STRUCTURE="xml"'"><xsl:text>xhtml:x</xsl:text></xsl:if>
<xsl:apply—templates mode="XPath" select="hash_class_attrib_pseudo_plus” />
</xsl:template>

<!— Transformation of element—name —>
Tl okt s sk sk ko ook ok kK ok ok oK ok ok oK ok kKRR KK oK oK oK oK ok oK K KRR R K R R R R Rk kR ok ok ——>

<xsl:template mode="XPath"” match="element_name">
<xsl:if test="$NAMESPACE—PREFIX = ''">
<xsl:value—of select="$NAMESPACE-PREFIX" />
<xsl:text>:</xsl:text>
</xsl:if>
<xsl:if test="$STRUCTURE="hxml ">
<xsl:text>xhtml:div[xhtml:span[@xhtml:class="element"]</xsl:text>
<xsl:text>/xhtml:span[@xhtml:class="name"]="</xsl:text>
<xsl:apply—templates mode="XPath" />
<xsl:text>"|</xsl:text>
</xsl:if>
<xsl:if test="$STRUCTURE="xml ">
<xsl:apply—templates mode="XPath” />
</xsl:if>
</xsl:template>

<xsl:template mode="dynamic” match="element_name” />

koo o s s KK KRR KRR K oK R R R K ok R K K KRR KRR KRR R R Rk ok ——>
<!—— Transformation of hash_class_attrib_pseudo//x —_—
P sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk ok ok sk ok ok ok ok sk ok sk sk ok sk k. ——>

HOLVHNDIANOD €V

G1T

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

<xsl:template mode="XPath”" match="x">
<xsl:apply—templates mode="XPath" />
</xsl:template>
<xsl:template mode="XPath”" match="HASH">
<xsl:if test="$STRUCTURE='hxml' ">
<xsl:text>[xhtml:span[@xhtml:class=" attribute"]</xsl:text>
<xsl:text>[xhtml:span[@xhtml:class="name"]="id"]</xsl:text>
<xsl:text>[xhtml:span[@xhtml:class="value"]="</xsl:text>
<xsl:value—of select="substring—after(current(), #')" />
<xsl:text>"]]</xsl:text>
</xsl:if>
<xsl:if test="$STRUCTURE='xml" ">
<xsl:text>[@xhtml:id="</xsl:text>
<xsl:value—of select="substring—after(current(),'#")" />
<xsl:text>"]</xsl:text>
</xsl:if>
</xsl:template>

P sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok ok sk ok ko ok sk ok sk sk ok kk ——>
<l— Transformation of class —

<xsl:template mode="XPath” match="class">
<xsl:if test="$STRUCTURE="hxml"'">
<xsl:text>[xhtml:span[@xhtml:class="attribute"]</xsl:text>
<xsl:text>[xhtml:span[@xhtml:class="name"]=" class"]</xsl:text>
<xsl:text>[xhtml:span[@xhtml:class="value"]="</xsl:text>
<xsl:value—of select="IDENT" />
<xsl:text>" ;]]</xsl:text>
</xsl:if>
<xsl:if test="$STRUCTURE="xml ">
<xsl:text>[@xhtml:class="</xsl:text>
<xsl:value—of select="IDENT" />
<xsl:text>"|</xsl:text>
</xsl:if>
</xsl:template>

911

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

249
250
251
252
253
254
255
256
257
258
259
260
261

262
263
264
265
266
267
268

269
270
271
272
273
274
275
276
277
278
279
280
281
282

<l stk stk ok sk sk stk ok sk ok sk sk sk ok ok sk ok ok sk ok sk ok ok sk ok sk ok ok sk ok ok ok R Kok Rk R Kok R kok ok ——>
<l— Transformation of attrib —
<l stk stk ok sk ok ok ok sk ok ok sk ok sk ok ok sk sk ok sk ok sk sk ok sk ok sk ok ok sk ok ok ok o Kok Rk R Kok Rk ok ok ——>

<xsl:template mode="XPath”" match="attrib">
<xsl:if test="$STRUCTURE='hxml"'">
<xsl:text>[xhtml:span</xsl:text>
<xsl:text>[attribute::xhtml:class=" attribute"]</xsl:text>
<xsl:text>[xhtml:span[attribute::xhtml:class="name"]="</xsl:text>
<xsl:value—of select="IDENT" /><!— name —>
<xsl:text>" ;][xhtml:span[@xhtml:class="value"|="</xsl:text>

<xsl:apply—templates mode="XPath" select="attrib_extlopt/attrib_extlopt_ext2paren” /><!— value
—_—
<xsl:text>"]]</xsl:text>
</xsl:if>

<xsl:if test="$STRUCTURE='xml ">
<xsl:text>[attribute::xhtml:</xsl:text>
<xsl:value—of select="IDENT" /><!— name —>
<xsl:text>="</xsl:text>

<xsl:apply—templates mode="XPath" select="attrib_extlopt/attrib_extlopt_ext2paren”/><!— value
—_
<xsl:text>"|</xsl:text>
</xsl:if>

</xsl:template>

<!— Transformation of pseudo —_—
<l sk skosk ok sk sk sk sk ok sk ok sk ok ok sk sk sk kK ok ok koK kK ok koK kok ko sk okok kok kok kok ok kk kk ——>

<xsl:template mode="XPath” match="pseudo”">
<xsl:if test="count(COLON)=1">
<xsl:variable name="DYNAMIC—CONSTRAINT" >
<xsl:text>[</xsl:text>
<xsl:for—each select="pseudo_extlparen”>

<xsl:text>xhtml:span[@xhtml:class="event"]/ xhtml:span[@xhtml:class="</xsl:text>

HOLVHNDIANOD €V

L1

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

317

<xsl:if test="not(IDENT) and FUNCTION">
<xsl:value—of select="substring—before (FUNCTION, '(')" />
</ xsl:if>
<xsl:if test="IDENT and not(FUNCTION)">
<xsl:value—of select="IDENT" />
</xsl:if>
</xsl:for—each>
<xsl:text>"|</xsl:text>
<xsl:if test="pseudo_extlparen/params_opt/NUMBER[2]">

<xsl:text> mod </xsl:text><!— modulo —>
<xsl:value—of select="pseudo_extlparen/params_opt/NUMBER[2]" />
</xsl:if>

<xsl:text> = </xsl:text>
<xsl:value—of select="pseudo_extlparen/params_opt/NUMBER[1]" />
<xsl:if test="pseudo_extlparen/params_opt/NUMBER[2]">

<xsl:text> mod </xsl:text><!— modulo —>
<xsl:value—of select="pseudo_extlparen/params_opt/NUMBER[2]" />
</xsl:if>

<xsl:text>]</xsl:text>
</xsl:variable>

<xsl:element name="css—ng">
<xsl:value—of select="$DYNAMIC—CONSTRAINT" />
</xsl:element>
</xsl:if>
</xsl:template>

<xsl:template mode="dynamic” match="pseudo”>
<xsl:apply—templates mode="dynamic” select="pseudo_extlparen” />
</xsl:template>

<xsl:template mode="dynamic” match="pseudo_extlparen”>
<!—— dynamic —><!—— insert dynamic only for the last simple—selector —>
<xsl:if test="ancestor::simple_selector/parent::selector_extlstar/parent::selector or
ancestor::simple_selector[not(preceding—sibling::x or following—sibling::*)]">

<xsl:element name="dynamic">

31T

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

352

<!— Variable ACTION —>
<xsl:variable name="ACTION">
<xsl:if test="not(IDENT) and FUNCTION">
<xsl:value—of select="substring—before(FUNCTION, '(')" />
</xsl:if>
<xsl:if test="IDENT and not(FUNCTION) and IDENT!='before ' and IDENT!="after '">
<xsl:value—of select="IDENT" />
</ xsl:if>
</xsl:variable>
<l—— @action CSS (e.g. hover) —>
<xsl:attribute name="action”">
<xsl:value—of select="$ACTION" />
</xsl:attribute>
<l—— @event —>
<xsl:attribute name="event">
<xsl:choose>
<xsl:when test="$ACTION="hover '">
<xsl:text>onmouseover</xsl:text>
</xsl:when>
<xsl:otherwise>
<xsl:value—of select="$ACTION" />
</xsl:otherwise>
</xsl:choose>
</xsl:attribute>
</xsl:element>
</ xsl:if>
</xsl:template>

<l sk skosk ok sk sk sk sk ok sk ok sk ok ok sk sk sk kK ok ok koK kK ok koK kok ko sk okok kok kok kok ok kk kk ——>
<l— Transformation of STRING —
U stk sk ok sk sk ok ok sk ok ok sk ok sk ok ok sk sk ok sk ok sk sk ok sk ok sk ok ok sk ok ok ok o Kok Rk R ok Rk ok ok ——>

<xsl:template mode="XPath” match="STRING">
<xsl:value—of select="substring (., 2, string—length(.) — 2)" /><!— Strip the first and the last
character —>
</xsl:template>

HOLVHNDIANOD €V

61T

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

Vo ook sk stk ok ok o KKK K oK ok K KK SR R 3K KK K R S K H KK SRR O KK KR SR R R Rk ——>
<!— Transformation of attrib for CSS |= and CSS "= —>
Sl ok s ok ok ook ok Kok ok R K Kok R SO KRR R K KRR R KRR R R R Rk ——>

<xsl:template mode="XPath"
match="attrib[attrib_extlopt/attrib_extlopt_extlparen/INCLUDES or
attrib_extlopt/attrib_extlopt_extlparen /DASHMATCH]">
<!—— Separator for |= and "= —>
<xsl:variable name="SEPARATOR">
<xsl:choose>

<l— «[att™=el] in CSS selects all elements with an attribute 'att'

having 'el’ as one single value of a list of space separated values. —>
<xsl:when test="attrib_extlopt/attrib_extlopt_extlparen/INCLUDES"> </xsl:when><!—— space ——>
<l— «[att|=el] in CSS selects all elements with an attribute 'att'

having 'el’' as one single value of a list of dash separated values. —>

<xsl:when test="attrib_extlopt/attrib_extlopt_extlparen /DASHMATCH" >—</xsl:when>
</xsl:choose>
</xsl:variable>

<!—— Value of Attribute —>

<xsl:variable name="VALUE">
<xsl:apply—templates mode="XPath" select=

</xsl:variable>

"attrib_extlopt/attrib_extlopt_ext2paren” />

<!— The following cases are possible ($SEPARATOR='-'):

att="el— ... XX— ... XX" (starts—with)
att="XX— ... —el— ... =XX" (contains)
att="XX— ... XX— ... —el” (ends—with)

—>
<xsl:text>[</xsl:text>

<l—— starts—with —>
<xsl:text>starts—with (</xsl:text>
<xsl:value—of select="IDENT" />

0ct

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

<xsl:
<xsl:
<xsl:
<xsl:

<xsl:

<l—
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:

<xsl:

<l—
<l—
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:

<xsl:

<l—
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:

text>, "</xsl:text>
value—of select="$VALUE" />
value—of select="$SEPARATOR" />
text>")</xsl:text>

text> or </xsl:text>

contains —>
text>contains(</xsl:text>
value—of select="IDENT" />
text>, "</xsl:text>
value—of select="$SEPARATOR" />
value—of select="$VALUE" />
value—of select="$SEPARATOR" />
text>")</xsl:text>

text> or (</xsl:text>

ends—with (simulated by contains and substring—after) —>
contains —>

text>contains(</xsl:text>

value—of select="IDENT" />

text>, "</xsl:text>

value—of select="$SEPARATOR" />

value—of select="$VALUE" />

text>")</xsl:text>

text> and </xsl:text>

substring—after —>
text>substring—after(</xsl:text>
value—of select="IDENT" />
text>, "</xsl:text>
value—of select="$SEPARATOR" />
value—of select="$VALUE" />
text>")=""</xsl:text>

HOLVHNDIANOD €V

1¢l

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

<xsl:text>)]|</xsl:text>
</xsl:template>

<!— kill space —>

<xsl:template mode="XPathContext” match="S" />
<xsl:template mode="XPath” match="S" />
<xsl:template match="S" />

<l sk skosk ok sk ok sk sk ok sk ok sk ok ok sk sk sk kK ook ok koK kK ok kok kok sk ok sk okok kok kok kok ok kk kok ——>
<!— declaration —>
<l sskoskoskok ok sk skok sk sk skok ok sk sk sk ok sk sk ok sk sk sk sk sk ok sk sk ok ok sk skok sk ok sk ok ko Kok ok Rk skok ok ——>

<xsl:template mode="standard” match="declaration”">
<!— Transform this declaration —>
<xsl:if test="not(CONTENT)"><!— content is handeld in mode insert —>
<xsl:apply—templates />
<xsl:text>;</xsl:text>
</xsl:if>

<!— Append semicolon if not existing in the AST —>

<l——<xsl:if test="not(following—sibling::ruleset_ext2star [SEMICOLON])">
<xsl:text>;</xsl:text>

</ xsliif>—

<!— Transform next declaration —>
<xsl:apply—templates select="following—sibling::%//declaration” />
</xsl:template>

<xsl:template mode="insert” match="declaration">
<xsl:if test="CONTENT">
<xsl:apply—templates mode="insert” select="content_value” />
</xsl:if>

¢al

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

</xsl:template>

stk ok ok sk ok ok ok ok Kk ok Kk oK KK K KKK K KRR KRR KRR K KRR KR KRR R Rk ——>
<!— content_value —_—
stk skt s ok ok ok oK K KK KK KK KK KKK KK KR K R K R KR KR SRR R R OR Rk k. ——>
<xsl:template mode="insert” match="content_value”">

”

<xsl:apply—templates mode="insert” />
</xsl:template>

<xsl:template mode="insert” match="STRING">

<xsl:value—of select="substring(.,2,string—length()-2)" />
</xsl:template>

<xsl:template mode="insert” match="element_params”>
<xsl:variable name="ELEMENT-NAME" select="substring (STRING[1],2,string—length (STRING[1])-2)" />
<xsl:element name="{$ELEMENT—NAME}" namespace="http://www.w3.0rg/1999/xhtml">
<xsl:apply—templates mode="insert” select="//attribute” />
<xsl:apply—templates mode="insert” select="content_value” />
</xsl:element>

</xsl:template>

<xsl:template mode="insert” match="ELEMENT_NAME" >
<ELEMENT_NAME />
</xsl:template>

<xsl:template mode="insert” match="attribute">
<xsl:variable name="ATTRIBUTE-NAME" select="substring (STRING[1],2, K string—length (STRING[1])-2)" />
<xsl:attribute name="xhtml: {SATTRIBUTE-NAME}">
<xsl:value—of select="substring (STRING[2],2,string—length(STRING[2])-2)" />
</xsl:attribute>
</xsl:template>

<xsl:template mode="insert” match="x%" />
</xsl:stylesheet>

HOLVHNDIANOD €V

€cl

A.4 Styler-Generator

O O T W N+

<?xml version="1.0" encoding="iso—8859—1"7>

<xsl:stylesheet version="1.0"
xmlns:xs|="http://www.w3.0rg/1999/XSL/Transform”
xmlns:xhtml="http://www.w3.0rg/1999/xhtml"
xmlns:out="http://www. wieser.info">

<xsl:namespace—alias stylesheet—prefix="out” result—prefix="xsl" />

<xsl:strip—space elements="selector” />

<xsl:output method="xml"
indent="yes"
media—type="text/xml"
encoding="150-8859—-1"

/>

<xsl:template match="/">
<out:stylesheet version="1.0"

xmlns:xhtml="http://www.w3.0rg/1999/xhtml|">

<out:output method="xml"
indent="yes"
media—type="text/html"
encoding="150-8859—1"
doctype—public="-//W3C//DTD XHTML 1.0 Transitional//EN"
doctype—system="xhtmll—transitional .dtd” />

<xsl:apply—templates />
</out:stylesheet>
</xsl:template>

<xsl:template match="stylesheet”">

Vel

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
%]
o4
95
56
o7
98
99
60
61
62
63
64
65
66
67
68
69
70

<out:template match="x">
<l soskosk Sk sk sk sk sk sk sk sk sk sk sk 3k sk sk sk sk ok sk ok ok sk sk sk ok sk sk ok sk k ok sk ok ok ——>
<!—— Generate a modified copy of the current element node —_—>

<l

<xsl:comment>Generate a copy of the current element</xsl:comment>
<xsl:comment>(with a modified style attribute).</xsl:comment>

<xsl:variable name="ELEMENT">{name()}</xsl:variable>
<out:element name="{$ELEMENT}" namespace="http://www.w3.0rg/1999/xhtml|">

<l—— event attributes (onmouseover, ...) —>

<xsl:comment>Set style attribute and dynamic attributes</xsl:comment>
<xsl:comment>for each dynamic rule defined in xcss</xsl:comment>

<l— "For each distinct event in XCSS is not supported in XSLT 1.0" ——>

<l— "Therefore these events are statical evaluated.” —>

<xsl:call—template name="computeEventAttribute”>
<xsl:with—param name="EVENT">onclick</xsl:with—param>

</xsl:call-template>

<xsl:call—-template name="computeEventAttribute”>
<xsl:with—param name="EVENT">onmouseover</xsl:with—param>

</xsl:call—template>

<xsl:call-template name="computeEventAttribute">
<xsl:with—param name="EVENT">onmouseout</xsl:with—param>

</xsl:call—template>

<l stk ok koot koK koK R kK KKK R KK R KK R KK R KO R KR kKRR KRR KRRk Rk kR ——>
<!— style attribute —>
otk ok ok ok oKk ok ok kKR kK R KR Sk K R KKk K KR K Rk R R K Rk R ok K Rk R ——>

HOLVUHANHAODHHATALS TV

gcl

71
72
73
74
(0]
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

<out:variable name="OLD—STYLE" select="0Qstyle” />
<out:variable name="NEW-STYLE">
<xsl:for—each select="rule[not(dynamic)]
<xsl:variable name="SELECTOR">
<xsl:apply—templates mode="static" select="selector” />
</xsl:variable>
<out:if test="{$SELECTOR}">
<out:text>
<xsl:value—of select="declaration” />
</out:text>
</out:if>
</xsl:for—each>
</out:variable>
<out:if test="ancestor::xhtml:body”">
<out:attribute name="style">
<out:if test="$NEW-STYLE!="" or $OLD-STYLE!=""">
<out:value—of select="$NEW-STYLE" />
<out:value—of select="$OLD-STYLE" />

”

>

</out:if>
</out:attribute>
</out:if>
<l koo ok kot okok koK R kK KK R KK R KO SR KK R KK KRR R KRR KRR KRRk Rk kR ——>
<!— init dynamic styling —>
otk ok ok s ok ok ok ok kKR ok K R Kk ok K R K Kk ok KR Sk kR R K Rk R ok K Rk ——>

<out:if test="self::xhtml:body">
<out:attribute name="onload">
<out:text>commit();</out:text>
</out:attribute>

</out:if>
<!— other attributes _—

<xsl:comment>Generate a copy of the old attributes except</xsl:comment>
<xsl:comment>the style attribute and dynamic attributes.</xsl:comment>

9¢1

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

<xsl:variable name="DEFINED—EVENTS">
<xsl:for—each select="rule/dynamic/Qevent”">
<xsl:text> and name()!="</xsl:text>
<xsl:value—of select="." />
<xsl:text>'</xsl:text>
</xsl:for—each>
</xsl:variable>

<l!— Copy attributes —>
<xsl:element name="xsl:for—each”">
<xsl:attribute name="select">
<xsl:text>Qx[name()!="style '</xsl:text>
<xsl:value—of select="$DEFINED—EVENTS" />
<xsl:text>]</xsl:text>
</xsl:attribute>

<xsl:variable name="ATTRIBUTE">{name()}</xsl:variable>

<out:attribute name="{$ATTRIBUTE}">
<out:value—of select="." />
</out:attribute>

</xsl:element><!— /out:for—each —>
P soskosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk Sk sk sk 3k sk sk sk sk sk sk sk sk sk sk Sk sk sk 3 sk sk ok sk sk ok sk sk sk ok K sk ok ok sk ok ok k ok sk ok ——>
<!— traverse child element nodes

<xsl:comment>Traverse the child nodes.</xsl:comment>

<out:apply—templates />

Tl skt sk sk ok sk sk ok ok ok Kk kR ok ok ok sk ok ok Kk Rk sk ok ok ok ok R ROk Kk ok sk R kR ROk kR Rk sk Rk R Rk ok ok k ——>
<!—— Install libraries
<xsl:comment>Install libraries</xsl:comment>

<out:if test="self::xhtml:head">

HOLVUHANHAODHHATALS TV

g1

143
144
145

146
147
148
149

150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

<xsl:element name="script">
<xsl:attribute name="type"><xsl:text>text/javascript</xsl:text></xsl:attribute>
<xsl:attribute name="src"><xsl:text>../servlet/javascript/xpath.js</xsl:text></
xsl:attribute>
</xsl:element>
<xsl:element name="script">
<xsl:attribute name="type"><xsl:text>text/javascript</xsl:text></xsl:attribute>
<xsl:attribute name="src"><xsl:text>../servlet/javascript/tools.js</xsl:text></
xsl:attribute>
</xsl:element>
<xsl:comment>Dummy stylesheet for panorama</xsl:comment>
<xsl:element name="style" />

</out:if>
<!— Init Meta—Data —_—

’

<out:if test="ancestor::xhtml:body and not(ancestor—or—self::xhtml:span[@class="event '])
(self::xhtml:script) and node()">
<out:element name="span” namespace="http://www.w3.0rg/1999/xhtml">
<out:attribute name="style"><xsl:text>display:none</xsl:text></out:attribute>
<out:attribute name="class"><xsl:text>event</xsl:text></out:attribute>
<out:element name="span” namespace="http://www.w3.0rg/1999/xhtml|">
<out:attribute name="class">standard</out:attribute>
<xsl:text>;</xsl:text><!—— Workaround XPath—Processor Bug —>
<xsl:for—each select="rule">
<xsl:element name="xsl:if">
<xsl:attribute name="test">
<xsl:apply—templates mode="static” select="selector” />
</xsl:attribute>
<out:text>
<xsl:text>styleMe(element, '</xsl:text ><!—— contextNode ——>
<xsl:apply—templates mode="dynamic” select="selector” /><l—— selector —>
<xsl:text>','</xsl:text>

and not

3¢l

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

<l

<xsl:value—of select="dynamic/Q@action" /><!—— action —>
<xsl:text>', '</xsl:text>

<xsl:value—of select="dynamic/Q@event" /><!—— event —>
<xsl:text>",'</xsl:text>

<xsl:value—of select="declaration” /><!—— declaration —>

<xsl:text>');</xsl:text>
</out:text>
</xsl:element>
</xsl:for—each>
</out:element>
<out:element name="span” namespace="http://www.w3.0rg/1999/xhtml|">
<out:attribute name="class">nth—descendant</out:attribute>
<out:value—of select="count(ancestor::%)" />
</out:element>
<out:element name="span” namespace="http://www.w3.0rg/1999/xhtm!">
<out:attribute name="class">nth—child</out:attribute>
<out:value—of select="count(preceding—sibling::%)" />
</out:element>
<out:element name="span” namespace="http://www.w3.0rg/1999/xhtml|">
<out:attribute name="class">onclick</out:attribute>
<out:text>0</out:text>
</out:element>

<out:element name="span” namespace="http://www.w3.0rg/1999/xhtml|">
<out:attribute name="class">onmouseover</out:attribute>
<out:text>0</out:text>

</out:element>

<out:element name="span” namespace="http://www.w3.0rg/1999/xhtml|">
<out:attribute name="class">onmouseout</out:attribute>
<out:text>0</out:text>

</out:element>

</out:element>
</out:if>

</out:element>

HOLVUHANHAODHHATALS TV

6¢1

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

</out:template>
</xsl:template>

<xsl:template mode="static” match="css—ng" />
<xsl:template mode="dynamic” match="css—ng">

<xsl:value—of select="." />
</xsl:template>

<xsl:template mode="insert” match="insert">
<xsl:apply—templates mode="insert” />
</xsl:template>
<xsl:template mode="insert” match="ELEMENT_NAME" >
<out:value—of select="name()” />
</xsl:template>
<xsl:template mode="insert” match="x">
<xsl:copy>
<xsl:copy—of select="0x" />
<xsl:apply—templates mode="insert" />
</xsl:copy>
</xsl:template>

<xsl:template name="computeEventAttribute”>
<xsl:param name="EVENT" />

<xsl:element name="xsl:if">

<xsl:attribute name="test">
<xsl:text>ancestor::xhtml:body</xsl:text>
<xsl:text> and not(self::xhtml:span[@class='standard '])</xsl:text>
<xsl:text> and not(self::xhtml:span[@class="event'])</xsl:text>
<xsl:text> and not(self::xhtml:span[@class="</xsl:text>
<xsl:value—of select="$EVENT" />
<xsl:text>"])</xsl:text>

</xsl:attribute>

<l—— Save old event action of the source XML document (e.g. onmouseover) ——>

0¢T

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

<xsl:element name="xsl:variable">
<xsl:attribute name="name">
<xsl:text>0LD—</xsl:text><xsl:value—of select="$EVENT" /><xsl:text>-VALUE</xsl:text>
</xsl:attribute>
<xsl:attribute name="select">
<xsl:text>0</xsl:text>
<xsl:value—of select="$EVENT" />
</xsl:attribute>
</xsl:element><!— /out:variable —>

<l—— Set event actions —>

<xsl:element name="xsl:attribute”">
<xsl:attribute name="name">

<xsl:value—of select="$EVENT" />

</xsl:attribute>
<out:text>increment(this ,h '</out:text>
<xsl:value—of select="$EVENT" />
<out:text>');commit();</out:text>

<out:if test="$OLD—{$EVENT}—VALUE!=""">
<out:value—of select="$OLD—{$EVENT}-VALUE" />
</out:if>
</xsl:element><!— /out:attribute —>
</xsl:element><!— /out:if —>

</xsl:template>

</xsl:stylesheet>

HOLVUHANHAODHHATALS TV

1€1

A.5 Insertion Preprocessor

O O T W N+

<?xml version="1.0" encoding="iso—8859—1"7>

<xsl:stylesheet version="1.0"
xmlns:xs|="http://www.w3.0rg/1999/XSL/Transform”
xmlns:xhtml="http://www.w3.0rg/1999/xhtml"
xmlns:out="http://www. wieser.info">

<xsl:namespace—alias stylesheet—prefix="out” result—prefix="xsl" />

<xsl:output method="xml"
indent="yes"
media—type="text /xml"
encoding="150-8859—-1"
/>

<xsl:template match="/">
<out:stylesheet version="1.0"

xmlns:xhtm|="http: //www.w3.0rg/1999/xhtml|">

<out:output method="xml"
indent="yes"
media—type="text/html"
encoding="150-8859—-1"
doctype—public="—//W3C//DTD XHTML 1.0 Transitional //EN"
doctype—system="xhtmll—transitional .dtd” />

<xsl:apply—templates />
</out:stylesheet>
</xsl:template>

<xsl:template match="stylesheet">
<out:template match="x">

cel

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
%]
o4
95
56
o7
98
99
60
61
62
63
64
65
66
67
68
69
70

<l sk sk sk sk ok ok ok ok ok koo ok ok ok ok sk sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk sk ok ok ok ok ok ko ok o ok ok sk sk sk ok ok kR R R R kR ——>
<l— Insert before —_—
<l soskosk Sk sk sk sk sk sk sk sk sk sk sk 3k sk sk sk sk ok sk ok ok sk sk sk ok sk sk ok sk k ok sk ok ok ——>

<xsl:for—each select="rule[insert/@type="before ']">
<xsl:variable name="SELECTOR" select="selector” />
<out:if test="{$SELECTOR} and ancestor::xhtml:body">
<xsl:apply—templates mode="insert” select="insert" />
</out:if>
</xsl:for—each>

<l ook sk ok ok ok kK ok K KR KR KK kK kK R KK KR K R KR KR KR KR KR KR KR KRR KR Ok KRR Rk ok ——>
stk sk ok ok KK KR KR KO KK kK koK K KR KK K R K R KR KR KR KR KR KR KRR KR OR KRR Rk ——>
<l— Generate a exact copy of the current element node —>

M R I I I I I e
Tl sk sk stk ok ok ok ok ok ok ok ok ok Kk ok K oK KK KK R KK R KK R KK R K R R R KR KRR R R R Rk R Rk ——>

<xsl:comment>Generate a copy of the current element</xsl:comment>

<xsl:variable name="ELEMENT">{name()}</xsl:variable>
<out:element name="{$ELEMENT}" namespace="http://www.w3.0rg/1999/xhtml">

<xsl:element name="xsl:for—each”">
<xsl:attribute name="select">
<xsl:text>0x</xsl:text>
</xsl:attribute>
<xsl:variable name="ATTRIBUTE">{name()}</xsl:variable>
<out:attribute name="{$ATTRIBUTE}">
<out:value—of select="." />
</out:attribute>

</xsl:element><!— /out:for—each —>

<l steostoskosk sk ok skosk sk ok sk sk sk ok skok sk ok sk sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk K ok sk sk sk ok sk skok ok skok kR sk kR Rk Kok kR ——>
<l stostoskosk ok ok sk sk sk ok sk sk sk ok sk sk ok sk sk sk ok ok sk sk sk ok sk sk sk ok ok sk sk ok sk sk sk ok sk sk ok ok ok skok sk ok Kok ok Rk ko sk ok ——>
<!— traverse child element nodes —
<l stostoskosk sk sk skosk sk ok skoskok sk sk sk ok sk ok sk sk sk sk sk sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk ok ok skok Kok Kok kR ko sk ok ——>

HOSSHOOUdHYd NOLLYHSNI "¢V

eel

71
72
73
74
(0]
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

<xsl:comment>Traverse the child nodes.</xsl:comment>
<out:apply—templates />

</out:element>

<l— Insert after —
<l soskosk 3k sk sk 3k sk sk sk sk sk sk sk 3k sk sk 3 sk sk o sk ok ok sk sk sk ok sk sk ok sk sk ok sk ok ok ——>

<xsl:for—each select="rule[insert/@type="after ']">
<xsl:variable name="SELECTOR" select="selector” />
<out:if test="{$SELECTOR} and ancestor::xhtml:body">
<xsl:apply—templates mode="insert” select="insert" />
</out:if>
</xsl:for—each>
</out:template>

</xsl:template>

<xsl:template mode="insert” match="insert">
<xsl:apply—templates mode="insert” />
</xsl:template>
<xsl:template mode="insert” match="ELEMENT_NAME" >
<out:value—of select="name()" />
</xsl:template>
<xsl:template mode="insert” match="x">
<xsl:copy>
<xsl:copy—of select="0x" />
<xsl:apply—templates mode="insert” />
</xsl:copy>
</xsl:template>
</xsl:stylesheet>

Vel

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

A.6 Reifier

O O T W N+

<?xml version="1.0" encoding="iso—8859—1"7>

<xsl:stylesheet version="1.0"

xmlns:xs|="http://www.w3.0rg/1999/XSL/ Transform”>

<xsl:output method="xml"
indent="yes"
media—type="xml/html!"
encoding="150-8859—-1"
/>

<l— generate HTML document —>
<xsl:template match="/">

<html>
<head>
<title>XHTMLalized XML</ title>

<l——<link rel="stylesheet” type="text/css"

<style type="text/css">
span { display:none; }
</style>
</head>
<body>
<!— transform all XML elements —>
<xsl:apply—templates />
</body>
</html>
</xsl:template>

<!— encode each child XML element —>
<xsl:template match="x">
<xsl:element name="div">

href="style.css” />—

<l— Install XHTML event handler in the div—element.
see mapping of other attributes in the following —>

HHIATHH 9V

qel

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
92
33
54
55
56
o7
98
59
60
61
62
63
64
65
66
67
68
69

<xsl:for—each select="Qx[substring—before(name(), ':') = 'metaxhtml']">
<xsl:attribute name="{substring—after(name(), ':')}">
<xsl:value—of select="." />

</xsl:attribute>
</xsl:for—each>

<l— Jjterate over children —>
<xsl:for—each select=".">

<!— XML element —>

<!—— separate namespace—prefix, if existing —>
<xsl:choose>

<xsl:when test="contains(name(),6':")">

<xsl:value—of select="substring—after(name(), :")" />

<xsl:value—of select="substring—before(name(),

span>
</xsl:when>
<xsl:otherwise>
<xsl:value—of select="name()" />
</xsl:otherwise>
</xsl:choose>
<xsl:variable name="NAMESPACE—URI" select="namespace—uri()" />

<xsl:if test="$NAMESPACE—URI = ''">
<xsl:value—of select="$NAMESPACE—URI" />
</xsl:if>

<!— XML attributes of XML element —>
<xsl:for—each select="0x">

<!— Prevent insertion of XHTML event handler —>

"

<xsl:if test="not(contains(name(), metaxhtml:"))">

<l— separate namespace—prefix, if existing —>

1

)</

9¢T

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

70
71
72
73

74
(0]
76
(s
78
79
80
81
82
83
84
85
86
87
88
89
90

<xsl:choose>

<xsl:when test="contains(name(), :")">
<xsl:value—of select="substring—after(name(),’:")" />
<xsl:value—of select="substring—before(name(),
>

</xsl:when>
<xsl:otherwise>
<xsl:value—of select="name()" />
</xsl:otherwise>
</xsl:choose>
<xsl:value—of select="." />

</xsl:if>
</xsl:for—each>

<l!— recursive call —>
<xsl:apply—templates />
</xsl:for—each>
</xsl:element>
</xsl:template>

</xsl:stylesheet>

Ty

/

HHIATHH 9V

LET

A.7 Meta-Initializer

OO Ul W N+

W W W W W DNDNDNDDDDDDNDNDN DN DN e e s
B WN OO IDUURE WNDEFE O OO Utk W= OOo

<?xml version="1.0" encoding="iso—8859—-1"7>

<xsl:stylesheet version="1.0"
xmlns:xs|="http://www.w3.0rg/1999/XSL/Transform”
xmlns:xhtml="http://www.w3.0rg/1999/xhtml|">
<xsl:output method="xml"
indent="yes"
media—type="xml/html”
encoding="1S0-8859—-1" />

<!— encode each child XML element —>
<xsl:template match="x">
<xsl:element name="{name()}">
<xsl:for—each select="0x">
<xsl:attribute name="{name()}">

<xsl:value—of select="." />
</xsl:attribute>

</xsl:for—each>
<!—— Init counters for dynamic events —>
<xsl:if test="ancestor::xhtml:body">

0
0
0

</xsl:if>

<xsl:apply—templates />
</xsl:element>

</xsl:template>

</xsl:stylesheet>

R¢T

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

A.8 Dynamic Styler

O O T W N+

26
27
28
29
30
31
32
33

function styleMe(contextNode, selector, action,

// alert(selector +" " 4+ action + "

+ eve

/* >k 3kosk >k skosk sk sk sk sk sk skosk sk skoskosk sk sk sk sk skosk sk skoskosk sk sk sk sk skok sk skok ok skosk */
/* dynamic styling * /
/* sk ok 5k 5k 5k 5k 5k 5k sk ok ok sk sk ok sk sk ok ok sk ok sk ok ok ok ok ok 5k 5k 5k 5k sk %k %k sk ok %k ok ok k */

/*

The parameter action is different from the p
there are values like ’'hover’' being no DOM e

*/

if (evalXPath(contextNode, selector).length >

/%
/%
/%

var

if

var

if

/%
/%
/%

if

sk 3k sk sk sk sk skosk ok sk sk sk sk sk sk sk sk
mark element
3k 3k 3k 3k sk osk sk sk sk sk skosk sk sk sk sk sk skoske sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk k

event, style) {

nt +" " + style);

arameter event because
vent but an css action.

0) {
*/
*/
*/

event = "', // An action can consist of at least one event.

(action = "hover”) { event = "onmouseover”; } else { event = action; }
actionCounterint = 0;

(action I= "") {

var actionCounter = evalXPath(contextNode,

:class="" + event + " ']")[0];

actionCounterlnt = parselnt(actionCounte

KK K K K K K K 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk sk sk sk 3k sk sk sk sk sk sk sk sk sk sk skosk sk skok

panorama
>k sk sk sk sk skoskosk sk skoskoskosk sk sk skoskosk sk sk skosk sk sk sk skoskosk sk sk sk sk sk sk sk skok sk ok

(panorama != "7) {

1

"xhtml:span[@xhtml: class="event ']/ xhtml:span[@xhtml
r.innerHTML) ;
*/

*/
*/

HHTALS OINVNAA 8V

6€T

34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
o1
92
53
54
95
96
o7
58
59
60
61
62
63
64
65
66
67
68

//

/%
/%
/%

// apply style

var panoramaStyle = panorama + "{" + style + "}";

var lastStylesheet = document.styleSheets.length — 1;
var stylesheet = document.styleSheets[lastStylesheet];
var ruleNumber = stylesheet.cssRules.length;
stylesheet.insertRule(panoramaStyle, ruleNumber);

// install undo
if (action = ’hover’) {
var setOldStyle = "document.styleSheets[” + lastStylesheet + "].deleteRule(
+ H);H;
setAttributeValue(contextNode, ’‘onmouseout’', setOldStyle);

+ ruleNumber

else {
sk oK stk ok ok KKK Rk KKK R SRR R SRR SRR R KRRk R ok kok ok /
monorama * /

ok ok ok ok ok sk ok ok ok o sk ok R ok ok ok ok K K ok ok ok Kok Kk K ok K */

/* install undo x/

if (action = ’"hover’) {
var oldStyle = getAttributeValue(contextNode, ’style ');
var codeSetOldStyle = "setAttributeValue(this, 'style’', '™ + oldStyle + " ");";

setAttributeValue (contextNode, ’‘onmouseout’, codeSetOldStyle);

}

/* apply style x/
var oldStyle = getAttributeValue(contextNode, ’style ');

setAttributeValue (contextNode, ’style ', oldStyle+style);

ovl

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

69
70
71
72
73
74
(0]

76
7
78
79
80
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

function commit() {
mapElementNodes(getBody (), applyStyling);
¥

function increment(contextNode, event) {

var actionCounter = evalXPath(contextNode, "xhtml:span[@xhtml|:class="event ']/ xhtml:span[@xhtml:
class="" + event + " ']")[0];

var actionCounterlnt = parselnt(actionCounter.innerHTML) + 1;

actionCounter.innerHTML = actionCounterlint;

}

function decrement(contextNode, event) {

var actionCounter = evalXPath(contextNode, "xhtml:span[@xhtml|:class="event ']/ xhtml:span[@xhtml:
class="" + event + " ']")[0];

var actionCounterlnt = parselnt(actionCounter.innerHTML) —1;

actionCounter.innerHTML = actionCounterlnt;

}

function getBody (){
return document.getElementsByTagName("BODY")[0]; // 1lst body element in an HTML document
}

function getAttributeValue(contextNode, attributeName) {
for (var i=0; i<contextNode.attributes.length; i++) {

if (contextNode.attributes[i].nodeName = attributeName) {
return contextNode.attributes[i].nodeValue;
}
}
return ""; // no value

}

function setElement(contextNode, name) {
var newElement = document.createElement (name);
contextNode.appendChild (newElement);
return newElement;

HHTALS OINVNAA 8V

Ji4!

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

}

function setAttributeValue(contextNode, name, value) {
var newAttribute = document.createAttribute (name);
newAttribute.value=value;
contextNode.setAttributeNode (newAttribute);

}

function evalXPath(contextNode, xpathExpression) {

// MyNamespaceResolver

MyNamespaceResolver. prototype = new NamespaceResolver();
MyNamespaceResolver. prototype.constructor = MyNamespaceResolver;
MyNamespaceResolver.superclass = NamespaceResolver. prototype;

function MyNamespaceResolver() {

}

MyNamespaceResolver. prototype . getNamespace = function(prefix, n) {
// Always resolve the prefix "xhtml".
if (prefix = "xhtml") {
return "http://www.w3.0rg/1999/xhtml";
}
return MyNamespaceResolver.superclass.getNamespace(prefix, n);
}
var parser = new XPathParser();
var xpath = parser.parse(xpathExpression);
var context = new XPathContext();
var varRes = new VariableResolver();
var nsRes = new MyNamespaceResolver();
var funRes = new FunctionResolver();
var context = new XPathContext(varRes, nsRes, funRes);
context.expressionContextNode = contextNode;

41!

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

139
140
141
142
143
144
145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

var result = xpath.evaluate(context);
return result.toArray();

}

function applyStyling(element) {
// XPath—Processor Bug: Binding of text results on the first level instead of the second level ,
element on the second level is empty. Workaround: Default value "true();”

var styling = evalXPath(element, "xhtml:span[@xhtml:class="event ']/ xhtml:span['standard '|")[0];
if (styling !'= null) {
if (styling.innerHTML != ';’) { // Workaround: Logical AND does not work.
eval (styling.innerHTML);
}
}
}
function mapElementNodes(root, f) {
f(root);
var childElementNodes = getChildElementNodes(root);
for (var i=0; i<childElementNodes.length; i++) {
mapElementNodes(childElementNodes[i], f);
}
}

function hasChildElementNodes(root) {
return getChildElementNodes(root).length > 0;

}
function getChildElementNodes(root) {
var result = new Array(0);
var ELEMENT_NODE = 1; // standardized number of DOM type ’'element node’

// lterate over all DOM child nodes and filter out all element nodes
for(var i=0; i<root.childNodes.length; i++) {
if (root.childNodes[i].nodeType—ELEMENT_NODE) {

if

HHTALS OINVNAA 8V

€Vl

174
175
176
177
178
179
180
181

}

result.push(root.childNodes[i]);
}
}

return result;

function next(element) {

i

var mod = parselnt(evalXPath(element, "xhtml:span[@xhtml:class="event ']/ xhtml:span[@xhtml:class=’
onclick "]")[0].innerHTML) 2;var following = evalXPath(element, " following-sibling::*")[0];if (mod==1) var oldStyle =
getAttributeValue(following, 'style’);setAttributeValue(following, 'style’, oldStyle + 'display:none’);if (mod==0) var oldStyle =
getAttributeValue(following, 'style’);setAttributeValue(following, 'style’, oldStyle + 'display:block’);

2!

HANTONH 5SSO HHL 40 HAOD 'V XIANAIdV

APPENDIX
B

!
- e
= O © X NOUA W N

RN NN NN R R R e e e e
S AW RO © WO UA W N

Code of the visXcerpt Viewer in CSSV¢

/* ### Basic Styling Specifications ### */

* {

.ordered

display:
position:
z-index:
border-width:
border-style:
margin-left:
margin-right:
padding-left:
padding-right:
padding-top:

padding-bottom:
.unordered { border-style:
{ border-style:

block;
relative;
0;

thin;
solid;
2em;

2em;
0.5em;
0.5em;
0.5em;
0.5em; }
dotted; }
solid; }

/* ### Insertion of Tabs ### */

*::before {

content: element("tab",
attribute("order", attr("order")),

element-name ()

element ("attribute", *{ content:
" " attribute-value(); })); }

/* ### Basic Tab Styling ### */

tab {

/*
/*
/*
/*

/*

/*
/*

/*

/*

allow relocating elements */
neutral overlay position */
borders */

indentation of elements */

space around text nodes */

ordered data terms */
unordered data terms */

insert element "tab" */

value of the tab element */
" " attribute-name ()

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

top: 0.04em; /*
z-index: 1; /*
border-bottom: none; /*
padding-top: Oem; /*
padding-bottom: Oem; /*
margin-top: lem; /*
width: Sem; } /*
attribute { /*
border: thin dotted gray;
color: black;
background-color:white; }

set tabs *deeper*x to */

xoverlay* top border of element bodies */
no border bottom (linking tab and body) */
no space above tab names and tab border */
no space below tab names and tab border */

interspace to elements above */
tab width */
styling of attribute visualizations */

/* ### Folding elements on odd number of clicks ### */

tab:onclick(2n+1) { /%
display: inline; /*
margin-left: Oem; /*
left: 0.5em; /%
z-index: -1; } /*
tab:onclick(2n+1) + * { /%
display: none; } /*

Folded Tab Styling ## */
juxtaposing of folded tabs */
distance between folded tabs */
indent folded tabs a bit */
disconnect tab with body */

Folded Body Styling #i# */
hide element */

/* ### Unfolding elements on even number of clicks ### */

tab:onclick(2n+2) { /%
display: block; /%
margin-left: 2em; /*
left: Oem; /%
z-index: 1; } /%
tab:onclick(2n+2) + * { /%
display: block; /*

/* ### Color Definition of nested Elements ### */

*:nth-decendent (6n+1)
:nth-decendent (6n+2)
:nth-decendent (6n+3)
:nth-decendent (6n+4)
:nth-decendent (6n+5)
:nth-decendent (6n+6)

LR I

background-color: #bfbfff
background-color: #bfffbf
background-color: #ffbfbf
background-color: #ffffbf
background-color: #ffbfff

{
{
{
{
{
{ background-color: #bfffff

Unfolded Tab Styling ## */
juxtaposing of folded tabs */
standard indentation */

same indentation of tab and body */
connect tab with body */

Unfolded Body Styling ## */
show element */

; color: #3f3f7f;
; color: #3f7£f3f;
; color: #7f£3f3f;
; color: #7f7f3f;
; color: #7f3f7f;
; color: #3f7f7f;

R S e]

/* ### Additional Xcerpt rendering rules by Christoph Wieser ### x/

all, and, or {
padding-left: 3em;
background-repeat:

all {
background-image:

no-repeat; }

url(all.png); }

id!

oNSSO NI HAMHAIA LdHHOXSIA HHL A0 HAOD d XIANAIdV

73
74
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

109
110
111
112
113
114
115
116
117
118

and {
background-image:
or {
background-image:
head, query {
width: 40%; }
query {
position:absolute;
right:0em;
top:lem; }
rule, goal {
background-image:

url(and.png); }

url(or.png); }

url(left-arrow.png);

background-position: center;
background-repeat: no-repeat; }

/* ### Xcerpt Rendering from Sacha Berger ### *x/

xcerpt-rule {

border-style: solid;
border-width: 1px;
border-color: black;
margin: 10px Opx; 1}

rule-titlebar {

background-image:url(../IMAGES/halftone_light90.png) ;

border-style: none none solid none;
border-color: black;
border-width: 2px; }

goal {

background-color:yellow; }

query-resource {

border-style: none none solid none;
border-color: black;
border-width: 1px;
margin: 0 0 4px 0; }
query {
border-style: solid;
border-color: black;
margin: 4px 0;
border-width: 1px; }

query-content {

padding:4px; }

and {
background-color:white;
border-style: solid;
border-width: 1px;
margin: 4px Opx;

Lyl

119
120
121
122
123
124
125
126
127
128
129
130
131

or {

resource {

padding:
border-color:

background-color:
border-style:
border-width:
margin:

padding:
border-color:

color:
margin:
padding:

4px;
black; }

white;
solid;
1px;

4px Opx;
4px;
black; }

black;
0 4px;
Opx 5px; }

V1

oNSSO NI HAMHAIA LdHHOXSIA HHL A0 HAOD d XIANAIdV

> (CSS), 13
+ (CSS), 13
- (CSS), 13

:nth-descendant (An+B) (CSSMN¢), 38

:onkeydown (CSSNV®), 40, 43
:onkeyup (CSSVE), 43
:onmouseout (CSSNY), 39
:onmouseover (CSSVY), 39
:root (CSS), 27

7 (CSSNG), 44

attr() (CSS), 25

attribute() (CSSMY), 31
attribute-name() (CSSNY), 33, 35
attribute-value() (CSSMNY), 34
element () (CSSNY), 30
element-name() (CSSV®), 33, 35

Abstract Syntax Tree, 57
accumulator, 40

Action Sheets, 49

acyclic event, 41

adding XML elements, 21
adding XML text nodes, 21
AJAX, 55

annotation, 71

AST, 57

attribute-name function, 37
attribute-value function, 37
attribute rule (CSSNY), 35, 37

Behavioral Extension to CSS, 50
BNF, 56
Box-Model, 74

cascading styling, 16
combinator (CSS), 13
combined complexity (CSSM), 29

Configurator, 58

CSS

:root, 27

> 13

+, 13

-, 13

attr(), 25

combinator, 13
declaration, 11
depth-dependant styling, 26
dynamic pseudo-classes, 15
dynamic rendering, 26
functions, 14

grouping, 13

insertion of markup, 24
interpretation, 16
property, 11
pseudo-element, 14
pseudo-selector, 13

rule anatomy, 1

scope, 16

selector, 11

separation of concerns, 19
simple selector, 12
structural pseudo-class, 15
visualization of markup, 24

CSS and XML, 10
CSsSVe

149

:nth-descendant (An+B), 38
:onkeydown, 40, 43
:onkeyup, 43
:onmouseout, 39
:onmouseover, 39

7,44

attribute(), 31
attribute-name (), 33, 35

INDEX

150

attribute-value(), 34
element (), 30
element-name(), 33, 35
attribute rule, 35, 37

declaration, 37

grouping, 36

selector, 35

structural pseudo-selectors, 36
combined complexity, 29
depth-dependant, 38
downward compatibility, 29
dynamic styling, 39
event interpretation, 42
framework, 29
markup querying, 33
markup insertion, 29
structure-independent selection, 44

cyclic event, 41

data terms, 77

declaration (CSS), 11

deleting of XML elements, 20
depth-dependant (CSSNY), 38
depth-dependant styling (CSS), 26
DHTML, 47

DOM, 3

downward compatibility (CSSV%), 29
dummy element, 63

dynamic pseudo-classes (CSS), 15
dynamic styling, 4

Dynamic HTML, 47

dynamic rendering (CSS), 26
dynamic styling (CSSNV®), 39

EBNF, 56

ECMA, 3

event accumulator, 40

event interpretation (CSSV), 42

Flex, 56

FOAF, 72

framework (CSSV¢), 29
functions (CSS), 14

graph-visualization, 76
grouping (CSS), 13

hovering, 2

HTML
intrinsic event attribute, 39
intrinsic event, 3
tool-tip, 62

hyperlink, 27

insertion of markup (CSS), 24
intermediary step, 20

interpretation (CSS), 16

intrinsic event, 3

intrinsic event attribute (HTML), 39
iteration, 19

iterative markup insertion, 22

JFlex, 56
keyboard, 26, 43, 71
lexer, 55

markup insertion

iteratively, 19
markup querying (CSS™V¢), 33
markup insertion (CSSN®), 29
markup visualization, 33
Meta-Initializer, 64
monorama, 45
mouse, 43, 71

panorama, 45
parameterization, 26

parser, 56

PI, 10

Processing Instruction, 10
property (CSS), 11
pseudo-classes, 14
pseudo-element (CSS), 14, 20
pseudo-selector (CSS), 13

RDF, 72

recurrence pattern, 15, 40
reification, 62

rendering, 19

rendering engine, 51

rule anatomy (CSS), 1
run-time evaluation, 66

scope (CSS), 16
selector (CSS), 11

INDEX

INDEX

separation of concerns (CSS), 19

simple selector (CSS), 12

slight transformation, 19

social network, 72

static styling, 3

structural pseudo-class (CSS), 15
structure-independent selection (CSSNV®), 44
Styled Document, 64

Styler-Generator, 61

superimposing, 2

tool-tip, 62
transformation, 19

variadic function, 30

Venkman, 54

virtual root element, 32
visualization, 20

visualization of markup (CSS), 24
visXcerpt, 77

well-formedness, 32

Xcerpt, 77
construction term, 81
data terms, 77
grouping constructs, 81
query term, 81
variable, 81

XPathJS, 66

Yacc, 56

151

152 INDEX

[ABC*99]

[ABSO00]

[AEGR9S]

[AGW99]

[BBSW03]

[BCF+05]

[Ber03]

[BLLJ98]

[BMO5]
[Bos05]

[BPSMMO0]

[BWYG6]

BIBLIOGRAPHY

Sharon Adler, Anders Berglund, Jeff Caruso, Stephen Deach, Tony Graham,
Paul Grosso, Eduardo Gutentag, Alex Milowski, Scott Parnell, Jeremy Richman,
and Steve Zilles. HTML 4.01. W3C, 1999. 3, 39, 47, 64, 70, 71

Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web. From
Relations to Semistructured Data and XML. Morgan Kaufmann, 2000. 1

Vidur Apparao, Brendan Eich, Ramanathan Guha, and Nisheeth Ranjan. Ac-
tion Sheets: A Modular Way of Defining Behavior for XML and HTML. W3C,
1998. 49, 50

Vidur Apparao, Daniel Glazman, and Chris Wilson. Behavioral Extensions to
CSS. W3C, 1999. 50

Sacha Berger, Francois Bry, Sebastian Schaffert, and Christoph Wieser. Xcerpt
and visXcerpt: From Pattern-Based to Visual Querying of XML and Semistruc-
tured Data. In Proceedings of 29th Intl. Conference on Very Large Databases,
2003. 77

Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu, Jonathan
Robie, and Jérome Siméon. XQuery 1.0: An XML Query Language. W3C,
2005. 54

Sacha Berger. Conception of a Graphical Interface for Querying XML. Diploma
thesis, Institute for Informatics, LMU, Munich, 2003. 77, 81, 84

Bert Bos, Hakon Wium Lie, Chris Lilley, and Tan Jacobs. Cascading Style Sheets,
level 2. W3C, 1998. 1, 4, 9, 10, 14, 15, 20, 35, 74

Dan Brickley and Libby Miller. FOAF Vocabulary Specification, 2005. 3, 72

Bert Bos. Cascading Style Sheets Under Construction. W3C, 2005. 1, 10, 15,
38

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. FExtensible
Markup Language (XML) 1.0, 2nd Edition. W3C, 2000. 1, 14, 30, 32, 35, 38,
61

Bert Bos and Hakon Wium. Cascading Style Sheets, level 1. W3C, 1996. 10

153

154

[BWLJ96)]

[CDYY]

[Cla99]

[Cla01]

[DMOO1]

[ECM99)

[HHW+00]

[Kep04]

[LBYY]

[Lie94]

[LS99]

[PAAT00]

[P102]

[SB04]

[Wie05]

BIBLIOGRAPHY

Bert Bos, Hakon Wium, Chris Lilley, and Tan Jacobs. Changes from CSSI.
W3C, 1996. 10

James Clark and Steve DeRose. XML Path Language (XPath) Version 1.0.
W3C, 1999. 48, 63

James Clark. Associating Style Sheets with XML documents. W3C, 1999. http:
//www.w3.org/TR/xml-stylesheet/. 10

James Clark. FEztensible Stylesheet Language (XSL) 1.0. W3C, 2001. 1, 3, 19,
54

Steve DeRose, Eve Maler, and David Orchard. XML Linking Language (XLink)
Version 1.0. W3C, 2001. 27

ECMA. Standard ECMA-262, ECMAScript Language Specification, 1999. 3, 5,
47

Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin Nicol, Jonathan
Robie, Mike Champion, and Steve Byrne. Document Object Model (DOM) Level
2 Core Specification. W3C, 2000. 3, 47

Stephan Kepser. A Simple Proof for the Turing-Completeness of XSLT and
XQuery. In Proceedings of Extreme Markup Languages 2004, Montreal, Canada
(2nd—6th August 2004), 2004. 23

Hakon Wium Lie and Bert Bos. Cascading Style Sheets, designing for the Web.
Addison Wesley, 1999. 10

Hakon Wium Lie. Cascading HTML style sheets — a proposal. W3C, 1994. 9

Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF). W3C,
1999. 3, 72

Steven Pemberton, Daniel Austin, Jonny Axelsson, Tantek Celik, Doug Do-
miniak, Herman Elenbaas, Beth Epperson, Masayasu Ishikawa, Shin’ichi Matsui,
Shane McCarron, Ann Navarro, Subramanian Peruvemba, Rob Relyea, Sebas-
tian Schnitzenbaumer, and Peter Stark. Fatensible HyperText Markup Language
(XHTML) 1.0. W3C, 2000. 10, 62, 69, 70

Steven Pemberton and Masayasu Ishikawa. Link recognition for the XHTML
Family. W3C, 2002. 27

Sebastian Schaffert and Frangois Bry. Querying the Web Reconsidered: A Prac-
tical Introduction to Xcerpt. In Proc. of Extreme Markup Languages, 2004. 3,
7

Christoph Wieser. Toward Extending Stylesheet Languages with Dy-
namic Document Rendering Features, 2005. http://www.pms.ifi.lmu.de/
publikationen/. 1, 9, 29, 45, 50

http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/xml-stylesheet/
http://www.pms.ifi.lmu.de/publikationen/
http://www.pms.ifi.lmu.de/publikationen/

	1 Introduction
	1.1 What is CSS?
	1.2 Shortcomings of Styling Semi-Structured Data Today
	1.3 Objectives of CSSNG
	1.4 Advantages of CSSNG

	2 Cascading Style Sheets (CSS): A brief Introduction
	2.1 The Origin of CSS
	2.2 Separating Design from Content using CSS
	2.3 Structure of CSS
	2.4 Simple Selectors
	2.5 Combinators
	2.6 Grouping
	2.7 Pseudo-selectors
	2.7.1 Pseudo-elements
	2.7.2 CSS Functions
	2.7.3 Structural Pseudo-classes
	2.7.4 Dynamic Pseudo-classes

	2.8 Interpretation of CSS style sheets
	2.9 Styling at Unknown Depth

	3 Limitations of CSS 2.1 and CSS 3
	3.1 Transformation vs. Rendering
	3.1.1 Deleting XML elements
	3.1.2 Deleting parts of XML text nodes
	3.1.3 Adding XML text nodes
	3.1.4 Adding XML elements

	3.2 Insertion of Markup
	3.3 Visualization of Markup
	3.4 Depth-Dependent Styling
	3.5 Dynamic Rendering
	3.6 Hyperlinks

	4 How CSSNG extends CSS 3
	4.1 Framework for the CSSNG extension
	4.1.1 Downward Compatibility
	4.1.2 Combined Complexity

	4.2 Markup Insertion
	4.2.1 CSSNG Function element
	4.2.2 CSSNG Function attribute
	4.2.3 Prevention of Iterative Insertion of Markup
	4.2.4 Well-Formedness

	4.3 Markup Visualization
	4.3.1 Rendering of XML elements
	4.3.2 Rendering of XML attributes using CSSNG Attribute Rules
	4.3.2.1 CSSNG Attribute Selectors
	4.3.2.2 CSSNG Adopting CSS Grouping
	4.3.2.3 Adopting CSS 3 Structural Pseudo-classes
	4.3.2.4 Declaration of CSSNG Attribute Rules

	4.3.3 Well-Formedness of Insertions using Attribute Rules
	4.3.4 Open Issues

	4.4 Depth-dependant Styling
	4.5 Dynamic Styling Generalized
	4.5.1 Recurrence of Events
	4.5.1.1 Permanent Changes on Rendering
	4.5.1.2 Acyclic Events
	4.5.1.3 Cyclic Events
	4.5.1.4 Event Interpretation

	4.5.2 Dynamic Styling Combined
	4.5.3 Extended Input Devices
	4.5.3.1 Mouse
	4.5.3.2 Keyboard

	4.6 Structure-independent Selection

	5 Related Extensions to CSS
	5.1 Dynamic HTML (DHTML)
	5.2 Action Sheets
	5.3 Behavioral Extension to CSS

	6 Prototype of a CSSNG engine
	6.1 Requirements
	6.2 Implementation of the CSSNG Prototype
	6.2.1 Modifying an Existing Rendering Engine toward CSSNG
	6.2.2 Using DHTML for extending a Web browser toward CSSNG
	6.2.3 Choice of Technologies for the CSSNG engine

	6.3 Architecture
	6.3.1 CSSNG Lexer
	6.3.2 CSSNG Parser
	6.3.2.1 Translation of the CSS Grammar to Yacc syntax
	6.3.2.2 Abstract Syntax Tree (AST)

	6.3.3 Configurator
	6.3.3.1 Translation of CSSNG selectors to XPath
	6.3.3.2 Declaration
	6.3.3.3 Markup-Insertion

	6.3.4 Styler-Generator
	6.3.5 Reifier: Representing XML in XHTML
	6.3.6 Meta-Initializer
	6.3.7 Dynamic Styler
	6.3.7.1 Run-time evaluation of CSSNG rules

	7 Proof-of-Concept Applications of CSSNG
	7.1 Rendering of HTML Documents
	7.1.1 Temporarily Superimposing the Table of Contents on Keypress
	7.1.2 Superimposed Notes -- Adapting Footnotes to Web Browsers
	7.1.3 Displaying annotations to Documents

	7.2 Rendering of a FOAF Definition
	7.2.1 A Serialization of RDF data
	7.2.2 Rendering of a FOAF Serialization using CSSNG
	7.2.2.1 Markup Visualization
	7.2.2.2 Folding of parts of a FOAF specification
	7.2.2.3 Graph-Visualization

	7.3 Program Visualization As Textual Program Rendering
	7.3.1 Visualization of Xcerpt Data Terms
	7.3.2 Superimposing of Context Menus
	7.3.3 Visualization of Xcerpt Query Programs
	7.3.4 Highlighting Xcerpt Variables

	8 Conclusion
	8.1 Summary
	8.2 Contributions
	8.3 Further Research Directions

	A Code of the CSSNG engine
	A.1 CSSNG Lexer
	A.2 CSSNG Parser
	A.3 Configurator
	A.4 Styler-Generator
	A.5 Insertion Preprocessor
	A.6 Reifier
	A.7 Meta-Initializer
	A.8 Dynamic Styler

	B Code of the visXcerpt Viewer in CSSNG
	Index
	Bibliography

