UNIVERSITAT
KOBLENZ - LANDAU

A Confluent Connection Calculus

Peter Baumgartner, Norbert Eisinger,
Ulrich Furbach

23/98

@
™ &= Fachberichte
= INFORMATIK

Universitat Koblenz-Landau
Institut fur Informatik, Rheinau 1, D-56075 Koblenz

E-mail: researchreports@infko.uni-koblenz.de,
WWW: http://www.uni-koblenz.de/fb4/

A Confluent Connection Calculus*

Peter Baumgartner Norbert Eisinger Ulrich Furbach

Universitiat Koblenz Universitat Miinchen Universitit Koblenz
Norbert.Eisinger@informatik.

, uli@uni-koblenz.de
uni-muenchen.de

peter@uni-koblenz.de

November 18, 1998

ABSTRACT

This work is concerned with basic issues of the design of calculi and proof pro-
cedures for first-order connection methods and tableaux calculi. Proof procedures
for these type of calculi developed so far suffer from not exploiting proof con-
fluence, and very often unnecessarily rely on a heavily backtrack oriented control
regime.

As a new result, we present a variant of a connection calculus and prove its
strong completeness. This enables the design of backtrack-free control regimes.
To demonstrate that the underlying fairness condition is reasonably implementable
we define an effective search strategy. We show that with the new approach the
search space can be exponentially smaller than those of current, backtracking-
oriented proof procedures based on weak completeness results.

1 INTRODUCTION

This work is concerned with basic issues of the design of calculi and proof procedures
for first-order connection methods and tableaux calculi. Calculi we have in mind include
connection calculi [Bibel, 1987; Eder, 1992], first-order clausal tableaux with rigid vari-
ables [Fitting, 1990], more recent developments like A-ordered tableaux [Klingenbeck
and Hiéhnle, 1994; Hihnle and Klingenbeck, 1996], tableaux with selection function
[Hihnle and Pape, 1997]. Let us refer to all these calculi by the term “rigid variable
methods”. Recently complexity issues for those kinds of calculi have been considered
in [Voronkov, 1998; Voronkov, 1997].

We emphasise that in this paper we do not consider model elimination (ME) [Love-
land, 1968]. Although ME can be presented as a tableau calculus [Letz et al., 1994;
Baumgartner and Furbach, 1993], it is not proof confluent. The same holds for Restart
ME [Baumgartner et al., 1997] and related methods. These calculi are not even proof-
confluent at the propositional level and cannot be treated by the methods presented
here. Nevertheless they are the basis of some high performance theorem provers like
SETHEO [Letz et al., 1992] or Protein [Baumgartner and Furbach, 1994].

*This article will be published in the book: Steffen Holldobler (editor). Intellectics and Computational
Logic — Papers in Honor of Wolfgang Bibel, Kluwer, 1999.

1 INTRODUCTION 2

In this paper we propose a new technique for the design of proof procedures for rigid
variable methods. The new technique is motivated by the desire to get more efficient
proof procedures and implementations thereof than those which have been developed
so far.

The proposed technique should also be applicable to calculi which avoid rigid vari-
ables in the first place, like SATCHMO [Manthey and Bry, 1988], MGTP [Fujita and
Hasegawa, 19911, hyper tableaux [Baumgartner et al., 1996] and ordered semantic hy-
per linking [Plaisted and Zhu, 1997]. Usually the price for getting around rigid variables
in these approaches is that they involve some uninformed ground instantiation in special
cases. These special cases may be irrelevant for most typical applications, but never-
theless these calculi are likely to profit from techniques enabling them to handle rigid
variables as well.

Our new approach is based on the observation that current proof procedures for rigid
variable methods follow the following weak completeness theorem for rigid variable
methods:

Weak completeness: a clause set S is unsatisfiable if and only if there is a
derivation from S which is also a refutation.

The search space thus is the space of derivations; it requires a tentative control regime
such as backtracking, which explores all possible derivations. Proof confluent calculi
like the ones mentioned above, however, should admit a strong completeness theorem
of the form:

Strong completeness: a clause set S is unsatisfiable if and only if every (fair)
derivation from S is a refutation.

Consequently, proof procedures following this theorem can do with an irrevocable con-
trol regime that needs to develop only one single derivation and may safely ignore al-
ternatives as it proceeds. They can thus reuse information which would be lost in a
backtracking intensive approach. Typically they enumerate models but not derivations
(the hyper tableaux calculus [Baumgartner et al., 1996] is an example that enumer-
ates models, model elimination [Loveland, 1968] is an example for the enumeration of
derivations).

Put abstractly, the source to gain efficiency is that there are usually many derivations
for the same model, and all but one derivation can be avoided. Table 1 summarises the
issues addressed so far.

In this paper, we will develop a strong completeness result for a modified connection
calculus (the CCC calculus, Section 3) together with first steps towards a respective
proof procedure.

This result closes a strange gap in Table 1: the connection calculus in [Bibel, 1987]
is proof confluent on the propositional level, but its first-order version is not. This is
the only calculus we are aware of having this property. Although other free-variable
methods, such as the first-order tableaux calculus in Fitting’s book [Fitting, 1990] are
proof-confluent, they are implemented as if they were non-confluent. This yields unnec-
essary inefficiencies, and the main motivation for the work presented in this paper is to
find a cure for them.

2 CURRENT APPROACHES 3

Calculus Completeness Proof procedure Enumeration of
CCC Strong No Backtracking models

Bibel’s prop. CC

Tableaux

Bibel’s first-order CC Weak Backtracking derivations

ME

Table 1: Properties of calculi. CCC is the new confluent connection calculus of Sec-
tion 3. For Bibel’s connection calculi (CC) we refer to [Bibel, 1987].

The rest of this paper is structured as follows: in the next section we will briefly sum-
marise the idea behind connection and tableaux calculi. The problems with them will
be illustrated using an example. Then, after having introduced some preliminaries, we
define our new calculus CCC (confluent connection calculus), suggest a rather general
search strategy and prove its fairness. The subsequent section contains the completeness
proof. Finally we conclude the paper by indicating some future work.

2 CURRENT APPROACHES

Let us first briefly recall the basic idea of current proof procedures for rigid variable
methods and identify the tackled source of inefficiency.

“Usual” proof procedures like the one used in the 3TAP prover [Hihnle ef al., 1994],
the LeanTAP prover [Beckert and Posegga, 1995]), the connection procedure proposed
in [Bibel, 1987], and the one in Fitting’s Book [Fitting, 1990] follow an idea suggested
by Prawitz [Prawitz, 1960] and can be seen as more or less direct translation of the
following formulation of the Herbrand-Skolem-Godel theorem (we can restrict our at-
tention to clause logic here):

A clause set S is unsatisfiable if and only if there is a finite set S’ of variants
of clauses of S and there is a substitution d such that $'d is unsatisfiable,
where S’ is viewed as a propositional clause set.

Now, in accordance with the theorem, proof procedures for rigid variable methods typ-
ically realise the following scheme to prove that given clause set S = {Cj,...,C,} is
unsatisfiable. Following Voronkov [Voronkov, 1998; Voronkov, 1997], we call it The
Procedure:

PROCEDURE 2.1 (The Procedure)
(i) Let u=1 called multiplicity.

(i) Lets*= {cCl,...,C!

cl,....,ci}

2 CURRENT APPROACHES 4

be a set of pairwise variable-disjoint clauses, such that Cij is a variant of C; for
1<i<n 1< j<pu Itisusual to call S¥ an amplification of S.

(iii) Check if there is a substitution & such that S#3 is propositionally unsatisfiable.

(iv) If such a d exists, then stop and return “unsatisfiable”; otherwise let y = u+ 1 and
go to step (ii).
O

Completeness of The Procedure is achieved by, first, a fairness condition in the genera-
tion of the amplifications S* in step (ii), namely by uniformly taking 1,2,3,... variants
of every clause in S in round 1,2,3,. .., and, second, by exhaustively searching for sub-
stitutions in step (iii).

2.1 CONNECTION METHODS

How is step (iii) in The Procedure realised? Our primary interest is in connection meth-
ods (also called matrix methods), hence we will briefly recall the idea: define a matrix
to be any set of quantifier free formulae. For our purposes it suffices to consider clause
sets only. Notice that S* is a matrix. A path through a matrix is obtained by taking ex-
actly one literal from every clause. A connection is a pair of literals, which can be made
complementary by application of a substitution; with each connection we associate a
most general unifier ¢ achieving this. In order to realise step 3, proof procedures for
connection calculi search for a substitution & such that every path through S*d contains
a pair of complementary literals (we say that 8 closes S¥). If such a J exists S must
be unsatisfiable: take some arbitrary ground instance of S#3 and observe that this set
is propositionally unsatisfiable, because any possible way to satisfy a conjunction of
disjunctions is excluded by virtue of the complementary literals.

For 9, it is sufficient to search through the finite space of most general unifiers mak-
ing literals along paths (or branches) complementary (this guarantees the termination
of step (iii). See e.g. [Bibel, 1987] for a concrete procedure to decide if a & exists
which renders all paths complementary. For our purposes it suffices to rephrase the
underlying idea: let py,p2,...,p, be any enumeration of all paths through the cur-
rent amplification. It can be shown by usual lifting techniques that there is & which
simultaneously renders all paths as complementary if and only if there is a sequence
p101, p20102,...,py01- -9y, where §; is a most general unifier associated with a con-
nection in p;0;---9;_1. In other words, by defining 6 := §; --- d,, one recognises that &
can be computed incrementally. Notice, however, that the “there is” quantification is to
be translated in a backtracking-oriented procedure.

EXAMPLE 2.2 (CONNECTION METHOD) Consider the following unsatisfiable clause
set:

§={PX)VQ(X), =P(c), =P(a)V—P(b), =Q(a), ~Q(b)}

We write a matrix as a vertical sequence of clauses. Hence S! and $? look like this':

'In the literature, matrices are also written horizontally.

2 CURRENT APPROACHES 5

52 P(xHvoxh

s P(x")vo(x") P(X?) v Q(X?)
—P(c) —P(c)

—P(a) V —P(b) —P(a) V —P(b)
—=Q(a) —0(a)
—=Q(b) -0(b)

A path is obtained by traversing the matrix from top to bottom, picking up one literal
from every clause.

The Procedure starts with u = 1, i.e. with S'. By looking at the path through
S! which passes through P(X!) one recognises that there are three candidate MGUs
81 = {x'/a}, 8} = {X'/b} and 8} = {X'/c}. Since none of S'8!, S'8} and S'3! is
propositionally unsatisfiable, The Procedure has to consider S2. An incremental com-
putation of a substitution & which closes S?> might proceed as follows: it starts by con-
sidering the connection (P(X'),—=P(c)) which results in 8 = {X!/c}. The next con-
nection would be (Q(X?),—~Q(a)) with MGU &3 = {X?/a}. The combined substitution
8283 = {X!/c,X? /a} does not close the matrix, neither will 8783, where 83 = {X?/b}.
Hence, backtracking occurs until eventually the “right” substitution & = {X!/a, X?/b}
is computed, which closes S2. |

2.2 PROOF SEARCH WITH TABLEAUX

Typically, the search for d in step (iii) is organised as the construction of a free-variable
tableau where a branch in a tableau stands for a path through the current amplification.
According to Bibel [Bibel, 19871, any method which explores paths through a matrix
in a systematical way qualifies as a connection calculi. Undoubtedly, this holds for
tableaux calculi. Hence, tableaux calculi are connection calculi.

For space efficiency reasons it is prohibitive to explicitly represent in step (iii) all
paths through $* in memory. For example, only 15 clauses consisting of 3 literals result
in more than 14 million paths. A respective tableau thus has in the worst case the same
number of branches. Hence, one possibility for step (iii) is to only keep in memory
one path p (or branch in a tableau) at a time. A closing substitution J, is guessed,
and if §, cannot be extended to a substitution & which simultaneously closes all paths,
then backtracking occurs and a different candidate 3, is guessed. If all that fails, then a
completely new tableau construction is started when entering step (iii) in the next round.

We emphasise that this is a common idea in all proof procedures for free-variable
tableaux and connection calculi we are aware of. Let us refer to any such instance
of The Procedure as a ‘“‘tableau procedure”. We are aware that there are numerous
improvements; which, however will not be considered in the present paper, since we are
interested in a basic weakness which is intrinsic to the tableau procedure.

2 CURRENT APPROACHES 6

2.3 DRAWBACK OF CURRENT APPROACHES

The tableau procedure from the previous section suffers from an unnecessarily large
search space. For illustration, and in order to contrast it to our approach below, take the
following example:

EXAMPLE 2.3 (INCESTUOUS GRAPH) Consider the graph in Figure 1. All edges shall
be directed from top to bottom. The graph illustrates in an obvious way the clause set S
to the right of it, which is written in the usual notation for Horn clauses. The R-clauses?
denote the edges between successive layers, and the RT-clauses define the transitive
closure of the R relation. Since the end node is reachable from the start node, the clause
RT (start,end) is a logical consequence of S, in other words, SU {—RT (start,end)} is
unsatisfiable. Notice that the length of any path through the graph from start to end is

Edges:
start
P R(start,a)) + R(start,b;)
aj by R(a1,a2) — R(a],bz) — R(b],az) — R(b],bz) —
a by R(an_l,an) «— R(an_],bn) — R(bn_l,an) — R(bn_l,bn) «—
R(an,end) < R(by,end) <
[N}
an—1 by
M Transitive closure:
p RT(X,Y) < R(X,Y) (RT-1)
fn n RT(X,Z) < RT(X,Y)AR(Y,Z) (RT-2)
\/
end

Figure 1: Incestuous graphs.

n—+ 1, but that there are 2", i.e. exponentially many, different paths from start to end.
However, even a naive procedure which successively marks reachable nodes (in a greedy
way) beginning with szart would terminate after O(n) steps with every node (and hence
also end) as marked. Notably, bottom-up evaluation with hyper resolution [Robinson,
1965] or related calculi like hyper tableau [Baumgartner et al., 1996] or PUHR tableaux
[Bry and Yahya, 1996] would exactly achieve this when applied to the clause set>. [

The tableau procedure performs very poorly on this example. We will discuss why.
In brief, the tableau procedure enumerates proofs, and there are exponentially many
proofs that RT (start,end) is a logical consequence of S, whereas a better approach
here is to enumerate models, and there is only one model of S (which also contains
RT (start,end)).

2By an X-clause we mean any clause whose predicate symbol of the head literal is X.
31t is well-known that in general the time complexity to compute reachability in graphs is O(n3)
(Warshall-algorithm).

2 CURRENT APPROACHES 7

In order to derive RT (start,end), the procedure needs at least u, € O(n) variants
of RT-clauses. This is because with k variants of RT-clauses not more than k nodes
reachable in the graph from start are contained in that subset of the RT-relation which
is a logical consequence of S*8 (for any §). In other words, O(n) variants of RT-clauses

are needed to derive RT (start,end).
More explicitly, consider the following set (RT-2)# of ground instances of (RT-2):

[RT
| RT
[RT
| RT

start,end) < RT (start,b,) A R(by,end)

start,a,) < RT (start,ay—_1) AR(ap—1,an) RT (start,b,) < RT (start,ay_1) AR(an—1,bn)
start,an) < RT (start,b,_1) AR(b,_1,a,) RT (start,b,) < RT (start,b,_1) AR(b,_1,bp)

start,end) < RT (start,a,) A R(ay,end) }

o~~~

[RT(start,ay) « RT(start,a1) AR(ay,az) RT (start,by) < RT (start,ay) AR(ay,b2)
| RT(start,ay) < RT (start,b1) AR(by,a3) RT (start,by) < RT (start,b1) AR(by,b7)

We want to identify a minimal subset X of (RT-2)8 such that X together with (sufficiently
many) ground instances of (RT-1) plus the other facts is unsatisfiable. To do so, proceed
as follows: choose one of the two clauses in the topmost group (a “group” is denoted
by enclosing its clauses in brackets). Depending on the RT-literal in the body, walk
down to the respective left or right group below it. Choose any of the two clauses in that
group. Proceed as in the first step, and go on until a bottommost group is reached.

This selection determines a minimal set X as claimed: obviously, we have to make
all n selections, because otherwise some RT-literal in the body of some clause would
remain unprovable. But these n selections suffice, because the RT -literal in the body of
the clause in the bottommost group can be reduced by an instance of the (RT-1) clause
to an R-literal. This leaves us only with R-literals, which all are given as facts.

Of course, (RT-2)8 is not the full set of ground instances of (RT-2). All other ground
instances of (RT-2) are similar to (RT-2)¢ and they express the relations RT (a;,end),
RT(b1,end), RT (az,end), ... instead of RT (start,end). It is easy to figure out that this
full set of ground instances of (RT-2) comprises O(n?) clauses.

The just sketched procedure allows to identify O(2") different sets X because in
each group 2 selections are possible. Hence, for every path from start to end there is
a corresponding amplification S* of S and there is a ground substitution 7y such that the
path from start to end is represented in S*y by respective instances of the RT-clauses.
That is, there are exponentially many ways to instantiate S* so that RT (start,end) is a
logical consequence of the instantiated set.

This indicates the weakness with the tableau procedure; the general problem with
the tableau procedure is that too much information is lost during computation and so is
computed over and over again. There are two phenomena:

LOSS IN INNER LOOP: Suppose S* as given, for some u, and we are in step (iii) of The
Procedure. Recall from above that the tableau procedure searches through the
space of candidate substitutions & such that $# is propositionally unsatisfiable.
As concluded above, there are O(2") different paths from start to end and each
of these is represented by S™y for some V. If e.g. u=n— 1 there still are O(2")

3 A CONFLUENT CONNECTION CALCULUS 8

different paths, and, again, each of these is represented by a ground instance of
SH. Further, each of these ground instances is obtainable as some instance of S*
which is generated in step (iii) as a solution candidate. None of these, however,
will lead to a proof, because u is not sufficiently large. Thus, there is exponential
search space within step (iii).

LoOSS IN OUTER LOOP: When returning from step (iv) to step (ii), the set of paths
through S* in round u is a strict subset of the set of paths through S**!. Since
all substitutions searched for S* are lost on backtracking, each of these will be
computed again for S*+1.

We note that keeping all the substitutions & for S* when exploring S“*! would be
no solution, as there are exponentially many.

For further illustration of this drawback think of a respective control regime within
a level-saturation resolution proof procedure: after unsuccessful termination of
level n and on entering level n+ 1 one would delete all clauses derived in level n
and start with the plain input set again! Probably no-one would seriously consider
this.

On the other hand, the outer loop on u in The Procedure is a form of iterative deep-
ening, and it is well-known that, in the limit, iterative deepening has the same search
space as a procedure which would instantly guess the “right” u. Consequently, the true
problem lies in the loss of information in the inner loop.

To sum up, there are possibly exponentially many ways to compute the same infor-
mation. In our example, there are O(2¥) ways to prove that RT (start,a;) holds, and all
of these will be computed. In other words, there is a large potential for reuse which is
not exploited.

We thus now turn to our confluent connection calculus which avoids the problem.
Like the mentioned bottom-up evaluation with hyper resolution, it will solve the in-
cestuous graph problem in polynomially many inference steps (see the remarks in the
conclulsions).

3 A CONFLUENT CONNECTION CALCULUS

In this section we indroduce the confluent version of a connection calculus. For this we
briefly have to set up the usual prerequisites. After indroducing the calculus together
with an abstract notion of fairness, we show how this fairness can be realised and finally
we prove strong completeness.

3.1 PRELIMINARIES

For a literal L we denote by |L| the atom of L, i.e. |A| = A and |—A| = A for any atom A.
Literals K and L are complementary iff K and L have different sign and |L| = |K]|.

By var(object) we denote the set of variables occurring in object, where object is
a term, a literal, a clause or a set of one of these. Our notion of a substitution is the

3 A CONFLUENT CONNECTION CALCULUS 9

usual one [Baader and Schulz, 1998], and, as usual, we confuse a substitution with its
homomorphic extension to terms, literals, clauses and clause sets. For a substitution
o, we denote by dom(o) the (finite) set {X | X0 # X}, by cod(c) the set {Xo | X €
dom(o)} and by vcod(o) the set var(cod(c)). Substitution 7y is a ground substitution
iff veod(y) = 0; it is a ground substitution for X iff additionally var(X) C dom(y). A
substitution ¢ is idempotent, if X6 = Xc for each variable X. This is the case iff
dom(c) Nveod(c) = 0.

A clause is a finite disjunction of literals. In the following, S is the given finite
input clause set, and M is a matrix for S, i.e. a set of clauses, each of which is an
instance of a clause from §. It is worth emphasizing that in a matrix we consider clauses
not to be individually universally quantified. That is, all variables are free, and thus
applying a substitution, say, {Y /a} to the matrix {=P(Y), P(Y)V Q(Y)} would affect
all occurrences of Y.

By new(S) we denote any matrix {Dj,...,D,} such that D; is a variant of C; (1 <
i <n), and each D; is variable disjoint with all other D ; and with all clauses in the matrix
given by the context.

A connection with substitution G is a pair of literals (L,K) such that Lc and KG
are complementary. A connection is a pair of literals that is a connection with some
substitution. In these definitions, we replace “substitution ¢ by “MGU ¢” only if
additionally ¢ = unify({|K|,|L|}), where unify returns any most general unifier of its
argument. Below we make use of the following assumption:

ASSUMPTION 3.1 Ifa set Q of atoms is unifiable, then unify(Q) returns an idempotent
most general unifier ¢ with (i) dom(c) C var(Q) and (ii) vcod(c) C var(Q).

Notice that this is a very mild assumption: (i) says that ¢ operates on the variables of M
only, and (ii) says that 6 must not introduce new variables. Clearly, this is satisfied by
any “standard” unification procedure.

A path through a matrix M is a set of literals, obtained by taking exactly one literal
from each clause of M. A path is closed iff it contains a pair of complementary literals,
otherwise it is open. A matrix is open iff there is a (at least one) path through it that is
open, otherwise it is closed.

Notice that there is exactly one path through the “empty” matrix {}, which is the
empty set {} of literals; notice further that this path is open. On the other hand, if a
matrix M contains the empty clause, then there is no path through M, in particular no
open path, and the matrix is closed.

3.2 THE CALCULUS

We are going to define the calculus CCC (Confluent Connection Calculus). The con-
stituents are the inference rules, the notion of a derivation, and a fairness condition for
derivations.

3 A CONFLUENT CONNECTION CALCULUS 10

DEFINITION 3.2 (CCC INFERENCE RULES AND DERIVATION)
The inference rule variant step on M is defined as follows:

M
MU new(S)

The inference rule connection step on (K,L) in M is defined as follows:

M
MUMG

if

1. there are clauses C € M and D € M such that C = KV Rg, D = LV Ry, for some
clauses Rx and Ry, and

2. {K,L} C p for some open path p through M, and
3. (K,L) is a connection with MGU &.

The set (M UMGo) \ M is called the set of new clauses (of this inference step). If condi-
tions 1 to 3 above hold for M and (K, L), we say that a connection step is applicable to
(K,L) in M or that (K, L) is a candidate for a connection step in M.

We say that a connection step on (K,L) in M is progressive if M UMac # M (i.e.
at least one clause in the conclusion is new). If M UMoc = M we say that it is non-
progressive.

Note that a connection step on a connection (K, L) with |K| = |L| is impossible and
therefore neither progressive nor non-progressive — any path containing {K,L} would
be closed, contradicting condition 2. above.

Any sequence

D = ({}=My),M,....M,,...

is called a derivation from S, provided that M, is obtained from M;, which is open, by
a single application of one of the inference rules (for i > 0). A refutation is a derivation
that contains (i.e. ends in) a closed matrix. O

Notice that we do not have inference rules that delete clauses. Thus, every derivation
has the following chain property:

{}=Mo)CM; C---CM,C---

The inclusions are not strict, because non-progressive steps are allowed as well (though
they are not needed at all).

3 A CONFLUENT CONNECTION CALCULUS 11

3.3 EXAMPLE

Suppose the given input clause set is S = {-P(X), P(Y)V QO(Y), =Q(Z)}. Clearly, S
is unsatisfiable. We develop a refutation.

We have to start with the empty matrix M. Only a variant step can be applied to
My, hence M is just a copy of S. For each matrix M; we discuss the possibilities for one
open path through M;, which is indicated by underlining.

M]Z —|P(X) (C])
P(Y)VvO(Y) ()
~0(2) (G3)

The underlined path is open, and we carry out a connection step on (=P(X),P(Y)).
Suppose that unify returns 6; = {Y/X}. This step is progressive and results in the
following matrix*:

M;: -P(X) (@)
P(X)V Q(X) (C>61)

—0(Z) (G3)

P(Y)VQ(Y) ()

Now there are two connections in the underlined open path to which a connection step
is applicable: (Q(X),—Q(Z)) and (-Q(Z),Q(Y)). By applying a connection step to the
former we would obtain a closed matrix, thus ending the refutation. In order to make
the example more illustrative, let us instead apply a connection step to (—Q(Z),Q(Y))
with MGU o, = {Y/Z}. This gives us:

Ms: ~P(X) (@)
P(X)VO(X) (C201)

—0(Z) (C3)

P(Z)V0O(2) (C202)

P(Y)VvQ(Y) ()

Here the underlined path offers three possibilities. First, the connection (Q(X),—=Q(Z))
is still a candidate for a connection step, but we disregard it for the same reason as in
the previous matrix. Second, the connection step on (—=Q(Z),Q(Y)) with MGU {Y /Z}
would not be progressive and therefore not interesting (if unify returned {Z/Y} instead,

4In writing down the matrices, we use the strategy to apply the substitution “in place” to the old matrix,
and append the uninstantiated versions of the clauses affected by the substitution at the bottom. This
suggests that a tableau procedure can be defined as a specific variant of CCC. We plan to investigate this in
the future.

3 A CONFLUENT CONNECTION CALCULUS 12

the step would be progressive, though). Third, a connection step on (—P(X),P(Z)) is
progressive no matter which of the two MGUs unify returns. Suppose that this step is
applied with 63 = {Z/X }:

My: -P(X) (&)
P(X) Vv QO(X) (C261)

—-0(X) (C503)

P(X) Vv QO(X) (C20203)

P(Y)VQ(Y) (@)

—0(Z) (C3)

P(Z)V Q(Z) (C267)

Note that P(X) V Q(X) occurs twice in this listing. Since matrices are sets, deleting one
of these occurrences would represent the same set.

My is closed because either path through the first three clauses alone is closed.
Hence we have found a refutation.

3.4 FAIRNESS

Control strategies for any kind of rule-based system usually depend on some notion
of fairness, when several rules or rule instances are applicable and one of them has to
be selected for the next step. In matrix M, above, two connections were candidates
for progressive connection steps, and one of them was selected to derive M3, while the
other was disregarded. In M3 the disregarded connection was again a candidate for a
progressive connection step and was again disregarded. Fairness is a condition on the
choices made by the strategy to prevent that an applicable step is disregarded forever.

In many cases, especially with control strategies for logical calculi, fairness can
be defined very simply as exhaustiveness: every step that is applicable to any state
will ultimately be performed. There are standard text book procedures to implement
exhaustive strategies effectively; in particular, resolution calculi can be treated this way.

This simple approach is sufficient if the underlying rules are commutative in the
following sense: whenever two steps are applicable in some state, each of them remains
applicable in the successor state produced by the other. If, on the other hand, the rules
are not commutative, then the application of one step might destroy the applicability of
the other. Such a phenomenon makes exhaustiveness an inherent impossibility and turns
fairness into a more difficult question.

Unfortunately, our system is of the non-commutative variety. As an example let

M;={-P(a)VR, P(X), —=Q(a), OY)VPY), ...}

where the underlined path through M; is open. Both (=P(a),P(X)) and (—-Q(a),Q(Y))
are candidates for progressive connection steps in M;. Disregarding the former and

3 A CONFLUENT CONNECTION CALCULUS 13

applying the latter yields

Miyy ={=P(a)VR, P(X), =Q(a), Q(a)VP(a), QY)VP(Y), ...}

and now any path through M, containing the disregarded connection (—P(a),P(X))
is closed. This is a consequence of the presence of the clauses =Q(a) and Q(a) V P(a)
in M. Therefore a connection step on the first connection, which would introduce
the new clause P(a), is no longer applicable — the second condition in the definition of
a connection step can no longer be satisfied for this connection. Note that other paths
through M, are still open, though.

By the way, had we selected the other applicable step in M;, the next matrix would
have been

M. = {-P(@VR, P(a), P(X), =Q(a), Q(V)VP(Y), ..}

in which the disregarded connection (—Q(a), Q(Y)) is still a candidate for a progressive
connection step as shown by the underlined open path through M 11+ Selecting this
connection next we can achieve that the new clauses of both steps are present.

Should the presence of all of these clauses happen to be indispensable for clos-
ing the matrix, it might be that the sequence My,...,M;,M;; cannot be extended to
a refutation whereas the sequence Mo, ..., M;,M. 41 can — this would be a typical case
of non-confluence. Fortunately, it turns out that our calculus is confluent: in all such
situations, either none or both sequences can be continued to a refutation. The example
illustrates why this is not a trivial property.

Coming back to fairness, the simple exhaustiveness definition is not possible, and
we need a more complex definition.

DEFINITION 3.3 (FAIRNESS)
A derivation D = My, M1,...,M,,... s fair iff it is a refutation or else the following two
conditions are satisfied:

1. Forevery i > 0 there is a j > i such that M results from M; by a variant step.

2. Forevery i > 0 and every connection (K, L) with MGU o that is a candidate for a
progressive connection step in M; there is a j > i such that one of the following is
true:

(a) M;c C Mj.
(b) Every path p through M; with {K,L} C p is closed.

O

Condition 1 simply requires variant steps to be performed “every now and then”.

Condition 2.(a) formalises that any progressive connection step that remains appli-
cable sufficiently long must ultimately be performed. More precisely, the condition does
not enforce that this very step be performed, but only that its effect be achieved at some
point — regardless whether by this step or by some other.

3 A CONFLUENT CONNECTION CALCULUS 14

In a nice case, if Condition 2.(a) holds, the connection (K, L) is irrelevant from M
onward, because any connection step on (K,L) in some later matrix would result in
clauses that have been introduced up to M; anyway.

However, perhaps contrary to the intuition, this is not always so. The reason is that
the MGU o of the connection, say {X/Y}, may be applicable to clauses containing the
variable X that are derived only later in the derivation. Hence, applying ¢ at a later
time may well be progressive. Condition 2.(a) covers this possibility: let the later time
be ', then there must again be a time j’ at which the clauses that are new for M; have
been introduced.

Condition 2.(b) captures the case that a connection step loses its applicability be-
cause of other steps.

3.5 ACHIEVING FAIRNESS

Our notion of fairness — Definition 3.3 — is defined as an abstract mathematical property
derivations may or may not enjoy. In order to implement a proof procedure, however, we
need not only the property, but an effective strategy for the construction of a derivation
that is guaranteed to have this property.

Fortunately, the existence of such a strategy can be demonstrated with a fairly simple
approach: use an iteratively increasing bound 7 that serves both as a limit for the term
nesting depth and as a trigger for the application of variant steps.

More precisely, we call a progressive connection step 7'-progressive, if at least one
(but not necessarily all) of its new clauses has a term nesting depth not exceeding 7.
Building on this, we define an effective strategy as follows (in contrast to The Procedure
in Section 2):

PROCEDURE 3.4 (The CCC Procedure)
(i) Initialize M with the empty matrix and 7" with the maximum term nesting depth
of the clauses in S.

(i) While M is open repeat:

(a) Modify M by applying one variant step.
(b) Increment 7.

(c) Modify M by applying a T-progressive connection step.
Repeat this until saturation, i.e., until no such step is applicable any more.

O

The sequence of values of M over time corresponds to the constructed derivation. Let
us denote these values by My, My,...,M;,...

Note that this strategy is indeed irrevocable in the sense described in the introduc-
tion. It never backtracks to previous values of M or makes any other provision for
reconsidering alternatives at a later point in time. A subtle difference to The Procedure
given in Section 2 concerns the generated amplifications. One might think that each

3 A CONFLUENT CONNECTION CALCULUS 15

iteration through (a) creates the next amplification S* of S. However, during the ap-
plication of T-progressive connection steps in phase (c), the current M; is extended by
new clauses yielding M;;, whereas S* in The Procedure would only be instantiated,
but not extended. In a sense our connection steps combine instantiation with (partial)
amplification.

THEOREM 3.5 Any derivation (from any finite input clause set) constructed by Proce-
dure 3.4 is fair.

PROOF. We first make sure that the saturation phase (c) always terminates. Each con-
nection step has to be T-progressive, which means that it introduces at least one instance
Co of some clause with C € M and Cc ¢ M. The clause CG is either a variant or a proper
instance of C. The total number of different variants that may be introduced in this way
is finite, because Assumption 3.1 implies that var(Cc) C var(M), which is finite (only
variant steps introduce new variables, and |var(new(S))| is finite). The total number of
proper instances that may be introduced is also finite, because their term nesting depth
is limited by 7', which remains fixed during (c). Thus, after finitely many applications
of connection steps all applications producing a clause within the term nesting limit will
be used up, and (c) terminates.

Next, if the constructed derivation is a refutation, it is fair by definition. So suppose
it is not a refutation. This means that the procedure above does not terminate.

Each of (a), (b), (c) terminates, therefore nontermination implies that (a) is per-
formed periodically with finite intervals in between. Hence the derivation satisfies Con-
dition 1 in the fairness definition.

For Condition 2 consider any point in time { where a progressive connection step is
applicable to some connection (K, L) in M;, and let Dy,. .., D, be the new clauses of this
step (progressive means that there is at least one such clause).

CASE 1: M; is the value of M at the beginning or during the saturation phase (c) for
some value of T'. Let m be the maximum term nesting depth of the clauses Dy,...,D,,.
If m<T,leti" =i. Otherwise let i’ be the smallest point in time where M} is the value
of M at the beginning of phase (c) and where T has been incremented sufficiently often
so that its value is greater or equal to m. (This may require several iterations of the body
of the while loop, but only finitely many changes to M.)

By construction we have in either case that My is the value of M during the saturation
phase (c) when each of Dj,...,D, has a term nesting depth not exceeding the current
value of T. Now let j be the point in time right after termination of this saturation phase,
when phase (a) would be next. We show that for this j Condition 2.(a) or Condition 2.(b)
holds.

Assume to the contrary that neither holds, i.e., Dy ¢ M ; for one of the clauses
Dy,...,D, and some path p through M; with {K,L} C p is open. This means that
a connection step is applicable to (K,L) in M; and that it is T-progressive, because by
construction the term nesting depth of D; does not exceed 7. Hence the saturation phase

4 COMPLETENESS 16

(c) is not yet completed, contradicting the definition of the time point j. Therefore the
assumption is wrong and Condition 2.(a) or Condition 2.(b) holds.

CASE 2: M; is the value of M at the beginning of phase (a). Then M;; is obtained
from M; by a variant step. It is straightforward to see that in this case any progressive
connection step on (K, L) in M, is also a progressive connection step on (K,L) in M.
Moreover, M;, is the value of M at the beginning of the saturation phase (c), thus we
can construct j > i+ 1 as in the previous case, again satisfying Condition 2.

Altogether this proves all requirements of the fairness definition. |

Of course there are certainly much better strategies. The procedure above is only
meant as a proof that fair derivations can be effectively constructed.

What remains, now, is to show that the fairness of derivations, no matter how
achieved, ensures confluence. This result is established in the next section.

4 COMPLETENESS

DEFINITION 4.1 (BOUNDED DOWNWARD CLOSED CLAUSE SET)
Let S be a finite clause set, and ¥ be a ground substitution for S. Define a set of sets S | ¥
as follows:

S 1 y={S6| S6y= Sy for some substitution 6}

O

That is, S | v is the set of instances of S, (including S, variants of § and S itself) that
can further be instantiated to Sy by v itself. Notice that if S8’ € S | y and S&'8"y= Sy
for some &, then also S8'8" € S | y by simply taking & = &'8". In this sense S | 7 is
“downward closed”.

LEMMA 4.2
S | 1y is a finite set of finite sets.

PROOF. We are given that S is finite. We show that [J(S J 7) is finite. Clearly, this
suffices to show that S | yis a finite set of finite sets. In order for [J(S J) to be infinite,
the clauses C98 in |J(S | y) would have to grow (i) without bound wrt. term depth, or
(ii) for some (at least one) clause Cd in |J(S | y) there would have to be infinitely many
variants of C in |J(S | y). Now, (i) is impossible because the condition C&y = Cy can
not be maintained if the term depth of C9d is higher than that of Cy. Hence, the term
depth of Cd is limited. Similarly, (ii) cannot be the case, because having infinitely many
variants M = {C9y,...,C3,,...} CU(S] 7) of some C§ € |J(S | y) implies that var(M)
is infinite as well. However, Y is a substitution and hence, by definition of substitution,
dom(y) is finite. Thus, Y instantiates only a finite subset of var(M), and there must be
some C6; € M for which C3y is not ground. However, by construction C3; € S8 for
some SO; € S | v, which contradicts with S8,y = Sy the given fact that Sy is ground.
Hence, in sum, [J(S | y) must be a finite set, and so S | yis a finite set of finite sets. W

4 COMPLETENESS 17

LEMMA 4.3

Let y be a ground substitution, let V C dom(y) be a set of variables, and let G be an
idempotent substitution (i.e. X6 = Xo0o for all variables X) with dom(c) C V and
veod(c) C V. If there is a substitution & such that Xc6d = X'y for every X € V then
Xoy= Xy for every X € dom(Y).

PROOF. If X ¢ dom(o) the lemma holds trivially. Hence suppose now that X €
dom(o). Let o be the given substitution such that

X068 =Xy. (D

Now consider var(X). If this set is empty, X o is ground and X 66 = X oy holds trivially,
and with (1) the lemma follows immediately. Hence we consider the case that var(X o)
is nonempty. It suffices to show that

Y3 =Yy, for every Y € var(Xo),)

because this implies X606 = X oYy, and with (1) the lemma follows immediately.
Now, to prove (2), recall that Y € vcod(c) C V and X686 = Xy for every X € V (as
given). Thus, it holds in particular that

Yoo =Yy 3)

We are given that G is idempotent. Hence dom(c) Nvcod(c) = 0. Thus Y ¢ dom(o).
Hence Y =Y o. But then with (3), (2) follows immediately, which remained to be shown.
|

The relevance of this lemma is to prove the following proposition, which serves a
purpose analogous to that of the “lifting lemma” in resolution theory.

PROPOSITION 4.4

Let M be a matrix, p be a path through M, andy be a ground substitution for M. Suppose
that {K,L} C p (for some literals K and L), that (K, L) is a connection with substitution
Y, and that (K, L) is a connection with MGU G. Then My= M.

PROOF. Let V = var({K,L}). By Assumption 3.1, ¢ is an idempotent substitution
such that dom(c) C V and vcod(c) C V. By the defining property of MGUs, there is a
substitution d such that X6d = Xy for every X € V. But then Lemma 4.3 is applicable,
and the result follows immediately. |

DEFINITION 4.5 (ORDERING ON CLAUSE SETS)
Let M and N be finite clause sets. Define M > N iff var(M) D var(N). O

It is easy to see that > is an irreflexive and transitive relation, hence a strict (partial)
ordering. Obviously, since var(M) is always finite, it is well-founded as well.

4 COMPLETENESS 18

LEMMA 4.6 (PATH EXTENSION)

LetD=My,M,,...,M,,... be an infinite derivation from clause set S. Let M be a finite
clause set, and suppose that M C My, for some k. Then there is a path p through M such
that for every i > k there is an open path p; through M; with p C p;.

That is, we can find a path p through M such that p will be part of some open path as
the derivation proceeds.

PROOF. Suppose, to the contrary, that for every path p through M there is ai > k such
that every path p; through M; with p C p; is closed. Let {iy,...,i,} be these time points,
corresponding to the m paths p through M (matrices are finite).

Now consider s = max{ij,...,i,} and let j € {iy,...,i,} arbitrary.

Since j < s the chain property gives us M; C M. From j > k and the chain property
conclude that My C M;. We are given that M C M. Altogether

MC M CM;C M ,forevery j € {i1,...,in}. ()]

Since the derivation is infinite, it contains no closed matrix, and through every open
matrix there is, by definition, an open path. Hence let p; be any open path through M;.
From 4 we conclude that there is an (open) path p C p, through M as well.

By the assumption made at the beginning of the proof, and using the subsequently
defined naming of time points as {ij,...,in}, there is in particular for the just defined
path p a time point j € {iy,...,i,} such that every path p; through M; with p C p; is
closed.

From the fact that p (resp. ps) is a path through M (resp. M) and p C p; it follows
with 4 that there is a path p' through M such that p C p’ C p,. Since py is an open path,
p' is an open path as well (by p’ C py). This, however, yields together with p C p’ a
plain contradiction to the conclusion above, which stated that every path p; through M
with p C p; is closed. Hence, the assumption must have been wrong, and the lemma
holds as claimed. n

The main result of this paper is the following completeness theorem. Note that it
assures completeness, whenever fairness is guaranteed; hence we have strong complete-
ness and thus proof confluence.

THEOREM 4.7 (COMPLETENESS) Let S be the given input clause set. If S is unsatisfi-
able, then every fair derivation from S is a refutation.

PROOF. By Herbrand’s theorem there is a finite set $% of ground instances of clauses
from S which is unsatisfiable. It can be presented as a finite set M of pairwise variable
disjoint variants of clauses from S and a ground substitution 7y such that My = S&.

Now, let D be a fair derivation from § and assume contrary to the theorem that D is
not a refutation.

Since D is fair, the variant rule must be applied infinitely often. Recall that we
never delete clauses from matrices. Hence, at some time point, say /, it will thus be that
M C M; (and hence also M C UiZOMi>- W.l.o.g. we can assume that each clause in M is

4 COMPLETENESS 19

syntactically identical to one of the variants introduced up to M;; otherwise rename M
(and) appropriately.

Now let N € M | ybe a minimal set wrt. > such that N C J;>oM;. We have to check
that such a set N exists: since M C |J;»oM; and it trivially holds that M € M | y it is
clear that M itself might be a candidate to be taken as N. Now, since > is a well-founded
ordering on finite clause sets, and the elements of M | 7y are finite (cf. Lemma 4.2), any
chain (My :=M) =M > -+ = M,_1 = M, with M; € M |, y and M; C J;~oM; must
be finite, and we set N := M,,, provided that this chain cannot be extended to the right.
Thus, N is minimal wrt. >.

The proof technique now is to construct an N’ with N € M |y and N' C ;50 M;
and N = N, contradicting the minimality of N.

Since derivations have the chain property, the property N C |J;>(M; implies by the
fact that N is a finite set that

N C M, , for some k. &)

Therefore we can apply Lemma 4.6 and conclude that there is a path p through N such
that for every i > k there is an open path p; through M; with p C p;. This result will be
used further below — the immediate consequence that this p is open will be needed in a
moment.

Clearly, Nvyis an unsatisfiable ground clause set, because N € M | Y means by defini-
tion that N = M for some & such that M&y= MY, hence Ny= My, and My was assumed
to be ground and unsatisfiable above. Consequently, any path through Ny contains a pair
of complementary literals. In particular, py contains a pair of complementary literals,
say Kvand Ly, where

{K,L}Cp . (©)

In other words, (K, L) is a connection with substitution y. But then (K, L) is a connection
with MGU o, where ¢ is computed by unify. Then Proposition 4.4 is applicable and we
conclude that N6y = NYy. The element Nc has the form No = M(8c) because N = MJ.
For this element we obtain by the previous equation and by Ny = My the properties
M (86)y= Ny= My, which is just the definition for

NoeMly . 7

The next subgoal is to show that NG is strictly smaller than V.

Since p is open and {K,L} C p it trivially holds that |K| # |L|. On the other hand,
G is a most general unifier of |K| and |L|. Hence there is at least one variable, say X,
in {K,L} C p, for which Xc # X, that is, X € dom(c). Now p is a path through N,
therefore X € var(N).
Obviously, var(NG) C var(N) U vcod(c). By Assumption 3.1 vcod(o) C var({K,L}) C
var(N), hence var(NoG) C var(N).
The idempotence of ¢ implies dom(c) N vcod(c) = 0, thus X ¢ vcod(c) and X ¢
var(No). So we have var(Nc) C var(N), which means nothing but

N> No . (8)

5 CONCLUSIONS 20

There remains to be shown that
No C UM, .)

We distinguish two cases, each leading to the conclusion 9.

CASE 1: For every i > k, it is not the case that (K, L) is a candidate for a progressive
connection step in M;.

As concluded above by the application of Lemma 4.6, for every i > k there is an
open path p; through M; with p C p;. With the fact that {K,L} C p (obtained in 6
above) it follows that {K, L} is a candidate for a connection step in M;, for every i > k.

Together with the assumption of this Case 1 we obtain that for every i > k a connec-
tion step on (K, L) in M; exists, but this connection step is non-progressive. Hence, for
every i > k, M;UM;c = M;. But then with N C M}, as obtained in 5 we get the following
chain:

No C Mo C Uik (MiUM;0) = Uik Mi € UisoM; -

CASE 2: This is the complement of Case 1. Hence suppose that for some i > k the
connection (K,L) is a candidate for a progressive connection step in M;. We are given
that the given derivation D is fair (cf. Def. 3.3). In particular, Condition 2 in the defini-
tion of fairness holds wrt. the connection (K,L) and M;. Let j > i be the point in time
claimed there.

Assume that Condition 2.(b) is satisfied (this will yield a contradiction). This means
that every path p’ through M; with {K,L} C p' is closed. But at the same time, however,
observing that j > k (since j > i and i > k) we concluded further above by application of
Lemma 4.6 that there is an open path p; through M; with p C p;. Since {K,L} C p (as
by 6) and thus {K,L} C p;, we arrive at a contradiction to the just assumed by setting
p'=pj

Hence Condition 2.(b) cannot be satisfied, and consequently Condition 2.(a) must
be satisfied. This means that M;6 C M. Recall that derivations have the chain property.
From i > k we thus get M; C M;. Together with N C M) then No C M;c, and so NGC M
follows immediately. Clearly, N6 C |J;>oM; as well. This completes Case 2.

Notice that in both cases we concluded with 9. Altogether, 7, 8, and 9 contradict the
minimality of N.

Hence, the assumption that D is not a refutation must be wrong, and the theorem
holds. |

5 CONCLUSIONS

In this paper we have defined CCC, a confluent connection calculus on the first-order

level. We gave a proof of its strong completeness and hence, of its proof confluence.
We demonstrated the drawback of a naive connection method by means of an ex-

ample and we briefly discussed tableaux oriented proof procedures. More precisely, in

5 CONCLUSIONS 21

Section 2.3 we identified an incestuous graph (IG) problem and argued that a prototyp-
ical proof procedure — The Procedure — exhibits an exponential search space. We did
not rigorously argue that the proposed new proof procedure — The CCC Procedure —
performs any better. However, it is indeed possible to solve the IG problem with The
CCC Procedure in linear time (and space). To see this, observe first that the IG problem
contains no function symbols. Further, it is possible to derive all required instances of
the non-ground clauses (RT-1) and (RT-2) as descendant of one single variant of the
(RT-1) and (RT-2) clauses, respectively. In other words, The CCC procedure will find
the refutation during the first instance of the saturation phase (ii.c).

The CCC Procedure treats matrices, which are sets of clauses. Consequently, the
order of clauses does not play any role for fairness or completeness. Hence, more refined
proof procedures are free to represent sets as (duplicate-free) lists. A good strategy
then would be to append new instances of clauses derived during the saturation phase
or during variant steps at the end of the list, because then it is cheap to identify and
represent those new closed paths that simply extend previously closed paths>.

As a further ingredient, actual implementations of The CCC Procedure should in-
clude a “relevance test”®: consider, for example, a matrix MU {AV B} UM’, and suppose
that p is some path through M, and that for every path p’ through M’ the path pU{A}Up’
is closed. Now, if pU p’ alone is closed (for every p'), then also pU{B}U p' is closed
(for every p'). In other words, if A is not relevant to obtain closed paths through M’
in the context pU{A}, then no search for closed paths in M’ in the context pU{B} is
needed.

Now, using the proposed list representation of matrices, and taking advantage of the
relevance test, it can indeed be shown that The CCC Procedure solves the 1G problem
after O(n) steps.

Our calculus achieves confluence by taking into account only derivations which
obey a fairness condition. This condition is formulated as an abstract formal property of
derivations. It allows to formulate a strong completeness theorem, stating that any fair
derivation leads to a proof, provided that a proof exists at all.

The difficulty was to define the calculus in such a way that an effective fairness
condition can be stated. Defining an effective fair strategy is much less straightforward
than in resolution calculi (CCC is not commutative, unlike resolution).

That it is not trivial was observed already in [Bry and Eisinger, 1996]. There, a
rigid-variable calculus is defined and a strong completeness result is proven. However,
the question how to define an effective fair strategy had to be left open. Thus, our new
approach can be seen to address open issues there.

We came up with a strategy, which is based on a term-depth bound and we proved
that this strategy indeed results in fair derivations.

We are aware of the fact, that this effective strategy is only a first step towards the
design of an efficient proof procedure based on the CCC-calculus. We expect improve-
ments over “usual” tableaux based implementations of connection calculi, which do not

>This strategy resembles much a tableau procedure — one that takes advantage of confluence, however.
6Similar to condensing in [Oppacher and Suen, 1988] or level cut in [Baumgartner et al., 1996]. Al-
though so simple, this technique is very helpful in practice.

5 CONCLUSIONS 22

exploit confluence.

This article is a first step, a lot of work remains to be done. In particular the sat-
uration step within our strategy for achieving fairness needs to be turned into a more
algorithmic version. Another important topic is to avoid the generation of redundant
clauses. To this end regularity, as it is implemented in clausal tableaux would be a first
attempt. A further point would be to investigate under which conditions the variant in-
ference rule can be dispensed with, or how to modify the calculus so that new variants
of input clauses are introduced more sparsely.

ACKNOWLEDGMENTS

We are grateful to Donald Loveland for comments on an earlier version. Norbert
Eisinger was a second reader of a first version of this paper; he is now an author.

REFERENCES

[Baader and Schulz, 1998] Franz Baader and Klaus U. Schulz. Unification Theory. In Wolf-
gang Bibel and Peter H. Schmitt, editors, Automated Deduction. A Basis for Applications.
Kluwer Academic Publishers, 1998.

[Baumgartner and Furbach, 1993] Peter Baumgartner and Ulrich Furbach. Consolution as a
Framework for Comparing Calculi. Journal of Symbolic Computation, 16(5):445-477, 1993.

[Baumgartner and Furbach, 1994] Peter Baumgartner and Ulrich Furbach. PROTEIN: A
PROver with a Theory Extension Interface. In A. Bundy, editor, Automated Deduction —
CADE-12, volume 814 of Lecture Notes in Artificial Intelligence, pages 769-773. Springer,
1994.

[Baumgartner ez al., 1996] Peter Baumgartner, Ulrich Furbach, and Ilkka Niemeld. Hyper
Tableaux. In Proc. JELIA 96, number 1126 in Lecture Notes in Artificial Intelligence. Eu-
ropean Workshop on Logic in Al, Springer, 1996.

[Baumgartner et al., 1997] Peter Baumgartner, Ulrich Furbach, and Frieder Stolzenburg. Com-
puting Answers with Model Elimination. Artificial Intelligence, 90(1-2):135-176, 1997.

[Beckert and Posegga, 1995] Bernhard Beckert and Joachim Posegga. leanT"P: Lean tableau-
based deduction. Journal of Automated Reasoning, 15(3):339-358, 1995.

[Bibel, 1987] W. Bibel. Automated Theorem Proving. Vieweg, 2nd edition, 1987.

[Bry and Eisinger, 1996] Francois Bry and Norbert Eisinger. Unit resolution tableaux. Re-
search Report PMS-FB-1996-2, Institut fiir Informatik, LMU Miinchen, 1996.

[Bry and Yahya, 1996] Francois Bry and Adnan Yahya. Minimal Model Generation with Pos-
itive Unit Hyper-Resolution Tableaux. In P. Miglioli, U. Moscato, D. Mundici, and M. Or-
naghi, editors, Theorem Proving with Analytic Tableaux and Related Methods, number 1071
in Lecture Notes in Artificial Intelligence, pages 143—159. Springer, 1996.

[Eder, 1992] E. Eder. Relative Complexities of First Order Languages. Vieweg, 1992.

[Fitting, 1990] M. Fitting. First Order Logic and Automated Theorem Proving. Texts and
Monographs in Computer Science. Springer, 1990.

[Fujita and Hasegawa, 1991] H. Fujita and R. Hasegawa. A Model Generation Theorem Prover
in KL1 using a Ramified-Stack Algorithm. In Proc. of the Eigth International Conference on
Logic Programming, pages 535-548, Paris, France, 1991.

[Hihnle and Klingenbeck, 1996] Reiner Héhnle and Stefan Klingenbeck. A-Ordered Tableaux.
Journal of Logic and Computation, 6(6):819-833, 1996.

5 CONCLUSIONS 23

[Hihnle and Pape, 1997] Reiner Hihnle and Christian Pape. Ordered tableaux: Extensions and
applications. In Didier Galmiche, editor, Automated Reasoning with Analytic Tableaux and
Related Methods, number 1227 in Lecture Notes in Artificial Intelligence, pages 173-187.
Springer, 1997.

[Héhnle e al., 1994] R. Hihnle, B. Beckert, and S. Gerberding. The Many-Valued Theorem
Prover 3TAP. Interner Bericht 30/94, Universitit Karlsruhe, 1994.

[Klingenbeck and Hihnle, 1994] Stefan Klingenbeck and Reiner Hihnle. Semantic tableaux
with ordering restrictions. In Alan Bundy, editor, Automated Deduction — CADE 12, LNAI
814, pages 708-722, Nancy, France, June 1994. Springer-Verlag.

[Letz er al., 1992] R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A High-
Performance Theorem Prover. Journal of Automated Reasoning, 8(2), 1992.

[Letz er al., 1994] R. Letz, K. Mayr, and C. Goller. Controlled Integrations of the Cut Rule into
Connection Tableau Calculi. Journal of Automated Reasoning, 13, 1994.

[Loveland, 1968] D. Loveland. Mechanical Theorem Proving by Model Elimination. JACM,
15(2), 1968.

[Manthey and Bry, 1988] Rainer Manthey and Frangois Bry. SATCHMO: a theorem prover
implemented in Prolog. In Ewing Lusk and Ross Overbeek, editors, Proceedings of the 9"
Conference on Automated Deduction, Argonne, Illinois, May 1988, volume 310 of Lecture
Notes in Computer Science, pages 415—434. Springer, 1988.

[Oppacher and Suen, 1988] F. Oppacher and E. Suen. HARP: A Tableau-Based Theorem
Prover. Journal of Automated Reasoning, 4:69-100, 1988.

[Plaisted and Zhu, 1997] David A. Plaisted and Yunshan Zhu. Ordered Semantic Hyper Link-
ing. In Proceedings of Fourteenth National Conference on Artificial Intelligence (AAAI-97),
1997.

[Prawitz, 1960] D. Prawitz. An improved proof procedure. Theoria, 26:102—-139, 1960.

[Robinson, 1965] J. A. Robinson. Automated deduction with hyper-resolution. Infernat. J.
Comput. Math., 1:227-234, 1965.

[Voronkov, 1997] Andrej Voronkov. Strategies in rigid-variable methods. In 15th International
Joint Conference on Artificial Intelligence (IJCAI 97), Nagoya, 1997. International Joint Con-
ference on Artificial Intelligence.

[Voronkov, 1998] Andrej Voronkov. Herbrand’s theorem, automated reasoning and semantic
tableaux. In IEEE Symposium on Logic in Computer Science, 1998.

Available Research Reports (since 1995):
1998

23/98 Peter Baumgartner, Norbert Eisinger,
Ulrich Furbach. A Confluent Connection
Calculus.

22/98 Bernt Kullbach, Andreas Winter.
Querying as an Enabling Technology in
Software Reengineering.

21/98 Jiirgen Diz, V.S. Subrahmanian, George
Pick. Meta-Agent Programs.

20/98 Jiirgen Diz, Ulrich Furbach, Ilkka
Niemeld . Nonmonotonic Reasoning:
Towards Efficient Calculi and
Implementations.

19/98 Jiirgen Diz, Steffen Hoélldobler. Inference
Mechanisms in Knowledge-Based Systems:
Theory and Applications (Proceedings of
WS at KI "98).

17/98 Stefan Brass, Jirgen Diz, Teodor C.
Przymusinski. Super Logic Programs.

16/98 Jiirgen Diz. The Logic Programming
Paradigm.

15/98 Stefan Brass, Jirgen Diz, Burkhard
Freitag, Ulrich Zukowsksi.
Transformation-Based Bottom-Up
Computation of the Well-Founded Model.

14/98 Manfred Kamp. GReQL — Eine
Anfragesprache fiir das
GUPRO-Repository — Sprachbeschreibung
(Version 1.2).

12/98 Peter Dahm, Jirgen Ebert, Angelika
Franzke, Manfred Kamp, Andreas Winter.
TGraphen und EER-Schemata — formale
Grundlagen.

11/98 Peter Dahm, Friedbert Widmann. Das
Graphenlabor.

10/98 Jirg Jooss, Thomas Marz. Workflow
Modeling according to WfMC.

9/98 Dieter Ziobel. Schedulability criteria for age
constraint processes in hard real-time

systems.

8/98 Wenjin Lu, Ulrich Furbach. Disjunctive
logic program = Horn Program + Control

program.

7/98 Andreas Schmid. Solution for the counting
to infinity problem of distance vector

routing.

6/98 Ulrich Furbach, Michael Kiihn, Frieder
Stolzenburg. Model-Guided Proof

Debugging.

5/98 Peter Baumgartner, Dorothea Schifer.
Model Elimination with Simplification and

its Application to Software Verification.

Bernt Kullbach, Andreas Winter, Peter
Dahm, Jirgen Ebert. Program
Comprehension in Multi-Language
Systems.

4/98

3/98 Jirgen Diz, Jorge Lobo. Logic
Programming and Nonmonotonic

Reasoning.

Hans-Michael Hanisch, Kurt Lautenbach,
Carlo Simon, Jan Thieme.
Zeitstempelnetze in technischen
Anwendungen.

2/98

1/98 Manfred Kamp. Managing a Multi-File,
Multi-Language Software Repository for
Program Comprehension Tools — A

Generic Approach.
1997

32/97 Peter Baumgartner. Hyper Tableaux —
The Next Generation.

31/97 Jens Woch. A component-based and
abstractivistic Agent Architecture for the
modelling of MAS in the Social Sciences.

30/97 Marcel Bresink. A Software Test-Bed for
Global Illumination Research.

29/97 Marcel Bresink. Deutschsprachige
Terminologie des Radiosity- Verfahrens.

28/97 Jiirgen Ebert, Bernt Kullbach, Andreas
Panse. The Extract-Transform-Rewrite
Cycle - A Step towards MetaCARE.

27/97 Jose Arrazola, Jirgen Diz, Mauricio
Osorio. Confluent Rewriting Systems for
Logic Programming Semantics.

26/97 Lutz Priese. A Note on Nondeterministic
Reversible Computations.

25/97 Stephan Philippi. System modelling using
Object-Oriented Pr/T-Nets.

24/97 Lutz Priese, Yurii Rogojine, Maurice
Margenstern. Finite H-Systems with 3 Test
Tubes are not Predictable.

23/97 Peter Baumgartner (Hrsg.). Jahrestreffen
der GI-Fachgruppe 1.2.1
‘Deduktionssysteme’ — Kurzfassungen der
Vortrage.

22/97 Jens M. Felderhoff, Thomas Marz.
Erkennung semantischer
Integritdtsbedingungen in
Datenbankanwendungen.

21/97 Angelika Franzke. Specifying Object

Oriented Systems using GDMO, ZEST and
SDL’92.

20/97 Angelika Franzke. Recommendations for
an Improvement of GDMO.

19/97 Jirgen Diz, Luis Moniz Pereira, Teodor
Przymusinski. Logic Programming and
Knowledge Representation (LPKR '97)
(Proceedings of the ILPS ’97
Postconference Workshop).

18/97 Lutz Priese, Harro Wimmel. A Uniform
Approach to True-Concurrency and
Interleaving Semantics for Petri Nets.

17/97 Ulrich Furbach (Ed.). IJCAI-97 Workshop
on Model Based Automated Reasoning.

16/97 Jiirgen Diz, Frieder Stolzenburg. A
Framework to Incorporate Non-Monotonic
Reasoning into Constraint Logic
Programming.

15/97 Carlo Simon, Hanno Ridder, Thomas
Marx. The Petri Net Tools Neptun and
Poseidon.

14/97 Juha-Pekka Tolvanen, Andreas
Winter (Eds.). CAiSE’97 — 4th Doctoral
Consortium on Advanced Information
Systems Engineering, Barcelona, June
16-17, 1997, Proceedings.

13/97 Jirgen Ebert, Roger Sittenbach. An OMT
Metamodel.

12/97 Stefan Brass, Jirgen Dix, Teodor
Przymusinski. Super Logic Programs.

11/97 Jirgen Diz, Mauricio Osorio. Towards
Well-Behaved Semantics Suitable for
Aggregation.

10/97 Chandrabose Aravindan, Peter
Baumgartner. A Rational and Efficient
Algorithm for View Deletion in Databases.

Wolfgang Albrecht, Dieter Zibel.
Integrating Fixed Priority and Static
Scheduling to Maintain External
Consistency.

9/97

8/97 Jirgen Ebert, Alexander Fronk.

Operational Semantics of Visual Notations.

Thomas Marz. APRIL - Visualisierung der
Anforderungen.

Jiirgen Ebert, Manfred Kamp, Andreas
Winter. A Generic System to Support
Multi-Level Understanding of
Heterogeneous Software.

5/97 Roger Sittenbach, Jirgen Ebert. A Booch
Metamodel.

7/97

6/97

4/97 Jirgen Dix, Luis Pereira, Teodor
Przymusinski. Prolegomena to Logic
Programming for Non-Monotonic

Reasoning.

3/97 Angelika Franzke. GRAL 2.0: A Reference
Manual.

2/97 Ulrich Furbach. A View to Automated
Reasoning in Artificial Intelligence.

1/97 Chandrabose Aravindan, Jirgen Diz, Ilkka
Niemeld . DisLoP: A Research Project on
Disjunctive Logic Programming.

1996

28/96 Wolfgang Albrecht. Echtzeitplanung fiir
Alters- oder Reaktionszeitanforderungen.

27/96 Kurt Lautenbach. Action Logical
Correctness Proving.

26/96 Frieder Stolzenburg, Stephan Hohne,
Ulrich Koch, Martin Volk. Constraint
Logic Programming for Computational
Linguistics.

25/96 Kurt Lautenbach, Hanno Ridder. Die
Lineare Algebra der
Verklemmungsvermeidung — Ein
Petri-Netz-Ansatz.

24/96 Peter Baumgartner, Ulrich Furbach.
Refinements for Restart Model
Elimination.

23/96 Peter Baumgartner, Peter Fréhlich,
Ulrich Furbach, Wolfgang Nejdl. Tableaux
for Diagnosis Applications.

22/96 Jiirgen Ebert, Roger Sittenbach, Ingar
Uhe. Meta-CASE in Practice: a Case for
KOGGE.

21/96 Harro Wimmel, Lutz Priese. Algebraic
Characterization of Petri Net Pomset
Semantics.

20/96 Wenjin Lu. Minimal Model Generation
Based on E-Hyper Tableaux.

19/96 Frieder Stolzenburg. A Flexible System for
Constraint Disjunctive Logic Programming.

18/96 Ilkka Niemeli (Ed.). Proceedings of the
ECAT’96 Workshop on Integrating
Nonmonotonicity into Automated
Reasoning Systems.

17/96 Jirgen Diz, Luis Moniz Pereira, Teodor
Przymusinski. Non-monotonic Extensions
of Logic Programming: Theory,
Implementation and Applications
(Proceedings of the JICSLP 96
Postconference Workshop W1).

16/96 Chandrabose Aravindan. DisLoP: A
Disjunctive Logic Programming System
Based on PROTEIN Theorem Prover.

15/96 Jirgen Diz, Gerhard Brewka. Knowledge
Representation with Logic Programs.

14/96 Harro Wimmel, Lutz Priese. An
Application of Compositional Petri Net
Semantics.

13/96 Peter Baumgartner, Ulrich Furbach.
Calculi for Disjunctive Logic Programming.

12/96 Klaus Zitzmann. Physically Based Volume
Rendering of Gaseous Objects.

11/96 J. Ebert, A. Winter, P. Dahm, A.
Franzke, R. Siittenbach. Graph Based
Modeling and Implementation with
EER/GRAL.

10/96 Angelika Franzke. Querying Graph
Structures with G2QL.

9/96 Chandrabose Aravindan. An abductive
framework for negation in disjunctive logic

programming.

8/96 Peter Baumgartner, Ulrich Furbach, Ilkka

Niemeld . Hyper Tableaux.

7/96 Ilkka Niemeld, Patrik Simons. Efficient
Implementation of the Well-founded and

Stable Model Semantics.

6/96 Ilkka Niemeld . Implementing

Circumscription Using a Tableau Method.

5/96 Ilkka Niemeli . A Tableau Calculus for

Minimal Model Reasoning.

4/96 Stefan Brass, Jirgen Diz, Teodor. C.
Przymusinski. Characterizations and
Implementation of Static Semantics of

Disjunctive Programs.

3/96 Jirgen Ebert, Manfred Kamp, Andreas
Winter. Generic Support for

Understanding Heterogeneous Software.

2/96 Stefan Brass, Jirgen Diz, Ilkka Niemeld,

Teodor. C. Przymusinski. A Comparison of
STATIC Semantics with D-WFS.

1/96 J. Ebert (Hrsg.). Alternative Konzepte fiir

Sprachen und Rechner, Bad Honnef 1995.
1995

21/95 J. Diz and U. Furbach. Logisches
Programmieren mit Negation und
Disjunktion.

20/95 L. Priese, H. Wimmel. On Some
Compositional Petri Net Semantics.

19/95 J. Ebert, G. Engels. Specification of
Object Life Cycle Definitions.

18/95 J. Diz, D. Gottlob, V. Marek. Reducing
Disjunctive to Non-Disjunctive Semantics
by Shift-Operations.

17/95 P. Baumgartner, J. Diz, U. Furbach, D.
Schdfer, F. Stolzenburg. Deduktion und
Logisches Programmieren.

16/95 Doris Nolte, Lutz Priese. Abstract
Fairness and Semantics.

15/95 Volker Rehrmann (Hrsg.). 1. Workshop
Farbbildverarbeitung.

14/95 Frieder Stolzenburg, Bernd Thomas.
Analysing Rule Sets for the Calculation of
Banking Fees by a Theorem Prover with
Constraints.

13/95 Frieder Stolzenburg.
Membership-Constraints and Complexity
in Logic Programming with Sets.

12/95 Stefan Brass, Jirgen Diz. D-WFS: A
Confluent Calculus and an Equivalent
Characterization..

11/95 Thomas Marz. NetCASE — A Petri Net
based Method for Database Application
Design and Generation.

10/95 Kurt Lautenbach, Hanno Ridder. A
Completion of the S-invariance Technique
by means of Fixed Point Algorithms.

9/95 Christian Fahrner, Thomas Marz, Stephan
Philippi. Integration of Integrity
Constraints into Object-Oriented Database

Schema according to ODMG-93.

8/95 Christoph Steigner, Andreas Weihrauch.

Modelling Timeouts in Protocol Design..

Jiirgen Ebert, Gottfried Vossen.
I-Serializability: Generalized Correctness
for Transaction-Based Environments.

7/95

6/95 P. Baumgartner, S. Brining. A Disjunctive
Positive Refinement of Model Elimination
and its Application to Subsumption

Deletion.

5/95 P. Baumgartner, J. Schumann.
Implementing Restart Model Elimination
and Theory Model Elimination on top of

SETHEO.

4/95 Lutz Priese, Jens Klieber, Raimund
Lakmann, Volker Rehrmann, Rainer
Schian. Echtzeit-Verkehrszeichenerkennung
mit dem Color Structure Code — Ein

Projektbericht.

3/95 Lutz Priese. A Class of Fully Abstract

Semantics for Petri-Nets.

2/95 P. Bauwmgartner, R. Hihnle, J. Posegga
(Hrsg.). 4th Workshop on Theorem
Proving with Analytic Tableaux and
Related Methods — Poster Session and

Short Papers.

1/95 P. Baumgartner, U. Furbach, F.
Stolzenburg. Model Elimination, Logic

Programming and Computing Answers.

