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Abstract

First a new formalism for the analysis of (uninformed) search methods is developed. It
connects search methods with partial orderings. In this way a characterization of the com-
pleteness of a search method and easier completeness checks become possible. Moreover it
simplifies the formulation and the proof of further features.
Second a new uninformed search algorithm is presented. It is complete and memory efficient
and never re-expands nodes. The algorithm is analysed using the previously developed
formalism.
Finally advantages of the new method for the implementation of logic programming lan-
guages are briefly discussed. Especially the efficient processing of (almost) tail recursive
progams and the definition of declarative semantics are addressed.
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1. Introduction

As this is a translation of a German project thesis mainly designed to make the results
available to English-speaking readers, the introduction is skipped here.

2. A Formalism for the Analysis of Traversal-algorithms

At the beginning of this chapter probably a certain question arises: Do we really need a
new formalism for the analysis of traversal-algorithms? This question is justified as the
currently known algorithms may be analysed without such a formalism too. But if you
take a closer look at these analyses you will notice that they are very textual. If already
these simple algorithms require a significant effort when being analysed without a suitable
formalism it is not very promising to try the same for more complex approaches.
We will see that the presented formalism allows fast and brief analyses especially for
completeness. This results particularly from the fact that the question of completeness is
transferred to an equivalent question on partial orderings, so into a more general and
better known field.
But before we are able to start the formalisation and analysis of traversal-algorithms we
first have to find a representation for our data, i.e. the trees.

2.1. Representation of Trees

If you want to represent trees with finite maximum branching factor b ≥ 0 there exists a
simple and practical possibility. The idea is to let the name of a node encode just the path
from the root to the node. To do so the outgoing edges of each node are numbered
0, . . . , b− 1. The name of a node may be simply constructed by collecting the numbers on
the way from the root down to the node. The resulting name is a word out of
{0, . . . , b− 1}∗ then.
In the following always consider Σ := {0, . . . , b− 1}.
So Σ∗ is the set of all possible nodes, and therefore at the same time the node set of the
complete infinite tree with branching factor b. We will see this soon.
To be able to define any arbitrary tree the next definition first selects “suitable” node sets
Ω ⊆ Σ∗.

Definition 2.1.1 (Traversability):

A set Ω ⊆ Σ∗ is called traversable, if u ∈ Ω holds for all uv ∈ Ω.
The set of all traversable Ω ⊆ Σ∗ is denoted by TravΣ.

So a node set is “suitable” if for each node also its ancestors are contained in Ω and
therefore the node is reachable from the “root” ε.
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2. A Formalism for the Analysis of Traversal-algorithms

Finally the definition of a tree:

Definition 2.1.2 (Trees):

Let E := {(w,wi) | w ∈ Σ∗, i ∈ Σ} then (Σ∗, E) defines a complete infinite tree with
branching factor b.
Any tree with maximum out degree b can be obtained by choosing a traversable Ω ⊆ Σ∗
and restricting the edge set E to Ω. The resulting tree is:

(Ω, E|Ω) =
(
Ω,
{(
w,w′

)
∈ E | w,w′ ∈ Ω

})
Instead of (Ω, E|Ω) we will simply write Ω in future.

Remark 2.1.3:

If Ω ⊆ Σ∗ is traversable and non-empty, then the following holds:
1. ε ∈ Ω and ε is the root of tree Ω
2. The depth d of a node w in Ω is exactly the length of its name, i.e. d = |w|
3. Every prefix w′ of a node w = w′v ∈ Ω is an ancestor of w. In particular w′ ∈ Ω is

true.
If |v| = 1, then w′ is the parent node of w.

4. For each node w = v1v2 . . . vk in Ω with k = |w| and vi ∈ Σ holds:
{ε, v1, v1v2, . . . , v1v2 . . . vk} is the path to w in Ω.
This is exactly the set of prefixes of w and for this w actually encodes the path from
the root to itself.

Let’s now introduce some abbreviations for the common relations on the nodes of a tree.

Notation 2.1.4:

Consider Ω traversable and w ∈ Ω. Then define by

• childrenΩ (w) := {w′ ∈ Ω | w′ = wv for some v ∈ Σ}
the set of childrens of w in Ω
• descΩ (w) :=

{
w′ ∈ Ω | w′ = wv for some v ∈ Σ+}

the set of descendants of w in Ω
• parent (w) := w′ with w′v = w for some v ∈ Σ

the parent node of w for w 6= ε

• anc (w) :=
{
w′ | w′v = w for some v ∈ Σ+}

the set of ancestors of w

Frequently one wants to examine a certain level or a certain selection of levels of a tree.
The following notation will be useful for this purpose.
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2.2. What’s an Algorithm?

Notation 2.1.5:

• {≥ n} := {i ∈ N | i ≥ n}
• Ωk := {w ∈ Ω | |w| = k} = Ω ∩ Σk

ΩN := {w ∈ Ω | |w| ∈ N} =
⋃
i∈N

Ωi for N ⊆ N

Ω≥k := Ω{≥k}

Since we now have a practical representation of trees, let’s turn our attention to
algorithms.

2.2. What’s an Algorithm?

First an important remark on the notation:

Notation 2.2.1:

1. In the following there is often talked of a ordinal number α with α 4 ω. However it
should not be necessary to be familiar with ordinal numbers. Such an α simply
stands for a set of the form {0, 1, . . . , n} or ∅ in the finite case (α ≺ ω)and N in the
infinite case (α = ω), each together with the common (well-)order on natural
numbers. The notation is choosen for two reasons: First it calls attention to the
order of the numbers and second the notation avoids to distingiush between finite
and infinite case.

2. If Ω und α are used without any furter specification in the future, it is assumed that:
• Ω ⊆ Σ∗ is traversable
• α 4 ω is an ordinal number

Now let’s face traversal algorithms. Surely one characteristic of a traversal-algorithm is
the order in which it expands the nodes of a tree.
This will be treated in the upcoming definition. For this some abbreviation will be helpful.

Notation 2.2.2:

Let a : α→ Ω be a finite or infinite sequence of nodes in Ω.

1. The position of the first occurrence of a node w in a is referred to as firsta (w) and is
defined as:
firsta (w) := min<

(
a−1 [w]

)
for w ∈ a [α]

2. The position of the first occurrence of a node w in a up from some position n ∈ α is
referred to as firsta (w, n) and is defined as:
firsta (w, n) := min<

(
a−1 [w] ∩ {≥ n}

)
for w ∈ a [α ∩ {≥ n}]

(It holds: firsta (w) = firsta (w, 0))
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2. A Formalism for the Analysis of Traversal-algorithms

Definition 2.2.3 (Traversal-sequence):

Let a : α→ Ω be a finite or infinite sequence of nodes in Ω.
a is called traversal-sequence if for all w occuring in a also its parent node occurs in a and
the first occurence of its parent node is located before the first occurence of w.
Formally:

∀w ∈ a [α] \ {ε} : parent (w) ∈ a [α]︸ ︷︷ ︸
parent(w) occurs in a

∧ firsta (parent (w)) < firsta (w)

It is shown later, that the above characteristic already determines the completeness of an
algorithm. However traversal-sequences don’t tell much about another usual concept of
algorithms, the one of memory. We can assume, that a traversal-algorithm mainly uses
memory for saving a certain set of nodes for later processing. Therefore the memory can
be described as a subset of the nodes of a tree.

Definition 2.2.4 (Traversal-runs and traversal-algorithms 1):

• A traversal-run A : α→ Ω×P (Ω) is a sequence of pairs of a node and a set of nodes
for which is true:

1. The first set of nodes contains exactly the root.
2. For each pair the node has to be a member of the set of nodes.
3. In each step the node of the pair is expanded and its children are added to the

set of nodes. Arbitrary many nodes previously contained in the set of nodes
may be dropped.

4. If a node w is member of the set of nodes for some certain step, then in the
previous step either the set of nodes contained the node itself or its parent node
has been expanded.

Formally:
For α = ∅ there is nothing to define.
Otherwise
1. A (0) = (ε, {ε})
2. ∀n ∈ α : (A)1 (n) ∈ (A)2 (n)
3. ∀n ∈ α : childrenΩ ((A)1 (n)) ⊆ (A)2 (n+ 1)
4. ∀n ∈ α ∀w ∈ (A)2 (n+ 1) : w ∈ (A)2 (n) ∨ parent (w) = (A)1 (n)

Here (A)i is the function, that projects n to the i-th component of A (n).
• A traversal-algorithm is a family (AΩ)Ω∈TravΣ

of traversal-runs. In other words, the
algorithm assigns each tree Ω ∈ TravΣ a traversal-run over this tree.

1 Commonly one would only talk of an algorithm, if the sequence of memory states is computable. But for
the following considerations this restriction is unnescesary and potentially troublesome.
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2.2. What’s an Algorithm?

Notation 2.2.5:

In the following we often write A (n) instead of (A)2 (n), if it is obvious that A (n) is used
in terms of a set.

Each traversal-run can be naturally assigned a traversal-sequence.

Definition 2.2.6 (Induced traversal-sequence):

Let A : α→ Ω×P (Ω) be a traversal-run. The induced traversal-sequence aA : α→ Ω of A
is defined by:

aA (n) = (A)1 (n)

The other way round it would be desirable if we could also obtain a traversal-run for each
traversal-sequence. One reasonable possibility (though not the only one) is given by this
definition:

Definition 2.2.7 (Induced traversal-run):

Let a : α→ Ω be a traversal-sequence. The induced traversal-run Aa : α→ Ω× P (Ω) of a
is defined by:

Aa (0) = (ε, {ε})
Aa (n+ 1) = (a (n+ 1) , (A (n) \Dn) ∪ childrenΩ (a (n))) if n+ 1 ∈ α

where the set Dn is empty or consists of the just expanded node if it (i) will not be
expanded again or (ii) will be expanded again only after its parent node will have been
expanded another time before.

Dn :=



{a (n)} if a (n) /∈ a [> n]︸ ︷︷ ︸
is never expanded again

or

parent (a (n)) ∈ a [> n] and
firsta (a (n) , n+ 1) > firsta (parent (a (n)) , n+ 1)

∅ else

Remark 2.2.8:

• If a traversal-run is induced by a traversal-sequence, then its induced
traversal-sequence is just the original traversal-sequence.

• A traversal-sequence induced by a traversal-run doesn’t necessarily induce the
original traversal-run.

• If a traversal-run is induced by a traversal-sequence without repeated expansion then
in this traversal-run each node will always be deleted after its (first and unique)
expansion. In this way the induced algorithm only saves a minimal amount of nodes
at every point of time that still enables completeness.
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2. A Formalism for the Analysis of Traversal-algorithms

One of the characteristics of a traversal-algorithm we are most interessted in is its
completeness. But what shall completeness mean? The term "completeness"’ is mainly
used in the context of search algorithms and is there used in two different ways:
An algorithm is called complete if it

1. terminates and returns a solution if there is one (e.g., [Pea84] p.75)
2. returns each solution after a finite amount of time

It’s clear that the second possibility implies the first one. In the finite case somehow even
the converse is true. If an algorithm is complete in the sense of 1. it can be easily
extended to a complete algorithm in the sense of 2. , by restarting the algorithm on the
remaining search space after finding a solution.
In the more general context of traversal-algorithms each node is considered to be a
solution. So there is no natural way to generalize the first solution. But the generalisation
of the second possibility is very simple. For traversal-algorithms it just means that each
node (each “solution”) is visited after a finite amount of times. 2

Here the formal definition of completeness:

Definition 2.2.9 (Completeness):

• A traversal-sequence a : α→ Ω is called complete, if it is surjective.
• A traversal-run A : α→ Ω× P (Ω) is called complete, if its induced

traversal-sequence is complete.
• A traversal-algorithm is called complete on T ⊆ TravΣ, if its runs AΩ are complete

for all Ω ∈ T .
• A traversal-algorithm is called finitely complete, if it is complete on
{Ω ∈ TravΣ | |Ω| <∞}.
• A traversal-algorithm is called infinitly complete, if it is complete on
{Ω ∈ TravΣ | |Ω| =∞}.
• A traversal-algorithm is called complete, if it is as well finitely as infinitely complete.
I.e. it is complete on TravΣ in the meaning of the third point.

Remark 2.2.10:

• A traversal-run doesn‘t expand any node repeatedly if and only if its induced
traversal sequence is injective.
• A complete traversal-run without repeated expansion therefore induces a bijective
traversal-sequence.
• If A : α→ Ω× P (Ω) is a complete traversal-run without repeated expansion, then a
node w may not be deleted before its first (and unique) expansion. (results from
condition 1 to 4 in Def. 2.2.4).

2 As a uninformed search algorithm hasn’t got the possibility to rule out parts of the search space the 2.
definition for search algorithms and the one for traversal algorithms are the same for it. This results
from the fact that it has to visit each node to ensure completeness in sense of 2. because it is not able to
determine wether an unvisited node is a solution or not.
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2.2. What’s an Algorithm?

So the completeness of a traversal-algorithm depends only on its induced
traversal-sequence. In the end we would like to use the even more abstract concept of
partial orderings for the analysis of the completeness of an algorithm.
When connecting traversal-sequences and orderings the following observation is important:
A traversal-sequence may be considered running through a sequence of points of time and
expanding some certain node for each of these points of time. Therefore it is quite natural
to order the nodes by the time of their first expansion.
This leads to the term of a representing ordering.

Definition 2.2.11:

Let C be a partial ordering of Ω.
1. compC (w,w′) :⇔ w C w′ ∨ w = w′ ∨ w′ C w, tests if w and w′ are

C-comparable with each other
2. CompC (w) := {w′ ∈ Ω | compC (w,w′)}, is the set of all nodes C-comparable with w.
3. For M,N ⊆ Ω define:
M C N :⇔ ∀m ∈M,n ∈ N : m C n

Definition 2.2.12 (Representing ordering):

A partial ordering C on Ω is called representing ordering of a traversal-sequence a, if the
following holds:
• ∀w,w′ ∈ a [α] : w C w′ ⇔ firsta (w) < firsta (w′)

All nodes occuring in a are ordered by the point of time of there first occurence
• a [α] C CompC (ε) \a [α]

If the representing ordering is unique, it is referred to as Ca.

Remark 2.2.13:

• A complete traversal-sequence has a unique representing ordering and the second
point of the definition is irrelevant. Furthermore the representing ordering is total in
this case.
• In the case of an incomplete traversal-sequence there isn’t an unique representing
ordering. However this ambiguity only results from the different positioning of the
elements of Ω\a [α]
• Two different algorithms may have the same ordering or the same orderings.
• If two traversal-sequences without repeated expansion have the same (sets of)
representing orderings, then the two traversal-sequences are equal.
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2. A Formalism for the Analysis of Traversal-algorithms

In the end we want to use representing orderings for the analysis of completness. Now a
condition on traversal-sequences is introduced which on the one hand is necessary for the
completeness of the travrsal-ordering and on the other hand guarantees that the
representing orderings have some nice properties.
At first glance this might seem a quite strong condition, but we will see immediately after
its definition that it can be checked easily in many cases.

Definition 2.2.14 (Weak completeness):

• A traversal-sequence a : α→ Ω is called weakly complete, if |a [α]| = |Ω|.
• A traversal-run A : α→ Ω× P (Ω) is called weakly complete, if its induced

traversal-sequence is weakly complete.
• A traversal-algorithm is called weakly complete on T ⊆ TravΣ, if its runs AΩ are

weakly complete for all Ω ∈ T .
• A traversal-algorithm is called finitely weakly complete, if it is weakly complete on
{Ω ∈ TravΣ | |Ω| <∞}.
• A traversal-algorithm is called infinitly weakly complete, if it is weakly complete on
{Ω ∈ TravΣ | |Ω| =∞}.
• A traversal-algorithm is called complete, if it is as well finite as infinite weakly
complete. I.e. it is weakly complete on TravΣ in the meaning of the third point.

Lemma 2.2.15:

1. Completeness implies weak completeness.
2. Weak completeness implies finite completeness.
3. In the case of uninformed algorithms weak and finite completeness are equivalent.

Proof:

1. : obvious
2. :
follows from the pigeon-hole principle
3. :
additionally to 2. we have to show, that finite completeness implies weak completeness for
uninformed algorithms.
The folllowing consideration is important in doing so: After the expansion of finitly many
nodes an uninformed algorithm can not determine whether a tree is finite or infinite.
Assume, that the finitly complete algorithm is not weakly complete on an infinite tree Ω.
Then obviusly |aΩ [α]| <∞ holds for the induced traversal-sequence aΩ. Let
m := max< ({|w| | w ∈ aΩ [α]}) and so aΩ [α] ⊆ Ω≤m. As the algorithm is uninformed, it
is not able to distinguish between Ω and Ω≤m+1, because the algorithm doesn’t expand
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2.2. What’s an Algorithm?

any node out of Ωm+1 and above Ωm+1, so in Ω<m+1, the trees are equal. Therefore
aΩ [α] = aΩ≤m+1 [α]. However Ωm+1 6= ∅, as Ω is infinite but finitly branching. On the
other hand aΩ doesn’t expand any node in Ωm+1 and therefore aΩ≤m+1 doesn’t either. It
follows that at least one node in in Ω≤m+1 isn’t visited by aΩ≤m+1 . In other words,∣∣∣aΩ≤m+1 [α]

∣∣∣ < |Ωm+1| <∞. But this contradicts the finite completeness of the algorithm.

A natural question is if proving weak completeness is already as hard as proving
completeness itself. Fortunatelly it isn’t. The following lemma for instance provides a
criterion, which allows to prove amongst others the weak completeness of depth- and
breadth-first-traversal.

Lemma 2.2.16 (Criterion for weak completeness):

If a traversal-algorithm fulfills the conditions
1. Every node is expanded at most once
2. No node, that hasn’t been expanded yet, is deleted
3. The algorithm doesn’t stop, while there are still unexpanded nodes left (in memory)

it is weakly complete.

Furthermore proving weak completeness is only a problem when changing from algorithms
to orderings. But frequently you do it the other way round. First an ordering is defined,
then its completeness is proved and finally you turn to its induced traversal-algorithm.
This algorithm is always weakly complete (Remark 2.3.10).
The next section shows what characteristic the representing orderings of a
traversal-sequence must have to ensure its completeness.
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2. A Formalism for the Analysis of Traversal-algorithms

2.3. Traversal-orderings

It is quite natural to call this characteristic of an ordering completeness, too. By means of
the term representing ordering and the (later defined) induced traversal-sequence of an
ordering we will finally show in Theorem 2.3.13 the equivalence of the two definitions.

Definition 2.3.1 (Completness of an ordering):

A partial ordering C on Ω ⊆ Σ∗ is called complete, if and only if (Ω,C) ∼= α for an ordinal
number α, α 4 ω.

The idea of this definition is that if (Ω,C) ∼= α for an ordinal number α 4 ω there exists no
w ∈ Ω which is greater (with respect to C) than an infinite number of other elements of Ω.
The above definition still covers any partial ordering. Though in the context of
traversal-algorithms it is suitable to slightly restrict the orderings. Analogously to the
restriction on traversal-sequences in Definition 2.2.3 an ancestor of a node should never be
greater than the node itself.
Furthermore at least the nodes that are compareable with the root should be ordered
nicely, i.e. linearly. This is important for the later definition of the induced
traversal-sequence (Definition 2.3.9).

Definition 2.3.2 (Traversal-ordering):

A partial ordering C on traversable Ω ⊆ Σ∗ is called traversal-ordering, if

• it is compatible with the tree-structure of Ω i.e. for all uvw ∈ Ω holds:
compC (u, uvw) ⇒ u E uv E uvw

• CompC (ε) is totally ordered by C

• ∀w ∈ CompC (ε) , w′ ∈ Ω\CompC (ε) : ¬ (w′ C w)

Remark 2.3.3:

• A total traversal-ordering is a topological ordering of Ω
• The representing order Ca of a complete traversal-sequence a is always a
traversal-ordering. (Follows immediately from Def. 2.2.3 and Def. 2.2.12)
• If a representing ordering of a (incomplete) traversal-sequence a : α→ Ω is not a
traversal-ordering, then the only cause is the order of the elements of Ω\a [α].
• For each traversal-sequence there exists a representing traversal-ordering
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2.3. Traversal-orderings

Up to now we do not benefit from the change from traversal-sequences to
traversal-orderings when analysing completeness. The next theorem and the corollary
afterwards will change this. But first we need the function defined in Lemma 2.3.4.

Lemma 2.3.4:

If (Ω,C) is a total ordering and it exists a f : N→ N with Ωk C Ω≥f(k), then the following
function is well-defined:
g : α→ (Ω,C):

g (0) := minC (Ω) (= minC (Ω\g [∅]))
g (n+ 1) := minC (Ω\g [{0, . . . , n}]) , if n+ 1 ∈ α

, where α 4 ω and |α| = |Ω|.

Proof:

Let k := min< ({|w| | w ∈ Ω\g [{0, . . . , n}]}) and w ∈ Ω\g [{0, . . . , n}] with |w| = k.
Then w C Ω≥f(k).
It follows:

∃w ∈ Ω\g [{0, . . . , n}] ∀v ∈ Ω\g [{0, . . . , n}] : w E v

⇔
∃w ∈ (Ω\g [{0, . . . , n}]) ∩ Ω<f(k)∀v ∈ Ω\g [{0, . . . , n}] : w E v

But (Ω\g [{0, . . . , n}]) ∩ Ω<f(k) is a non-empty set, if n+ 1 ∈ α (pigeon-hole principle).
Therefore it exists a minimum in it and this minimum is equal to the one of
Ω\g [{0, . . . , n}].

Theorem 2.3.5 (Characterisation of Completeness):

A total ordering (Ω,C) is complete if and only if ∃f : N→ N with Ωk C Ω≥f(k).

Proof:

“⇒”:

As (Ω,C) is complete, there exists an order-preserving isomorphism h : (Ω,C)→ α with
α 4 ω.

maxk :=
{

0 if Ωk = ∅
max< (h [Ωk]) else

is well-defined, as Ωk is finite.
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2. A Formalism for the Analysis of Traversal-algorithms

Now let fk := max<
({
|w| | w ∈ h−1 [{0, . . . ,maxk}]

})
+ 1.

Then Ω≥fk ∩ h−1 [{0, . . . ,maxk}] = ∅ and therefore
minfk := min< (h [Ω≥fk ]) > maxk,
because otherwise there exists w ∈ Ω≥fk with h (w) ≤ maxk,
so w ∈ h−1 [{0, . . . ,maxk}] and consequently fk > |w|, a contradiction.

Moreover, as h is an order-preserving isomorphism
minC (Ω≥fk) = h−1 (minfk) B h−1 (maxk) = maxC (Ωk) holds and therefore Ωk C Ω≥fk .

Finally define f (k) := fk.

“⇐”
Choose α 4 ω in such a way, that |α| = |Ω|.

Define g : α→ (Ω,C) exactly as in Lemma 2.3.4.
It’s obvious that g is injective and order-preserving. Especially (g [α] ,C) ∼= α.

It’s left to show that g is surjective:
(For the finite case this is trivial. In the infinite case we have to ensure that there is no
element w ∈ Ω which is greater than infinitly many other elements of Ω because the g
constructed above never would reach such an w.)

To do so let w ∈ Ω, |w| =: k. Then:

w ∈ Ωk C Ω≥f(k)

⇒{v ∈ Ω | v E w} ⊆ Ω<f(k) ⊆ Σ<f(k)

⇒{v ∈ Ω | v E w} is a finite set

Let m := |{v ∈ Ω | v E w}| ≥ 1.

Show by induction on m:

g (m− 1) = w

and
g [{0, . . . ,m− 1}] = {v ∈ Ω | v E w}

Initial step m = 1:

m = 1
⇒{v ∈ Ω | v E w} = {w}
⇒w = minC (Ω)
⇒w = g (0) und g [{0}] = {w} = {v ∈ Ω | v E w}

Induction step m+ 1:
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2.3. Traversal-orderings

Let w′ := maxC ({v ∈ Ω | v C w}). Then∣∣{v ∈ Ω | v E w′
}∣∣

= |{v ∈ Ω | v C w}|
= |{v ∈ Ω | v E w} \ {w}|
= m

Induction hypothesis ⇒ g [{0, . . . ,m− 1}] =
{
v ∈ Ω | v E w′

}
= {v ∈ Ω | v C w}

⇒ g (m) = minC (Ω\g [{0, . . . ,m− 1}]) = w

⇒ g [{0, . . . ,m}] = g [{0, . . . ,m− 1}] ∪ {g (m)} = {v ∈ Ω | v E w}

Corollary 2.3.6:

If (Ω,C) is a traversal-ordering, then for the right side of the equivalence the following
holds additionally:

1. It suffices that Ωk C Ωf(k).
2. w.l.o.g. f is monotonically nondecreasing

Proof:

1.

Show: If (Ω,C) is a traversal-ordering, then Ωk C Ωf(k) ⇒ Ωk C Ω≥f(k).

For this let u ∈ Ω≥f(k). Then u = u′v for an u′ ∈ Ωf(k), v ∈ Σ∗.
For all w ∈ Ωk the following holds:

w C u′
Trav.Ord.

E u′v = u

2.

Define f∗ (l) := max0≤i≤l (f (i)). Then f∗ (l) ≥ f (l) and Ω≥f∗(l) ⊆ Ω≥f(l) for all l ∈ N.
Therefore from Ωl C Ω≥f(l) follows that Ωl C Ω≥f∗(l).
Furthermore f∗ is monotonically nondecreasing.

Put algorithmically the first point of the corollary means, that for every level of the tree
there has to exist another deeper level so that non of the nodes at this deeper level is
expanded before all nodes of the original level have been expanded.
In the preceding theorem the totality of the examined ordering is required. But if |Ω| =∞
then the existence of the function f already implies totality.
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2. A Formalism for the Analysis of Traversal-algorithms

Corollary 2.3.7:

If (Ω,C) is a traversal-ordering, |Ω| =∞ and there exists f : N→ N with Ωk C Ω≥f(k),
then C is total and therefore complete.

Proof:

First show by contradiction that |CompC (ε)| =∞
Let m := max< ({|w| | w ∈ CompC (ε)}) and w ∈ CompC (ε) with |w| = m.
It follows that Ω≥f(m) ∩ CompC (ε) = ∅.
But as |Ω| =∞ there exists w′ ∈ Ωf(m) and because of w ∈ Ωm C Ωf(m) we have:
ε C w C w′

However this means that w′ ∈ CompC (ε), a contradiction to the maximality of m.

Now show by contradiction that CompC (ε) = Ω. From this the totality of C on Ω follows
immediately as C is total on CompC (ε).
For this let w ∈ Ωk, w′ ∈ Ωf(k) ∩ CompC (ε) (uses |CompC (ε)| =∞) for a k ∈ N. We have
w C w′.
Then w ∈ CompC (ε) holds, because if not, ¬ (w C w′) does as C is a traversal-ordering. A
contradiction.

The following second characterisation of completeness is particularly useful for showing
incompletness.

Theorem 2.3.8 (Characterisation of Completeness):

A partial ordering (Ω,C) is complete if and only if it is isomorphic to a finite sum of
complete ordinal numbers, where only the last summand may be infinite (i.e. = ω) 3.
An equivalent proposition is, that (Ω,C) is complete if and only if (Ω,C) isomorphic to an
countably infinite sum of finite ordinal numbers.

Proof:

The propositions follow immmediatly from the rules of the arithmetic for ordinal numbers.
Each of the sums above are equal to an α 4 ω.

An example for the use of this characterisation can be found in Section 3.1.2 of the next
chapter.
After having defined what the completeness of an ordering should mean we want to
convince ourself that we have really chosen a suitable definition. So we compare it to the
earlier defined completeness of traversal-sequences.

3 Recall that the addition in the arithmetic for ordinal numbers is generally not commutative.
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2.3. Traversal-orderings

By the term of representing orderings we are able to change from traversal-sequences to
traversal-orderings. The definition of induced traversal-sequences will now establish the
connection in the opposite direction.

Definition 2.3.9 (Induced traversal-sequence):

If (Ω,C) is a traversal-ordering then there is a traversal sequence naturally assigned to it.
It is called the induced traversal-ordering of C and is defined as follows:

aC (0) := minC (CompC (ε))
aC (n+ 1) := minC (CompC (ε) \aC [{0, . . . , n}]) , if n+ 1 ∈ α

, where α 4 ω and |α| = |CompC (ε)|.
a is well-defined.
Furthermore a is injective (follows immediately from the definition) and actually a
traversal-sequence as C is a traversal-ordering.

Proof (Well-definedness):

First of all CompC (ε) is traversable, because C is a traversal-ordering.
Hence CompC (ε) \aC [{0, . . . , n}] decomposes into finitely many trees B1, . . . , Bl.
Let w1, . . . , wl be the roots of these trees. As C is a traversal-ordering we know:
wi E Bi

It follows that minC (CompC (ε) \aC [{0, . . . , n}]) exists and is equal to
minC ({w1, . . . , wl}).

Remark 2.3.10:

A traversal-sequence induced by a total traversal-ordering is always weakly complete.

The next lemma tackles the problem that a traversal-sequence doesn’t necessarily have a
unique representing ordering and that not every representing ordering has to be a
traversal-ordering (see Remark 2.3.3).
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2. A Formalism for the Analysis of Traversal-algorithms

Lemma 2.3.11:

If C and C′ are both representing orderings of a traversal-sequence a, then:
1. If one of the representing orderings is incomplete, then a is incomplete, too.
2. If a is weakly complete, then even

C complete ⇔ C′ complete
is true.
Particularly either all representing orderings of a weakly complete traversal-sequence
are complete or none.

Remark 2.3.12:

Therefore it suffices to consider a single representing ordering when analysing the
completeness of a weakly complete ordering. For this reason we will talk of the
representing ordering Ca in future even in the case of an incomplete (but weakly
complete) traversal-sequence a.
As mentioned earlier weak and finite completeness are equivalent for uninformed
traversal-sequences. In other words, uninformed traversal-sequences are already weakly
complete if they are finitely complete. So for finitely complete, uninformed
traversal-sequences we always have to consider only a single representing ordering Ca.

Theorem 2.3.13 (Equivalence of the completeness definitions):

1. A traversal-sequence is complete in the sense of Definition 2.2.9 if and only if all its
representing orderings are complete according to Definition 2.3.1.

2. A weakly complete traversal-sequence is complete in the sense of Definition 2.2.9 if
and only if its representing ordering is complete according to Definition 2.3.1.

Remark 2.3.14:

• If C is a traversal ordering and aC the induced traversal-sequence, then C is a
representing ordering of aC.
• If C is complete, then the representing ordering of the (complete) induced
traversal-sequence aC is just C itself.

At the end of this section one fact should be emphasized:
To analyse the completeness of an algorithm it suffices to examine its representing
orderings. In the majority of cases it even suffices to consider only a single representing
ordering.
We will see in the next chapter that by means of the induced algorithm it is often possible
to specify a complete algorithm only by its ordering.
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2.4. Memory

2.4. Memory

The definitions of traversal-runs and traversal-algorithms already formalise the concept of
memory: A traversal-run assigns each point of time the current set of memorised nodes.
What we still need is a compatible definition of memory complexity. The definition will
concentrates on the set of memorised nodes and ignores potential administrative
information necessary for implementation. Furthermore the definition has to be suitable
for infinite trees, even if the algorithm never terminates. The following definition does so.
Especially it has the nice property, that it matches the classic definition (maximum of
memory consumption over all point of time) in the case of finite trees.

Definition 2.4.1 (Space complexity):

1. The space complexity mA : N→ N of a traversal-run A is defined as
mA (d) := max< ({|A (n)| | n ∈ α, depthA (n) ≤ d}) 4

where
depthA (n) := max< ({|w| | w ∈ aA [0, . . . , n]})

2. The space complexity MT : N→ N on set T ⊆ TravΣ of a traversal algorithm
(AΩ)Ω∈T is defined as
MT (d) := max< ({mAΩ (d) | Ω ∈ T})

3. The space complexity M : N→ N of a traversal algorithm is defined as
M (d) := MTrav (d)

4see notation 2.2.5 (S.9)
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3. Known Algorithms in the New Formalism

This chapter makes familiar with the just developed formalism and gives some first feeling
of its advantages. For this purpose it is useful to look at the commonly known algorithms
in their new “wrapping”.

Notation 3.0.2:

Let (Ω,C) be a partial ordering and w ∈ Ω.
C (w) := {w′ ∈ Ω | w′ C w}
B (w) := {w′ ∈ Ω | w′ B w}

3.1. Depth-First Traversal

3.1.1. Representation

The depth-first-traversal can be represented easily by the ordering it defines on the nodes
of a tree. Using the names we defined for nodes in Section 2.1 the ordering of the
depth-first-traversal is just the lexicographical ordering on the names of the node.
In formula:
Cdepth=Clex

or
∀w,w′ ∈ Ω : w Cdepth w

′ ⇔ w Clex w
′

It is not hard to convince oneself that the algorithm induced by this ordering keeps
exactly those nodes in memory that a typyical implementation of the depth-first-traversal
would keep too.
depth denotes the traversal ordering Cdepth induced by aCdepth .5

3.1.2. Incompleteness

It is quite obvious that the depth-first-traversal cannot be complete on infinite trees. As a
single counter-example suffices to show incompleteness the proof could be done well
without the formalism of course. However the following arguments show two things:

5 This is a very natural notation as Cdepth is the representing ordering of aCdepth (or rather depth)
in sense of remark 2.3.12.
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3.2. Breadth-First-Traversal

First the formalism allows to put propositions like “The depth-first-traversal never returns
from the first infinite branch” precisely.
Second you are able in a sense to “calculate” incompleteness.
But now the formal proof of incompleteness:
If Ω contains an infinite number of nodes it also contains an infinite branch (lemma by
König). Let t ∈ Σω be the lexicographical first infinite branch in Ω. The set of prefixes
T ⊆ Ω of t is just the set of nodes on t. Let S := {w ∈ Ω | T Bdepth w} and
U := {w ∈ Ω | T Cdepth w}. If U 6= ∅ then the argumentation may be continued in two
ways:
Possibility 1 (using Theorem 2.3.5):
∃w ∈ Ω : T Cdepth w

and because of T ∩ Ωn 6= ∅ for all n ∈ N also
∃w ∈ Ω∀n ∈ N∃w′ ∈ Ωn : w′ Cdepth w

It follows (k = |w|):
∃k ∈ N∀n ∈ N : Ωk 6depth Ωn

Incompleteness now follows from Theorem 2.3.5.
Possibility 2 (using Theorem 2.3.8):
S Cdepth T Cdepth U holds. The smallest ordinal number β that fulfills this condition6 is
β = |S|︸︷︷︸

∼=k≺ω

+ |T |︸︷︷︸
∼=ω

+ |U |︸︷︷︸
∼=α�0

� ω

Please note:
In general the lexicographical ordering is not a well-ordering. Particularly (Ω,Cdepth) ∼= β
is generally not true. But the consideration above shows, that even if (Ω,Cdepth) were
well-ordered it would still be incomplete.

3.2. Breadth-First-Traversal

3.2.1. Representation

Also the breadth-first-traversal can be easily represented by the ordering it defines. But
instead of covering only the breadth-first-traversal the following analysis will cover an
abstraction of it, the A∗-Search7. This additionally shows that our formalism is useful not
only for uninformed but also for informed algorithms.
A characteristic of the A∗-algorithm is its optimistic cost estimation function
f (w) = g (w) + h (w). Here g denotes the costs that have as far incurred on the way to w
and h the optimistically estimated cost remaining for the way from w to a goal.

6 An ordinal number β fullfills the condition S Cdepth T Cdepth U ,
if there is a isomporphic well-ordering (Ω,C), which fullfills the condition.

7 The A∗-algorithm doesn’t exlude any node from search. It does only prioritize more promissing nodes.
When trying to find all solutions it finally traverses the whole tree.
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The ordering of the A∗-algorithm is given by:
w CA∗ w

′ ⇔ (f (w) , w) C (f (w′) , w′)⇔ f (w) < f (w′) or f (w) = f (w′) ∧ w Clex w
′

Again one can easily convince oneself that the algorithm induced by the ordering above
behaves just as expected i.e. like a typical A∗-implementation.
The bradth-first-traversal is obtained by setting g (w) = |w| and h (w) = 1.
Then the following holds:
Ωk Cbreadth Ωk+1

∀w,w′ ∈ Ωk : w Cbreadth w
′ ⇔ w Clex w

′

3.2.2. Completeness

Using theorem 2.3.5 the completeness of the A∗-algorithm can be shown very quickly.

Ωk CA∗ Ω(max<(f [Ωk]) + 1) ,

is true because for w ∈ Ωk and w′ ∈ Ω(max<(f [Ωk]) + 1)

f (w′) ≥ g (w′) ≥ |w′| = max< (f [Ωk]) + 1 > max< (f [Ωk]) ≥ f (w)

holds and therefore w CA∗ w
′.

So together with function k 7→ max< (f [Ωk]) + 1 Theorem 2.3.5 can be applied and the
A∗-algorithm is proofed to be complete.
In the special case of the breadt-first-traversal completeness can be shown very quickly by
means of arithmetic for ordinal numbers. (Theorem 2.3.8) To do so one only has to
convince oneself that

Cbreadth
∼=

+∞∑
i=0
|Ωi| 4 ω

holds.
Compared with the proof in [Pea84] and [Nil80] the argumentation above is extremely
short an precise. Due to its formal character it doesn’t even need a deeper understanding
of the concrete procedure of the A∗-algorithm. So at this point it already shows up that it
is useful to analyse algorithms on this more abstract level.
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3.3. Iterative Depth-First-Traversal

3.3.1. Representation

Definition 3.3.1:

Let α1 and α2 be ordinal numbers, Ω1 and Ω2 be traversable and let there exist functions
a1 : α1 → Ω1 and a2 : α2 → Ω2.
The function (a1 ; a2) : (α1 + α2)→ (Ω1 ∪ Ω2) is defined by:
if α1 is finite

(a1 ; a2) (n) :=
{
a1 (n) if n < α1

a2 (n− α1) else
or in general

(a1 ; a2) (n) :=
{
a1 (n) if n ∈ I [{1} × α1]
a2 (n) if n ∈ I [{2} × α2]

, where I : ({1} × α1 ∪ {2} × α2)→ α1 + α2 is the isomorphism with I [{1} × α1] ∼= α1,
I [{2} × α2] ∼= α2 and I [{1} × α1] < I [{2} × α2].

Remark 3.3.2:

If a1 and a2 are traversal-sequences then (a1 ; a2) is a traversal-sequence too.

idepth := depth≤0 ; depth≤1 ; · · · ; depthmax({|w| | w∈Ω}) =
max({|w| | w∈Ω});

i=0
depth≤i

Here depth≤i denotes the traversal-sequence of the depth-first-traversal on tree Ω≤i.
For |Ω| =∞ let max ({|w| | w ∈ Ω}) :=∞.

3.3.2. Completeness

It is easy to see that Cbreadth is a representing ordering of idepth. But before we can
restrict the analysis of completeness to Cbreadth we first have to show the weak
completeness of idepth. Doing so the following observation is very useful:

Lemma 3.3.3:

If a is a traversal-sequence, b is a weakly complete traversal-sequence and moreover b is a
subsequence of a then a is weakly complete too.
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As Cdepth=Clex is total, it follows by Remark 2.3.10 that the traversal-sequence depth of
the depth-first-search is weakly complete. Furthermore you can easily convince yourself
that depth is a subsequence of idepth. In the finite case for instance
depth = depthmax({|w| | w∈Ω}) holds.
Therefore idepth is weakly complete according to Lemma 3.3.3.
So we can now refer to idepth (remark 2.3.12) as the representing ordering
Cidepth=Cbreadth.
As known Cbreadth is complete, consequently Cidepth is also complete and finally idepth is
according to Theorem 2.3.13 point 2.
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4. The D&B-traversal and its Family

This chapter now presents a possibility to abtain an algorithm that has non of the
weaknesses incompleteness, high memory consumption or repeated expansion.

4.1. Intuition

The basic idea behind D&B-traversal is very simple: A depth-first-traversal and a
breadth-first-traversal are interleaved. Thereby the depth-first-traversal provides quick
advance in the search-space and the breadt-first-traversal guarantees completeness. The
actually interesting question is how fast the depth-first-traversal has to and how fast it
may advance so that it does not consume too much memory on the one hand but still
guarantees completeness on the other hand.
The following sequence of images is to convey a feeling for it.8
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The images show that the depth-first-traversal advances much faster into depth than the
breadth-first-traversal. Though the crucial point is that on the one hand the depth of the
depth-first-traversal is bounded by a function of the depth of the breadth-first traversal
but on the other hand (just the other way round) the depth of the breadth-first-traversal
is bounded by a function of the depth of the depth-first-traversal.9Both functions should
be monotonously growing and ideally one of them is (essentially) the inverse function of
the other. For that reason in following only the first of the two functions mentioned
appears, i.e. only the function i 7→ fi of the depth of the breadth-first-traversal that
bounds the depth of the depth-first-traversal.
Let such a function i 7→ fi that fullfills the conditions

fi > i

fi+1 > fi

be given.

8Here fi := 2i.
9 Plese note that though we speak of depth- and breadth-first-traversal every node is still expanded only
once.
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Obviously the fi-th levels Ωfi then are of great significance. Especially the
lexicographically smallest elements of these fi-th levels play an leading role. They are
called pivot-nodes because they represent the depth-limits in tree Ω. Based on this idea it
is possible to define node sets Si ⊆ Ω for each si which are traversed one after another as
implied by the following pseudo code.

Definition 4.1.1:

imax := max ({i | Ωfi 6= ∅})
for |Ω| =∞ set imax :=∞
Ω−1 := ∅
si := minlex (Ωfi) for 0 ≤ i ≤ imax

Si :=

Clex (si)︸ ︷︷ ︸
:=Di−1

∪ Ωi−1︸ ︷︷ ︸
:=Bi−1

 \i−1⋃
j=0

(Sj ∪ {sj})︸ ︷︷ ︸
:=Xi−1

for 0 ≤ i ≤ imax

R := Ω\
imax⋃
j=0

(Sj ∪ {sj})

Remark 4.1.2:

• si ∈ Ωfi so |si| = fi

• Each of the sets Si respectively R is finite.
• If imax =∞ then R = ∅.

The D&B-traversal now can be illustrated by the following pseudo code.

while i < imax do
foreach w ∈ Si do 10

expand (w )
end
expand (si )
++i

end
foreach w ∈ R do 10

expand (w )
end

One thing should be added to the code above: It only illustrates the intended effect with
regard to the order of expansion. It isn’t a possible implementation of the algorithm.
10 In the end the order in which it is iterated over the nodes is not completely free as the code may

suggest. But as the concrete restrictions do not contribute to a better understsnding at this time they
are introduced later on page 32.
In the following images it is always iterated over the sets in lexicographical order.
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4.1. Intuition

The reason is very simple: An uninformed algorithm only knows the structure of the Si
after it already has traversed them. But the code above needs this information before the
first traversal of the sets. Chapter 5 shows some practicable possibilities for
implementation.
The first of the following sequences of images corresponds to the preceding one. The only
difference is that the pivot-nodes si and the sets Si are marked instead of the levels fi.
The sequence shows the effect of the definition on the infinite, complete (binary) tree. The
three sequences of images after it illustrate the behaviour of the algorithm on other
(binary) trees.11
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11 The function used in each case is fi = 2i.
For general trees of degree b analogous images can be obtained with functions fi = bi
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The D&B-traversal has an interesting effect which shows up, when comparing the images
for the finite tree with those for the infinite trees. As in a finite tree the depth of the
depth-first-traversal is limited by the finite depth of the tree and the depth of the
breadth-first-traversal is limited by a function of the depth of the depth-first-traversal the
breadth-first-traversal stops after the maximal depth in the tree has been reached. In
other words on finite trees the D&B-algorithm does behave almost like the common
depth-first-traversal. The other way round on infinite trees the depth-first-traversal "‘gets
lost"’ in the first infinite branch and therefore most of the tree is processed by the
breadth-first-traversal. One could say that on infinite trees the algorithm behaves almost
like a breadth-first-search. If you consider the depth-first-traversal appropriate for finite
trees and the breadth-first-traversal appropriate for infinite trees then the D&B-algorithm
somehow "‘chooses"’ the appropriate algorithm for the concrete tree. On infinite trees one
might prefer to use the iterative depth-first-search instead of the breadt-first-search.

4.2. The Family

Another interesting property of this approach is that using suitable functions fi a family of
algorithms in parameter c ∈ N ∪ {∞} may be specified which has the following properties:

• For c ≥ 1 the algorithm is complete.
• For 1 ≤ c <∞ it has a polynomial space complexity of O(dc).
• The algorithm for c = 0 corresponds to the depth-first-traversal.
• The algorithm for c =∞ corresponds to the breadth-first-traversal.

Practically the required functions can be represented as a single parametrised function fc,i
with parameter c. A natural candidate is fc,i := bb

i
c c 12. But this function hasn’t got all

necessary properties (except for c = 1), in particular it is not strictly monotonically
increasing. However the function fc,i := bb

i
c c+ i 12 is suitable.

Why such parameterability might be useful? By means of parameter c one is able to
express how much memory one want to spend for completeness. Now it is possible to
choose not only the two extremes, depth- and breadth-first-traversal which spend either all
or nothing for completeness. Instead almost arbitrary gradations in-between those two
extremes are available. We will see later that the parameter c may be integrated in the
implementation. That means, that all algorithms of the whole family only need a single
implementation. Actually it is even possible to adapt the parameter dynamically i.e.
during the traversal.
Chapter 5 presents such an implementation. The fundamental idea of that implementation
derives from the formal analysis of the algorithms which follows now.

12 Consider i
∞ = 0, i0 =∞, b∞ =∞ and Ω∞ = ∅.
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4.3. Formal

Initially some words on the structure of the formal analysis. At first an axiomatic
characterisation of the set based Definition 4.1.1 is given and the equivalence of the
original definition and the characterisation is shown. On the one hand the characterisation
allows to quickly conclude completeness. On the other hand it is also useful for the proof
of the space complexity of the algorithms. Finally it gives us two invariants which will be
used in Chapter 5. The proof of space complexity then completes the formal analysis.
At this point please recall the previously introduced Notation 3.0.2 on page 22. It is used
extensively in the following.
As the new algorithm is a combination of depth- and breadth-first-traversal, it’s a natural
idea to reconsider the axiomatic characterisation of those. (see Chapter 3).
The depth-first-traversal is described by the formula

∀w,w′ ∈ Ω : w Cdepth w
′ ⇔ w Clex w

′

or alternatively by

∀w ∈ Ωk : Clex (w) Cdepth w (DEPTH)

The breadth-first-traversal is characterised by the formulas

1. Ωk Cbreadth Ωk+1

2. ∀w,w′ ∈ Ωk : w Cbreadth w
′ ⇔ w Clex w

′ (BREADTH)

The D&B-traversal can be characterised as follows:

1. Ωk Cd&b Ωfk+1

2. ∀w,w′ ∈ Ωk : w Cd&b w
′ ⇔ w Clex w

′

3. ∀w ∈ Ωk : Clex (w) Cd&b w ∨ ∃w′ ∈ Ωfk : w′ Cd&b w

(D&B) 13

It’s remarkable the formulas above may be interpreted as combination of those of the
breadth- and depth-first-traversal. For example the first two formulas are very similar to
those of the breadth-first-traversal. The only difference is, that the first formula is a little
bit less restrictive (which enables the depth-first-traversal to work). Likewise the first part
of the third formula is taken immediatelly from depth-first-traversal. Here the second part
of the disjuncton makes the complete formula less restrictive (which enables the
breadth-first-traversal to work). By the way the required w′ ∈ Ωfk can be considered to be
the sk from Definition 4.1.1.
The functions used above are again restricted as follows:

fi > i

fi+1 > fi

13 A intuitive meaning of the formulas is given in Chapter 5.
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Next Definition 4.1.1 has to be transfered to orderings. Doing so is quite easy. One only
needs an ordering C with S0 C s0 C S1 C s1 C · · · C Simax C simax C R.
Such an ordering can be obtained by the arithmetic for ordinal numbers as

(Ω,C) =
imax∑
j=0

((Sj ,Cj) + {sj}) + (R,CR) , where Cj and CR are linear orderings of the

sets Sj and R.
Definition 4.1.1 (S.28) as well as the following pseudo code do not restrict the order in
which the nodes of sets Si and R are traversed. In so far any orderings could be chosen for
Cj and CR. Actually these orderings should be restricted a little bit.14

The matter is the following: Definition 4.1.1 as well as the images in Section 4.1 show that
the sets Sj and R are composed of two parts: First there are the remaining nodes in Ωj−1
or Ωimax i.e. the nodes of the (j − 1)-th or imax-th level. In each of these levels the nodes
should be expanded in lexicographical order (“from left to right”). The part not lying on
these levels, so the part of Sj or R reaching into depth, Sj\Ωj−1 or R\Ωimax should also be
expanded in lexicographical order. This is similar to the procedure of the
depth-first-traversal.
It should be remarked that this does not determine the order of the expansion of Sj and R
strictly. This is only the case on the sets Sj ∩ Ωj−1 and R ∩ Ωimax or Sj\Ωj−1 and
R\Ωimax . But how the sets Sj ∩ Ωj−1 and Sj\Ωj−1 or R ∩ Ωimax und R\Ωimax are
interleaved, is not determined.

Definition 4.3.1 (Addition to Definition 4.1.1):

In the context of Definition 4.1.1 let C be a partial ordering with the following properties:
1. S0 C s0 C S1 C s1 C · · · C Simax C simax C R

2. ∀w,w′ ∈ Si ∩ Ωi−1 : w C w′ ⇔ w Clex w
′

3. ∀w,w′ ∈ Si\Ωi−1 : w C w′ ⇔ w Clex w
′

4. ∀w,w′ ∈ R ∩ Ωimax : w C w′ ⇔ w Clex w
′

5. ∀w,w′ ∈ R\Ωimax : w C w′ ⇔ w Clex w
′

Remark 4.3.2:

The requirements of Definition 4.3.1 particularly guarantee that C is a traversal-ordering.

Here an example for an ordering which fullfils the specified conditions. This ordering
formalises the strategy of always letting the depth-first-traversal run as long as permited
by the current depth of the breadth-first-traversal and then to carry on with the
breadth-first-traversal just until it reaches the next greater depth that allows to continue
the depth-first-traversal. The images in Section 4.1 used this ordering.

14 Up to now the restriction of the order in which the nodes of the sets Si and R are traversed has not been
introduced, because it does not contibute to the main idea and would have complicated its representaion.
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Example 4.3.3:

(Si,Ci) =
(
Si ∩Clex (si) ,Clex

)
+
((
Si\Clex (si)

)
∩ Ωi−1,Clex

)
(R,CR) = (R,Clex)

4.3.1. Completeness

We want to show that Definition 4.1.1 together with Definition 4.3.1 describes exactly the
models of (D&B).
First we show that each ordering that satisfies Definition 4.1.1 and 4.3.1 is a model of
(D&B).

Lemma 4.3.4:

If C satisfies Definition 4.1.1 and 4.3.1 then

M :=
k⋃
j=0

(Sj ∪ {sj}) ∪ Sk+1 C Ωfk+1

holds.

Proof:

First we show M ⊆ Ω<fk+1 .
Let w ∈M .
Case w ∈ Ωi for i ≤ k :
w ∈ Ωi ⊆ Ω<fk+1

Case w ∈Clex (si) for i ≤ k + 1:
For all w′ ∈ Ωfi , si E w′ holds because si Clex w

′ by definition and so w′ /∈Clex (si).

Furthermore w′ /∈ Ωj for j ≤ i as i < fi. Therefore w′ /∈
i−1⋃
j=0

(Sj ∪ {sj}) ∪ Si and thus

w′ 6 si.

w ∈Clex (si) C si E Ωfi

C Trav.Ordnung
E Ω≥fk+1

Therefore w ∈ Ω<fk+1 .
Case w = si for i ≤ k:

w = si ∈ Ωfi

monotonicity of f
⊆ Ω<fk+1

From this M ⊆ Ω<fk+1 follows, with that also M ∩ Ωfk+1 = ∅ and finally M C Ωfk+1 by
the definition of M and Definition 4.3.1(1).
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Lemma 4.3.5:

If C satisfies Definition 4.1.1 and 4.3.1 then Ωk C Ωfk+1 holds.

Proof:

For k ≥ imax this is obvious as Ωfk+1 = ∅.
For k < imax the following holds:

Ωk ⊆
k⋃
j=0

(Sj ∪ {sj}) ∪ Sk+1 =: M and M C Ωfk+1

Lemma 4.3.6:

If C satisfies Definition 4.1.1 and 4.3.1 then ∀w,w′ ∈ Ωk : w C w′ ⇔ w Clex w
′ holds.

Proof:

Case w,w′ ∈ Sk+1: clear as w,w′ ∈ Sk+1 ∩ Ωk

Case w,w′ ∈ Si für i ≤ k: clear as w,w′ ∈ Si\Ωi−1

Case w ∈ Si ∪ {si} , w′ ∈ Sj ∪ {sj} with i < j ≤ k + 1:
Then w C w′ as Si ∪ {si} C Sj ∪ {sj}. Moreover w Clex w

′ holds because if w′ Elex w did
then w′ ∈Elex (si) E si C Sj 3 w′ follows, a contradiction.
Case w ∈ Si ∪ {si} , w′ ∈ R with i ≤ imax: analogous to the preceding case
Case w,w′ ∈ R ∩ Ωimax : clear
Case w,w′ ∈ R\Ωimax : clear

Lemma 4.3.7:

If C satisfies Condition 4.1.1 and 4.3.1 then ∀w ∈ Ωk : Clex (w) C w ∨ ∃w′ ∈ Ωfk : w′ C w
holds.

Proof:

Case w = si: clear as Clex (si) ⊆
i−1⋃
j=0

(Sj ∪ {sj}) ∪ Si C si
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Case w ∈ Si\Ωi−1 :
Clex (w) C w holds as

Clex (w) \Si = Clex (w) ∩
i−1⋃
j=0

(Sj ∪ {sj})
Def. 4.3.1(1)

C w

and
Clex (w) ∩ (Si\Ωi−1) C w because of Clex (w) ∩ (Si\Ωi−1) Clex w and Definition 4.3.1(3)
and
Clex (w) ∩ (Si ∩ Ωi−1) C w because if u ∈Clex (w) ∩ (Si ∩ Ωi−1) and w′ ∈ Ωi−1 ∩ anc (w)
then u Clex w and therefore also u Clex w

′. From Definition 4.3.1(2) follows that u C w′

and as C is a traversal-ordering also u C w is true.
Case w ∈ Si ∩ Ωi−1 (⇒ i ≥ 1):
si−1 C w holds. Furthermore si−1 ∈ Ωfi−1 is true. Therefore the second part of the
disjunction is satisfied.
Case w ∈ R ∩ Ωimax : Analogous to the preceding case only with simax instead of si−1.
Again the second part of the disjunction is satisfied.
Case w ∈ R\Ωimax :

Clex (w) \R = Clex (w) ∩
imax⋃
j=0

(Sj ∪ {sj}) C w

and
Clex (w) \R C w as Clex (w) \R Clex w

Theorem 4.3.8:

If C satisfies Definition 4.1.1 and 4.3.1 then C is a model of (D&B).

Proof:

Follows immediatelly from the preceding lemmata.

In the second part of the formal analysis we show that every model of (D&B) has the
structure described in Definition 4.1.1 and 4.3.1.

Theorem 4.3.9:

If C is a model of (D&B) then it satisfies Definition 4.1.1 and 4.3.1.
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Proof:

Let 0 ≤ i ≤ imax.
1. Show si C Ωj for fi < j:

Let w ∈ Ωj . Then w 6= si. Assume w C si then
w C si ∈ Ωfi C Ωffi+1

C trav.ordering⇒
fi+1≤j,ffi+1≤fj

w C Ωfj

⇒ ¬∃w′ ∈ Ωfj : w′ C w

(D&B)(3)⇒ Clex (w) C w

But si Clex w because Elex (si) ⊆ Ω≤fi and w /∈ Ω≤fi
⇒ si ∈Clex (w) C w a contradiction.

2. Show si E Ω≥fi and (w C si ⇒ w ∈ Ω<fi):
From (D&B)(2) follows si E Ωfi as si Elex w for all w ∈ Ωfi .
As C is a traversal-ordering we get si E Ω≥fi .
The second proposition follows immediately.

3. Show Clex (si) C si:
2. and the monotonitcity of f imply
¬∃w′ ∈ Ω ffi︸︷︷︸

>fi

: w′ C si

und because (D&B)(3) also Clex (si) C si.
4. Show Clex (w) C w for w ∈ Ωj with w C si and i ≤ j < fi:

2. and the monotonitcity of f imply
¬∃w′ ∈ Ω fj︸︷︷︸

≥fi

: w′ C w (w′ C w ⇒ w′ C si ⇒ w′ ∈ Ω<fi)

(D&B)(3)⇒ Clex (w) C w

5. Show si C Ωj\Clex (si) for i ≤ j < fi:
Let w ∈ Ωj\Clex (si) then w /∈Clex (si) and w 6= si therefore si Clex w.
So if w C si did hold, Clex (w) C w wouldn’t, a contradiction to 4.

6. Show Ωi−1 C si:

Ωi−1
(D&B)(1)

C Ωfi and si ∈ Ωfi
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7. Show 4.3.1(1), i.e. Si C si C Si+1 and Simax C simax C R:
3. and 6. imply Si ⊆Clex (si) ∪ Ωi−1 C si.
Furthermore si C Si+1 holds because w ∈ Si+1 implies that w ∈ Ω≥i and
w /∈Elex (si).
This means that w ∈ Ωk\Elex (si) for some k ≥ i and therefore, according to 5.,
si C w.
The same argument works for simax C R as w ∈ R implies that w ∈ Ω≥imax and
w /∈Elex (simax).
Summarized: Si C si C Si+1 and simax C R.

8. Show 4.3.1(2) i.e. ∀w,w′ ∈ Si ∩ Ωi−1 : w C w′ ⇔ w Clex w
′ and 4.3.1(4) i.e.

∀w,w′ ∈ R ∩ Ωimax : w C w′ ⇔ w Clex w
′ :

Obvious because of (D&B)(2).
9. Show 4.3.1(3) i.e. ∀w,w′ ∈ Si\Ωi−1 : w C w′ ⇔ w Clex w

′ :
w ∈ Ω≥i ∩ Ω<fi und w C si hold for all w ∈ Si\Ωi−1. Therefore (as shown in 4.)
Clex (w) C w is true.

10. Show 4.3.1(5) i.e. ∀w,w′ ∈ R\Ωimax : w C w′ ⇔ w Clex w
′

For every w ∈ R\Ωimax exists some j > imax for which w ∈ Ωj

According to the definition of imax, Ωfj = ∅ holds and therefore
¬∃w′ ∈ Ω=fj : w′ C w.

Now (D&B)(3) implies Clex (w) C w.

Theorem 4.3.10:

If C satisfies Definition 4.1.1 and 4.3.1 or if C is a model of (D&B) then C is complete.

Proof:

Follows immediately from the first formula of (D&B) and Theorems 4.3.8 and 2.3.5.

4.3.2. Memory Complexity

Now the space complexity of the presented algorithms is analysed.
For this let C be a model of (D&B), aC its induced traversal-ordering and AC its induced
traversal-run.

Lemma 4.3.11:

If aC (n) ∈ S0 then |AC (n+ 1)| ≤ b · (d+ 1),
where d = max< ({|w| | w ∈ aC [0, . . . , n]}).
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Proof:

Because of Ωi−1 = ∅ and the 3. point of Definition 4.3.1 (p.32) S0 is traversed in
lexicographical order. Therefore Elex (aC (n)) ∈ aC [0, . . . , n] holds.
It is an important observation that for all v ∈Clex (aC (n)) \ anc (aC (n)) ,
children (v) ⊆Clex (aC (n)) so also sons (v) C aC (n) are true. This means, that the
children of these nodes have been expanded and aren’t still in memory.
So at the most the children of all nodes in anc (aC (n)) ∪ {aC (n)} are in memory, i.e. at
the most |aC (n)|+ 1 ones.

Lemma 4.3.12:

If aC (n) ∈ {si} ∪ Si+1 then |AC (n+ 1)| ≤ b ·
(
d+ 1 + bi

)
,

where d = max< ({|w| | w ∈ aC [0, . . . , n]}).

Proof:

w>i,n := max lex (Ω>i ∩ aC [0, . . . , n])
wi,n := max lex (Ωi ∩ aC [0, . . . , n])

1. Show aC [0, . . . , n] = Ω<i ∪
(
Ωi ∩Elex (wi,n)

)
∪
(
Ω>i ∩Elex (w>i,n)

)
:

Elex (si) ⊆Elex (w>i,n) ⊆ Ω<i ∪
(
Ωi ∩Elex (u)

)
∪
(
Ω>i ∩Elex (w>i,n)

)
,where {u} = anc (w>i,n) ∩ Ωi and Ωi ∩Elex (u) ⊆ Ωi ∩Elex (wi,n).

Therefore
i⋃

j=0
Sj ∪ {sj} ⊆ Ω<i ∪

(
Ωi ∩Elex (wi,n)

)
∪
(
Ω>i ∩Elex (w>i,n)

)
holds.

Furthermore v E wi,n ⇒ v Elex wi,n holds for each v ∈ Ωi ∩ Si+1. From the
maximality of wi,n then follows Ωi ∩ aC [0, . . . , n] ⊆

(
Ωi ∩Elex (wi,n)

)
Finally v E w>i,n ⇒ v Elex w>i,n holds for each v ∈ Ω>i ∩ Si+1. From the
maximality of w>i,n then follows Ω>i ∩ aC [0, . . . , n] ⊆

(
Ω>i ∩Elex (w>i,n)

)
So we have aC [0, . . . , n] ⊆ Ω<i ∪

(
Ωi ∩Elex (wi,n)

)
∪
(
Ω>i ∩Elex (w>i,n)

)
.

aC [0, . . . , n] ⊇ Ω<i ∪
(
Ωi ∩Elex (wi,n)

)
∪
(
Ω>i ∩Elex (w>i,n)

)
follows immediately

from w>i,n, wi,n ∈ aC [0, . . . , n].
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2. Let’s now look which nodes the induced traversal-run AC keeps in memory at some
point of time n.
The first important observation is that children (v) ⊆Clex (w>i,n) holds for all
v ∈Clex (w>i,n) \ anc (w>i,n) i.e. that children (v) C w>i,n. The children of these
nodes have been expanded already and therefore aren’t in memory anymore.
For every node v ∈ Ω<i−1 this is obviously true too.
The children of all nodes v ∈ Ωi−1 ∩Clex (parent (wi,n)) also have been expanded
because childrenΩ (v) Clex wi,n.
All together the children of each node in
anc (w>i,n) ∪ {w>i,n} ∪

(
Ωi ∩Elex (wi,n)

)
∪
(
Ωi−1 ∩Dlex (parent (wi,n))

)
=: F are

in memory at the most.
So AC (n+ 1) ⊆

⋃
v∈F

childrenΩ (v) holds.

Now we find
|anc (w>i,n) ∪ {w>i,n}| = |w>i,n|+ 1 ≤ d+ 1
and∣∣∣(Ωi ∩Elex (wi,n)

)
∪
(
Ωi−1 ∩Dlex (parent (wi,n))

)∣∣∣ ≤ bi .
This means |AC (n+ 1)| ≤ b ·

(
d+ 1 + bi

)
.

Lemma 4.3.13:

If aC (n) ∈ {simax} ∪R then |AC (n+ 1)| ≤ b ·
(
d+ 1 + bimax

)
,

where d = max< ({|w| | w ∈ aC [0, . . . , n]}).

Proof:

Analogously to the preceding lemma only with R instead of Si+1.

Theorem 4.3.14:

Let d ∈ N.
Then the following holds:

mAC (d) ≤
{
b · (d+ 1) falls d < f0

b ·
(
d+ 1 + bi

)
sonst

where i := arg max
j
{fj | fj ≤ d} so i is the j for which fj is maximal.
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Proof:

For 0 ≤ i ≤ imax define ni := firstaC
(si).

Let fi ≤ d < fi+1 for some 0 ≤ i < imax.
Then n ≤ ni+1 for n ∈ α, depthAC

(n) ≤ d as depthAC
(ni+1) = fi+1 > d.

Hence aC (n) ∈
i⋃

j=0
(Sj ∪ {sj}) ∪ Si+1 and because of Lemma 4.3.12

mAC (d) = max<
({
|AC (n)| | n ∈ α, depthAC

(n) ≤ d
})
≤ max0≤j≤i

(
b ·
(
d+ 1 + bj

))
=

b ·
(
d+ 1 + bi

)
If imax <∞ and fimax ≤ d holds then aC (n) ∈ R and therefore analogous to above only
with Lemma 4.3.13 instead of Lemma 4.3.12
mAC (d) ≤ b ·

(
d+ 1 + bimax

)
Furthermore aC (n) ∈ S0 holds for d < f0 and so, again analogous to above, with
Lemma 4.3.11
mAC (d) ≤ b · (d+ 1)

Corollary 4.3.15:

The space complexity of the algorithm induced by C is

M (d) ≤
{
b · (d+ 1) if d < f0

b ·
(
d+ 1 + bi

)
else

where i := argmax
j
{fj | fj ≤ d}.

4.3.3. Memory Complexity of the Family

In Section 4.2 on page 30 a family of algorithms in parameter 0 ≤ c ≤ ∞ has been
presented. For 1 ≤ c <∞ it has been claimed that the corresponding algorithm had space
complexity O(dc). This will be proved now.

Theorem 4.3.16:

Let 1 ≤ c <∞, fi = fc,i = bb
i
c c+ i and Cc be the corresponding ordering. The space

complexity of the algorithm induced by Cc is
Mc (d) ≤ b · (d+ 1 + dc)
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Proof:

If d < f0 then Mc (d)
Cor. 4.3.15
≤ b · (d+ 1).

If f0 ≤ d < f1 then

Mc (d)
Cor. 4.3.15
≤ b ·

(
d+ 1 + b0

)
= b · (d+ 1 + 1)

0<f0≤d
≤ b · (d+ 1 + d) ≤ b · (d+ 1 + dc)

If f1 ≤ d then fi ≤ d for i := arg max
j
{fj | fj ≤ d} with i ≥ 1.

Therefore bb
i
c c+ i ≤ d and because of i ≥ 1 also b

i
c ≤ d and by this bi ≤ dc.

From Corollary 4.3.15 follows that
Mc (d) ≤ b ·

(
d+ 1 + bi

)
≤ (d+ 1 + dc)

As expected for the depth-first-traversal the case c = 0 has linear space complexity in the
maximum depth reached so far.

Theorem 4.3.17:

Let c = 0, fi = f0,i = bb
i
0 c+ i =∞ and C0 be the corresponding ordering. The space

complexity of the algorithm induced by C0 is
M0 (d) ≤ b · (d+ 1)

Proof:

f0 =∞ holds, so d < f0 for all d ∈ N and therefore

M0 (d)
Cor. 4.3.15
≤ b · (d+ 1).
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5. Implementation

Up to this point we have seen the idea of the new algorithm and have analysed its
properties. But there is still to show that the algorithm can be implemented. Two
possibilities are presented in this chapter.
Approach 1 closely follows the formulas of (D&B) on page 31. Therefore it is obvious that
they are valid. However approach 1 needs to know the maximum branching factor b.
Approach 2 does not need this information. However it does not obey stricly to the
formulas of (D&B). But one can convince oneself, that the variations do neither affect
completeness nor the space complexity of the algorithm.
Both implementations will use a memory structure Ω in their pseudo code whose content
is adressed in form Ω[i] by an index i. The name is chosen carefully as the nodes
referenced by Ω[i] are just the nodes of Ωi that are in memory currently. In other words
Ω[i] = Ωi ∩Ad&b (n) for each point of time n. This memory structure may be implemented
by a list of lists (both doubly linked).
The lexicograhical ordering in all of these lists Ω[i] is simply guaranteed by the fact that
the nodes come up just in this order and are added to the end of the list. This holds
because the method for the expansion of a node is only called in the form
’expand(first of Ω[i])’ and so always the lexicographical smallest element of Ω[i] is
expanded. For this reason ’first of Ω[i]’ does not only denote the lexicographical smallest
element of Ω[i] but also just the head of the list. Moreover the property above, that only
the lexicographical smallest element of a list is expanded, implies that the second formula
of (D&B) is always satisfied. After all the formula just means that each level is traversed
in lexicographical order. Furthermore this guarantees that the first part of the disjunction
of the third formula of (D&B) is satisfied for each node expanded by depth-first-traversal.
This part says that a node may only be expanded if all nodes left of it in the tree have
been expanded before.
Here the pseudo code of the method for the expamsion of a node. It is used by both
implementations.

expand (w)
Ω [ |w| ] := Ω [ |w| ] \ {w}
Ω [ |w| + 1 ] := Ω [ |w| + 1 ] ∪ ch i l d r en (w)
unexpandedNodes := unexpandedNodes − 1 + |children(w)|

end
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5.1. Approach 1, Depth-bounds

As announced at the beginning of this chapter the following implementation is closely
adapted to the formulas of (D&B). So it is useful to point out the intuitive meaning of the
formulas of (D&B) first.
The first axiom Ωk Cd&b Ωfk+1 says that none of the nodes in Ωfk+1 is expanded before all
nodes of Ωk have been expanded. Therefore it limits the depth of the depth-first-traversal.
The third axiom is a quantified disjunction. The second part of the disjunction concerns
the breadth-first-traversal. It means that a node may only be expanded if some node at
sufficient depth has been expanded (by depth-first-traversal) before. As one of the two
parts of the disjunction has to be true for every node this is the same as a depth bound for
breadth-first-traversal.
This interpretaion of the formulas as mutual depth-bounds is used by the implementation.
You can clearly identify the depth-bound in the code by bdepth and bbreadth. They are
increased (forth case of the while-loop) if a so-called “pivot-node” is expanded. These
pivot-nodes are the si of Definition 4.1.1. They are obvious in the images in Section 4.1.
In the first three cases of the while-loop it is obvious that the depth-bounds are respected.
In the forth case we have the following: As dbreadth = bbreadth the breadth-first-traversal
has just finished the one level and dbreadth has been incremented by 1. The strict
monotonicity of f implies f(dbreadth) > bdepth. So the depth-first-traversal may advance
into depth at least one step. Therefore the depth-bounds are respected when calling
depthStep().
Though the following implemtation has a disadvantage. The function f used by it depends
on the maximum branching factor b of the tree. If b is unknown this approach is not
directly applyable. It can be repaired by always using for f the maxium branching factor
that occured so far. Nevertheless a implementation that is independent of the branching
factor would be desirable. Such an implementation is presented in the next section.
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5. Implementation

Ω[0] := {ε}
unexpandedNodes := 1

ddepth := 0 (∗ curren t depth o f depth−f i r s t −t r a v e r s a l ∗)
dbreadth := 0 (∗ curren t depth o f breadth−f i r s t −t r a v e r s a l ∗)
bdepth := f (0 ) (∗ curren t depth bound o f depth−f i r s t −t r a v e r s a l ∗)
bbreadth := 0 (∗ curren t depth bound o f breadth−f i r s t −t r a v e r s a l ∗)

depth_breadth_traversal ( )
while unexpandedNodes > 0 do

i f ddepth < bdepth and dbreadth < bbreadth then do
one of depthStep ( ) or breadthStep ( )

else i f ddepth < bdepth then do
depthStep ( )

else i f dbreadth < bbreadth then do
breadthStep ( )

else do (∗ddepth = bdepth and dbreadth = bbreadth∗)
depthStep ( )
i f ddepth > bdepth do (∗ p ivo t−node has been expanded ∗)

++ bbreadth
bdepth := f (dbreadth )

end
end

end
end

depthStep ( )
i f Ω [ ddepth ] 6= ∅ then do

expand ( f i r s t of Ω [ ddepth ] )
++ ddepth

else do
−− ddepth (∗ back t rack ∗)

end
end

breadthStep ( )
i f Ω [ dbreadth ] 6= ∅ then do

expand ( f i r s t of Ω [ dbreadth ] )
ddepth := max(ddepth , dbreadth + 1)

else do
++ dbreadth

end
end
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5.2. Approach 2, Credit-function

The goal of the following implemetation is to reproduce the behavior of the preceeding
implemetation as closely as possible but without using the maximum branching factor b.
To reach this goal two observations are important:
First in the algorithm described by (D&B) not only the number of nodes in memory is
bounded polynomially by the maximum depth reached so far but also the number of nodes
expanded by breadth-first search until then (More precicely, the second bound is at most
the same size as the first and this is independet of b) .
Second a polynomial bound of the number of nodes expanded by breadth-first-traversal
immediately implies a polynomial bound of the number of nodes in memory.
So its an obvious idea, to realize the polynomial bound of memory consumption in the
maximum depth reached so far not by limiting the depth of the breadth-first-traversal but
the number of nodes expanded by it.
Also the depth bound for the depth of the depth-first traversal can be replaced. If one
forces the number of nodes expanded by breadth-first-search be bounded by the maximum
depth reached so far not only upwards but also downwards then this results in a suitable
limitation of the depth of the depth-first-traversal.
In the following pseudo code cbreadth is the number of additional nodes that the
breadth-first-traversal may expand currently. cbreadth is increased each time
depth-first-traversal reaches a new maximum depth. If cbreadth is big enough that the
breadth-first-traversal may finish its current level, i.e. if cbreadth ≥ |Ω [dbreadth]|, then the
depth-first-traversal is paused, which limits the depth of the depth-first-traversal.

For this credit (d) needs to satisfy
d∑

i=0
credit ( i ) = O(dc).

This can be achieved most easily by setting credit (0) = 0 and credit (d) = dc − (d− 1)c
for d > 0. However this possibility is hard to be implemented efficiently.
The definition credit (d) = (2c − 1) · 2(c−1)blog2(d)c may be implemented efficiently by use of
shift operations and does also satisfiy the requirements (See Appendix A).
On complete trees this implementation behaves quite exactly as the preceeding
implementation. On less dense tress however the breadth-first-traversal advances faster.
Beside the fact that the maximum branching factor of the tree isn’t needed this is another
advantage of the implementation presented here.
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5. Implementation

Ω[0] := {ε}
unexpandedNodes := 1

ddepth := 0 (∗ curren t depth o f depth−f i r s t −t r a v e r s a l ∗)
dbreadth := 0 (∗ curren t depth o f breadth−f i r s t −t r a v e r s a l ∗)
max_ddepth := 0 (∗maximum depth reached ∗)
cbreadth := 0 (∗ c r e d i t o f breadth−f i r s t −t r a v e r s a l ∗)

depth_breadth_traversal ( )
while unexpandedNodes > 0 do

i f cbreadth < |Ω [dbreadth]| and cbreadth > 0 then do
one of depthStep ( ) or breadthStep ( )

else i f cbreadth < |Ω [dbreadth]| then do
depthStep ( )

else i f cbreadth > 0 then
breadthStep ( )

else do
(∗ impo s s i b l e case ∗)

end
end

end

depthStep ( )
i f Ω [ ddepth ] 6= ∅ then do

expand ( f i r s t of Ω [ ddepth ] )
i f ddepth = max_ddepth then do

++ max_ddepth
cbreadth := cbreadth + c r e d i t (max_ddepth )

end
++ ddepth

else do
−− ddepth (∗ back t rack ∗)

end
end

breadthStep ( )
i f Ω [ dbreadth ] 6= ∅ then do

expand ( f i r s t of Ω [ dbreadth ] )
−− cbreadth
ddepth := max(ddepth , dbreadth + 1)

else do
++ dbreadth
i f (dbreadth = max_ddepth ) then do

cbreadth := 0
end

end
end

46



6. Conclusion

Again as this is a translation of a German project thesis mainly designed to make the
results available to English-speaking readers this part is dropped.

A. Credit-functions

Theorem A.0.1:

Let g and h be monotonic functions from N to N and k1 ≤ k2 ≤ k3 ≤ . . . an increasing
sequence in N.
If additionally g (ki) ≤ h (ki) for all i ∈ N and exists c ∈ R so that h (ki+1) ≤ c · h (ki) holds
for all i ∈ N, then:
g = O (h)
more precisely:
g ≤ c′ · h for some c′ ≤ c

Proof:

Show: g (n) ≤ c · h (n) for all n ∈ N

Let ki ≤ n < ki+1. Then:

g (n)

monotonicity
of g
≤ g (ki+1)

Ass.
≤ h (ki+1)

Ass.
≤ c · h (ki)

monotonicity
of h
≤ c · h (n)

In the following consider credit (0) = 0 and credit (d) = dc − (d− 1)c for d > 0.

Lemma A.0.2:
2l+1∑
i=0

credit ( i ) <
(
1 + 2c−(l+1)

)
·
(
2l+1

)c
Proof:

2l+1−1∑
i=1

(2c − 1) · 2(c−1)blog2(i)c =
l∑

i=0

2i∑
j=1

(2c − 1) · 2(c−1)·i

=
l∑

i=0
2i · (2c − 1) · 2(c−1)·i = (2c − 1) ·

l∑
i=0

(2c)i

= (2c − 1) · (2c)l+1 − 1
2c − 1 =

(
2l+1

)c
− 1
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2l+1∑
i=1

(2c − 1) · 2(c−1)blog2(i)c =
(
2l+1

)c
− 1 + (2c − 1) · 2(c−1)·(l+1)

<
(
2l+1

)c
− 1 + 2c ·

(
2l+1

)(c−1)
=
(
1 + 2c−(l+1)

)
·
(
2l+1

)c
− 1

Theorem A.0.3:
d∑

i=0
credit ( i ) = O(dc)

Proof:

Let g (d) :=
d∑

i=0
credit ( i ) and h (d) := (1 + 2c−blog2(d)c)dc. Furthermore let ki := 2i+1.

Then g (ki) ≤ h (ki) holds according to Lemma A.0.2.

Moreover h (ki+1) =
(
1 + 2c−(i+2)

)
·
(
2i+2)c ≤ (1 + 2c−(i+1)

)
·
(
2 · 2i+1)c = 2c · h (ki)

From Theorem A.0.1 follows g (d) = O(h) = O(dc)

B. Notation

Σ0 = {ε}
Σ1 = Σ
Σn =

{
uv | u ∈ Σn−1, v ∈ Σ

}
Σ∗ =

⋃
n∈N

Σn

Σ+ =
⋃
n≥1

Σn = Σ∗\ {ε}
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