
GRDDLing with Xcerpt: Learn one, get one free!∗

François Bry Tim Furche Alina Hang Benedikt Linse
Institute for Informatics, University of Munich

Oettingenstrasse 67, 80538 Munich, Germany
http://www.pms.ifi.lmu.de/

1. INTRODUCTION
In the last years, the Semantic Web has significantly gained mo-

mentum, and the amount of RDF data on the Web has been increas-
ing exponentially ever since the publication of the RDF recommen-
dation. A great amount of this data is intermingled with HTML and
XML at the help of microformats, embedded RDF and RDF/A.

To deal with this situation, the W3C has published an editor’s
draft soliciting a mechanism called GRDDL, an acronym for Glean-
ing Resource Descriptions From Dialects of Languages to the prob-
lem of extracting Semantic Web information from HTML and XML
documents. The idea behind GRDLL is to associate an XML doc-
ument containing embedded RDF information with one or more
transformation programs – which the editor’s draft proposes to write
in XSLT. These transformation programs are specifically written to
extract the RDF information from the document.

Moreover, the W3C also published a collection of descriptions of
use-cases as a motivation for employing the GRDDL method. One
of these use-cases is the scheduling of a meeting between friends
who publish their calendars either as hcalendar, embedded RDF1,
RDFa or RSS 1.0 on their homepages. In a first step, the XSLT-
stylesheets associated with the homepages are used for harvesting
the RDF information from the homepages, and the resulting RDF
graphs are combined in a single RDF model. In a second step,
SPARQL is used to query the RDF data and find a date for the
meeting that fits in everybody’s schedule.

Our system implements this use case in two different manners.
The first implementation follows the recommendation of the W3C
editor’s drafts, employing an XSLT processor and a SPARQL[3]
implementation (in our case Jena[2]). The second implementation
uses Xcerpt[4, 1], a versatile Web and Semantic Web query lan-
guage for both processing stages. The implementation of these
use-cases uncovers difficulties and challenges in the authoring of
GRDDL algorithms in XSLT and also in Xcerpt, and highlights
advantages and disadvantages of both approaches.

2. SYSTEM DESCRIPTION
hcalendar2 is a calendaring and events format based on the iCal-

endar standard3, which is used for embedding RDF data about cal-
endars and events in arbitrary XML – but especially in HTML –
documents. hcalendar data typically includes information about
the title, description, start, end of an event and may also specify its
duration and frequency.

Listing 1 shows a very simplistic application of the hcalendar
format. In genuine HTML files enriched with hcalendar data found

1http://research.talis.com/2005/erdf/wiki/Main/
RdfInHtml
2http://microformats.org/wiki/hcalendar
3http://www.ietf.org/rfc/rfc2445.txt

on the Web the usage of the vocabulary is more involved. In par-
ticular vevent tags may be nested within each other, and the data
exhibits a very irregular structure. Therefore the task of retriev-
ing the RDF triples from the files is a non-trivial task. Our system
follows two complementary approaches for solving this Use-Case.
In the first version, it uses XSLT to transform the HTML files into
RDF/XML files only including the relevant RDF data. The result-
ing RDF/XML files are then loaded into a Jena RDF repository and
SPARQL is used to schedule a meeting that fits the time constraints
of all participants. In the second approach, Xcerpt is used both for
the extraction of the RDF triples and for scheduling the meeting.
Note that when compared with the second approach, the first one
involves one redundant parsing step and one intermediate serializa-
tion that could be avoided.

Listing 1: Some sample hcalendar data
<html><head><title>hCalendar example</title></head>

2 <body>
<h1 class=”summary”>Title of Event</h1>

4 <p class=”description”>Description of an Event from
<abbr class=”dtstart” title=”2007−10−18T09:00”>

6 18/10/2007 at 09:00 </abbr>until
<abbr class=”dtend” title=”2007−10−18T10:00”>

8 10:00</abbr>
</p><body></html>

2.1 GRDDLing with XSLT and SPARQL
Listing 2 shows a brief way of finding the description for a given

event the xml-element of which is stored in the variable $this_event.
A rather involved XPath query extracts the relevant text node which
is then stored in an XSLT variable for reuse in the construction of
the RDF/XML. To harvest complete RDF descriptions for hcalendar-
embedded events, the same has to be done for their summaries, lo-
cations, start and end dates, etc.
Listing 2: Extraction of hcal information in the presence of
nested events with XSLT
<xsl:variable name=”description”

2 select=”descendant::∗[@class=’description’]
[not(ancestor::∗[@class=’vevent’]

4 [ancestor::∗[.=\$this event]])]” />

Another challenge for the transformation from embedded hcal-
endar tags to RDF/XML is the conversion of the dates given in
the format recommended by RFC 33394 to a structured represen-
tation of the date. Although this is not strictly necessary, it al-
lows for a more human-friendly querying of the RDF data with
SPARQL. Extracting the date and the time from a string such as
"2007-10-18T09:00" is best achieved with the xsl:anaylze-string
command and a regular expression in XSLT. The code is ommitted
here for the sake of brevity.
4http://www.faqs.org/rfcs/rfc3339.html

In accordance to the GRDDL use-case, our system uses the col-
lected RDF data to find a date which fits into the schedules of all
potential participants. SPARQL was designed to be a clean small
language, which can do just enough in the context of querying RDF,
without sacrificing its easy and efficient implementation. The de-
velopers of the SPARQL recommendation decided not to include
negation, but negation as failure can be simulated in SPARQL with
its optional triple patterns and filtering for bound variables. Be-
cause of the tight restrictions on the SPARQL language it is im-
possible to solve the use-case without generating a great amount of
SPARQL queries with a scripting language or by generating an ad-
ditional file including a finite set of dates that would come into con-
sideration. The query in Listing 3 shows a SPARQL query which
determines whether a given date is in conflict with other events
within some RDF graph5.
Listing 3: Checking for a conflicting event in an RDF calendar
Select ?title, ?x, ?y WHERE {

2 ?x dc:title ?title. ?x cal:date ?y.
?y cal:startDay ?start. ?y cal:endDay ?end.

4 ?y cal:startTime ?sTime. ?y cal:endTime ?eTime
FILTER (

6 ((?start = ?end && ?start = "2007-10-02" &&
?sTime <"12:00" && ?eTime > "11:00")

8 || (?start != ?end && ?start = "2007-10-02" &&
?sTime <"12:00")

10 || (?start != ?end && ?end = "2007-10-02"
&& ?eTime > "11:00")

12 || (?start < "2007-10-02" && ?end > "2007-10-02"))
). }

2.2 GRDDLing with Xcerpt
Xcerpt is a pattern and rule based query language for semi-struc-

tured data in general and for XML and RDF in particular. Its query
patterns feature a plethora of incompleteness constructs which al-
low to author brief and precise queries binding parts of the data to
logical variables. Construct terms serve as templates to reassemble
the bindings of the variables in a flexible manner. Construct and
query terms are connected via rules which make up Xcerpt pro-
grams and can be evaluated both top down or bottom up. For the
precise syntax and semantics of Xcerpt see [4].

Xcerpt is used to implement the entire GRDDL scheduling use
case. Listing 4 shows how the extraction of calendar events from
hcal-enriched HTML files is achieved with Xcerpt.

Listing 4: RDF harvesting with Xcerpt
1 CONSTRUCT

rdf:RDF[all cal:Event[
3 cal:summary[var Summary],

cal:descripttion[var Description], ...]]
5 FROM

html {{ body {{
7 desc /.*/((class=”vevent”)) {{

optional desc (!/.*/((class=”vevent”)))*
9 /.*/((class=”summary”)) { var Summary },

optional desc (!/.*/((class=”vevent”)))*
11 /.*/((class=”description”)) { var Description },

... }} }} }}
13 END

Querying the extracted RDF data with Xcerpt can be done in the
same program, which saves the serialization of the RDF data in a
file and the subsequent parsing, which is necessary for XSLT and
SPARQL. It is achieved in a very similar way as the query above,
and is omitted here for the sake of brevity. In contrast to the first
solution of the use case, Xcerpt allows to recursively generate a
5dc and rdf are bound to the expected namespaces, the binding for
cal is irrelevant

list of possible dates (e.g. all dates lasting one hour and starting
to the full hour between 8 a.m. and 8 p.m. in February). With
this additional information it is indeed possible to automatically
schedule a suitable date for the participants, and hence there is no
need to embed the queries in a more powerful language.

3. NOVELTY OF THE APPROACH
Although GRDDL is still rated as a W3C editor’s draft several

implementations of the GRDDL mechanisms already exist, and
also several of its use-cases have been implemented.

The Jena GRDLL reader is a GRDDL implementation for the
Jena Semantic Web framework and automatically detects and ap-
plies stylesheets referenced within HTML pages for the purpose
of extraction of RDF information. In contrast to our approach, it
isn’t an implementation of the use case itself, but of the GRDDL
mechanism. Note that there are several other implementations of
the GRDDL mechanism6.

The W3C also published an online GRDDL demo7, which al-
lows to extract embedded FOAF, Creative Commons, RSS, Dublin
Core and GeoURL data. In contrast to our approach, it does not
deal with hcalendar data and it only implements the first step of a
GRDDL use case.

Dan Conolly published an XSLT stylesheet8 for extracting hcal
information from XHTML. In contrast to our system, it does not
deal with nested events, does not compare alternative ways for
implementation, and again only deals with the first stage of the
GRDDL use-cases.

4. SIGNIFICANCE OF THE APPROACH
Our system constitutes the first complete implementation of a

GRDDL use-case and allows to draw the following conclusions:
Extracting RDF information from microformats is a non-trivial

task and calls for expressive and user-friendly query languages specif-
ically aimed at querying heterogeneous XML data.

For efficiency purposes it is desirable to have a language that is
both capable of extracting the relevant information and of further
semantic processing.

Although SPARQL is a very well-specified and probably the
most famous RDF query language around, it lacks some features –
such as recursion – which make its evaluation easier, but delimit its
expressiveness. In the context of GRDDL, these limitations mean
that the SPARQL queries must be embedded in a more powerful
general purpose programming language.

While Xcerpt is still a research prototype and not completely
implemented, it already shows that versatile, pattern-oriented and
rule-based querying has the potential to considerably ease the au-
thoring of data intensive web-applications.

5. REFERENCES
[1] S. Berger, F. Bry, T. Furche, B. Linse, and A. Schroeder.

Beyond xml and rdf: The versatile web query language xcerpt.
In World Wide Web Conference, pages 1053–1054, 2006.

[2] B. McBride. Jena: A semantic web toolkit. IEEE Internet
Computing, 6(6):55–59, 2002.

[3] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF. Technical report, W3C, 2006.

[4] S. Schaffert. Xcerpt: A Rule-Based Query and Transformation
Language for the Web. PhD thesis, University of Munich,
2004.

6http://esw.w3.org/topic/GrddlImplementations
7http://www.w3.org/2003/11/rdf-in-xhtml-demo
8http://www.w3.org/2002/12/cal/glean-hcal.xsl

