
INSTITUT FÜR INFORMATIK
Lehr- und Forschungseinheit für

Programmier- und Modellierungssprachen

Oettingenstraße 67, D–80538 München

LMU
Maximilians
Universität
München

Ludwig

Xcerpt and visXcerpt:
From Pattern-Based to Visual Querying
of XML and Semistructured Data
(Demonstration)

Sacha Berger, François Bry, Sebastian Schaffert, Christoph Wieser

Technical Report, Computer Science Institute, Munich, Germany
http://www.pms.informatik.uni-muenchen.de/publikationen
Forschungsbericht/Research Report PMS-FB-2003-2, February 2003

Xcerpt and visXcerpt: From Pattern-Based to Visual
Querying of XML and Semistructured Data

Sacha Berger, François Bry, Sebastian Schaffert, Christoph Wieser

Institut für Informatik, Ludwig-Maximilians-Universität München

1 Overview

With the advent of XML as a format for data ex-
change and semistructured databases, query languages
for XML and semistructured data have become in-
creasingly popular.

Many such query languages, like XPath and
XQuery, are navigational in the sense that their vari-
able binding paradigm requires the programmer to
specify path navigations through the document (or
data item). In contrast, some other languages – such
as UnQL [1] and Xcerpt [2] – are pattern-based: their
variable binding paradigm is that of mathematical log-
ics, i.e. the programmer specifies patterns (or terms)
including variables. Arguably, a pattern-based vari-
able binding paradigm makes complex queries much
easier to specify and to read, thus improving the
programming efficiency. Sustaining this first claim
with practical examples is one of the objectives of the
present demonstration.

Xcerpt [2] is an experimental pattern-based query
and transformation language for XML and semistruc-
tured data. Xcerpt uses patterns both for binding
variables in query expressions and for reassembling the
variables (bound to data items in query expressions) in
so-called construct terms. Arguably, a pattern-based
document construction combined with a pattern-based
variable binding results in a rather intuitive, user
friendly, and programming efficient language. Sustain-
ing this second claim is another objective of the present
demonstration.

Xcerpt is experimental in the sense that its purpose
is to investigate and test another, non-navigational ap-
proach to retrieve data from the Web than that of
the widespread query languages XPath and XQuery.
Nonetheless, Xcerpt has been prototypically imple-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

mented and is currently experimented with on test bed
examples for proof-of-concept purposes.

Another important characteristic of Xcerpt is its
rule-based nature: Xcerpt provides with rules very
similar to SQL view definitions. Arguably, rules or
views are convenient for a logical structuring of com-
plex queries. Thus, in specifying a complex query, it
might ease the programming and improve the program
readability to specify (abstract) rules as intermediate
steps – very much like procedures are used in conven-
tional programming for factorising out common com-
putations and/or modularising a program. Sustaining
this third claim is a further objective of the present
demonstration.

Because of its rule-based nature, Xcerpt has been
selected as a contribution to the RuleML initiative [3],
an international tentative to promote the interoper-
ability of rule and/or reasoning based languages for
the (Semantic) Web.

Based on Xcerpt, a visual query language called
visXcerpt has been conceived and prototypically im-
plemented. Most interestingly, the pattern-based ap-
proach to query and transformation languages for
XML and semistructured data appears to be especially
well suited for a visual (or graphical) language. The
reason is that patterns are form-like two dimensional
structures that conceptually are very close to two di-
mensional visual representations. Arguably, every vi-
sual or graphical language for XML and/or semistruc-
tured data (such as XML-GL [4], GraphLog [5], VXT
[6], BBQ [7] and Xing [8]) as well as the veteran lan-
guage QBE and improvements thereof (such as MS
Access and similar products) might be seen as having
an (in general implicit) pattern-based language as an
(in general unconscious) foundation. Sustaining this
fourth claim is a last objective of the present demon-
stration.

Interestingly, and maybe supporting the last above-
mentioned claim, a visual language for a pattern-based
textual query and transformation language can be de-
veloped simply by specifying a visual rendering (in
contrast to a complex transformation) of the textual
programs very much like a CSS stylesheet specifies a
layout for an HTML document.

1

2 Positional vs. Navigational

Essential to querying semistructured data is the se-
lection of data items in a document (i.e. rooted
graph). Most widespread query languages for XML
– e.g. XQuery – rely on path selections expressed us-
ing XPath (or similar approaches). XPath-like lan-
guages provide with constructs like regular expressions
and wild cards for specifying paths through a rooted
graph. For instance, the XPath expression /a[b]//c
means “find the document nodes labelled c that can
be reached from the document root via a child node
labelled a having itself a child node labelled b and hav-
ing the c-labelled nodes as descendants”. Such node
selections can be called navigational.

For simple queries and transformations, the navi-
gational approach is very natural and results in sim-
ple programs. For more complex queries, especially
for queries involving several variables, the navigational
approach often leads to intricate programs.

Furthermore, the intertwining of construction and
query parts in languages such as XQuery and most of
its precursors [9] arguably often yields programs that
are difficult to read – and hence to use and to maintain.

Also, the possibility to specify forward and reverse
axes in path languages like XPath might further in-
crease the complexity of query programs, while the
intuitive meaning is often not complicated at all.

A further important aspect of navigational node se-
lections is that they do not easily support the selec-
tion of several related nodes at once. Such multiple
node selections, however, are rather natural and are
required by most non-trivial queries. This is e.g. the
case when one looks for bibliography entries combining
several aspects such as an author’s name, a keyword in
the title, and a year of publication. Everyone familiar
with bibliographies immediately “visualises” the shape
or pattern of such a retrieval request and the respec-
tive positions of the variables it refers to. Arguably,
pattern-based or positional query and transformation
languages such as Xcerpt reflect and convey such an
intuitive “visualisation”.

With the positional query and transformation lan-
guage Xcerpt the nodes to be selected are specified
by variables in patterns called query terms. Query
patterns are related to other patterns called construct
terms through their common variables. The Xcerpt
construct relating a construct term to a query expres-
sion consisting of AND and/or OR connected query
terms is a rule. Xcerpt has been introduced in [2].

For querying semistructured data, the positional
approach has been suggested first with UnQL [1] and
XML-QL [10]. In common programming, the posi-
tional approach finds its roots in Functional and Logic
Programming. Arguably, both query languages QBE
and SQL can be seen as positional languages.

3 Xcerpt Main Constructs

An Xcerpt program may consist of at least one goal
and of some (maybe zero) rules. Goals and rules are
built up from database, query and construct terms
that are first introduced. Note that besides the “ab-
stract” syntax presented here, Xcerpt also has an XML
syntax which is not described here for space reasons.

3.1 Database, Query, and Construct Terms

Common to all terms is that they represent tree-like
(or graph-like) structures. The children of a node may
be either ordered (as in standard XML) or unordered
(as is common in databases).

Square brackets denote ordered term specification,
i.e. the matching subterms in the database are re-
quired to be in the same order as in the query term.
Curly braces denote unordered term specification, i.e.
the matching subterms in the database may be in ar-
bitrary order.

Single (square or curly) braces are used to denote
that a matching term must contain matching subterms
for all subterms of a term and may not contain ad-
ditional subterms (total term specification). Double
braces are used to denote that the database term may
contain additional subterms as long as matching part-
ners for all subterms of the query term are found (par-
tial term specification).

Database terms are used to represent XML
documents and the data items of a semistructured
database. They are similar to ground functional pro-
gramming expressions and logical atoms. A database
is a (multi-)set of database terms (e.g. the Web).
Example: a book database
bib { book {

title { "Data on the Web" },
authors [author { "Se.g. Abiteboul" },

author { "Peter Buneman" },
author { "Dan Suciu" }],

price { "69.95" } }, ...
}

Query terms are similar to non-ground func-
tional programming expressions and logical atoms. In
contrast to functional expressions and logical atoms,
query terms have the following properties:
• in a query term, partial specifications omitting

subterms irrelevant to the query are possible,

• in a query term like in a database term, subterms
might be ordered or unordered,

• in a query term, it is possible to specify subterms
at arbitrary depth.

Example: This query term selects titles and authors:
bib {{ book {{

var T ; title, authors {{ var A }}
}} }}

2

Query terms are unified with database or construct
terms using a non-standard unification called simula-
tion unification [11]. It is based on graph simulation
[12] which is similar to graph homomorphisms.

The outcome of unifying a query term with a
database term are bindings for the variables in the
query term. Applying these bindings to the query term
results in a ground query term which is simulated (in
the sense of [12]) in the database term.

The Xcerpt construct X ; t (read “as”) serves to
associate a query term to a variable, so as to specify a
restriction of its bindings. The Xcerpt construct desc
(read “descendant” – not illustrated above) is used to
specify subterms at arbitrary depth.

Construct terms serve to reassemble variable (the
bindings of which are specified in query terms) so as
to construct new database terms. In a construct term,
{ } and [] as well as variables might occur but ;

are precluded. The rationale of this restriction is to
keep variable specifications within query terms, ensur-
ing a clear separation of purposes between query and
construct terms.

In a construct term, the Xcerpt construct all t
serves to collect (in the construct term) all instances of
t that can be generated by different variable bindings
for the variables in t (returned by the associated query
terms in which they occur).

Example: The following construct term collects all
title/author pairs for the previous query:

results { all result { var T, var A } }

3.2 Construct-Query Rules

An Xcerpt construct-query rule (short: rule) relates a
construct term to a query consisting of AND and/or
OR connected query terms. An Xcerpt rule has the
form C ← Q where C denote a construct term and Q
denotes a query.

This rule can be seen as a “view” specifying how
C-shaped documents can be obtained by evaluating
the query Q against a Web resource (e.g. an XML
document or a database).

An Xcerpt query might contain one or several ref-
erences to resources. Xcerpt rules might be chained
like active or deductive database rules to form com-
plex query programs.

3.3 Further Constructs

The previous section only describes Xcerpt’s core con-
structs. In addition, Xcerpt offers the following ad-
vanced constructs:

• a reference mechanism to build graph structures
instead of tree structures

• some for a non-deterministic selection of some
variable instances in a construct term

• elementary arithmetics and string operations

Figure 1: A rule in Xcerpt’s visual syntax

• aggregation constructs

4 visXcerpt: A Visual Rendering of
Xcerpt

Essential to the visual language visXcerpt is that
Xcerpt is based on (query and construct) terms spec-
ifying for each occurrence of a variable its position in
a query or construct expression instead of a naviga-
tion path (from the document root to the variable
occurrence). As a consequence, textual Xcerpt’s vi-
sual counterpart visXcerpt can be conceived as a mere
rendering instead of a fully novel language. This ren-
dering might be seen as an advanced (because of the
dynamic features) layout. VisXcerpt is realized using
CSS stylesheets for the static layout and ECMA Script
for the dynamic features.

Xcerpt terms (i.e. elements) are visualised as
boxes. A term label (or tag) is attached as a tab on
the top of its associated box. visXcerpt has features
for handling attributes and text. Attributes are placed
in a two-column table with names in the left column
and values in the right column. The attribute table
appears first in a box and is omitted if there are no at-
tributes. Direct subterms (i.e. children) are visualised
the same way as sub- or child boxes. Child boxes are
arranged vertically in a parent box. For better distinc-
tion, they are coloured differently.

Different box borders are used as visual counter-
parts to the Xcerpt parentheses {{ }}, [[]], { },
and { }. Ordered or unordered children are indicated
graphically by an icon at the top right corner of a box.

3

Optionally, partial and total matching is also graphi-
cally indicated by an icon.

Xcerpt constructs like desc (descendant), all and
variables are represented as boxes with different, re-
served colours in some cases (e.g. all) with a textual
adornment. Variables are visualised as black boxes
with the variable name written in white in the box. If
a variable is restricted to a term (by the ; construct),
this term appears within the box of the variable.

Construct-query rules are visualised as shown in
Figure 1.

Dynamic features. By clicking on a box tab
(representing a term label or tag), the associated box
is folded resp. unfolded. VisXcerpt programs can be
edited using copy-and-paste-based primitives accessi-
ble from context menus. For constructing new con-
tents, a document offering all constructs of visXcerpt
serves as a copy template. By moving the mouse
pointer across a variable name, the boxes representing
other occurrences of the same variable are highlighted.
References in terms will be implemented in visXcerpt
using the same highlighting. Furthermore, references
will be traversable as hyperlinks.

5 Outline of the Demonstration

The demonstration presents Xcerpt and visXcerpt pro-
totypes running on Linux using the Apache web server
and the Mozilla web browser.

The Xcerpt prototype is implemented in Haskell.
It can process Xcerpt programs in both Xcerpt and
XML syntax. It can access XML, Xcerpt, and HTML
resources as local files or on the Web (via the hypertext
transfer protocol HTTP).

The visXcerpt prototype is implemented mainly
in CSS. Its dynamic aspects (like program editing)
are implemented in ECMA Script. The visXcerpt
prototype renders programs into a dynamic HTML
representation which can be displayed using a stan-
dard compliant web browser (Mozilla is chosen for
the demonstration). visXcerpt programs are evaluated
as follows: the visual program is translated into an
(XML) textual program which is sent for evaluation
(via HTTP) to the (textual) Xcerpt prototype.

In the demonstration we first present the textual
language Xcerpt, then the visual language visXercept.

Presentation of Xcerpt. The Xcerpt presenta-
tion begins with a single, very simple rule. Building
on this rule, more complex transformations are created
using the different positions for the all-construct and
different variable restrictions. It is then demonstrated
how to combine several queries with multiple occur-
rences of the same variable. Finally, two additional
rules are added to illustrate how several rules can be
used to nicely separate program logic from result pre-
sentation.

Presentation of visXcerpt. The presentation
of the visual interface begins with illustrating how

generic XML documents and the Xcerpt attributations
(order/partiality) are represented visually. Concepts
like browsing and editing primitives are introduced.
The visual rendering of Xcerpt rules and Xcerpt con-
structs is then illustrated on example programs.

References

[1] Buneman, P., Fernandez, M., Suciu, D.: UnQL: A
Query Language and Algebra for Semistructured
Data Based on Structural Recursion. VLDB Jour-
nal 9 (2000) 76–110

[2] Bry, F., Schaffert, S.: A Gentle Introduction into
Xcerpt, a Rule-based Query and Transformation
Language for XML. In: Proc. Int. Workshop on
Rule Markup Languages for Business Rules on the
Semantic Web. (2002) (invited article).

[3] RuleML Initiative http://www.dfki.uni-
kl.de/ruleml/: Rule Markup Language. (2002)

[4] Ceri, S., Damiani, E., Fraternali, P., Paraboschi,
S., Tanca, L.: XML-GL: A Graphical Language
for Querying and Restructuring XML Documents.
In: Sistemi Evoluti per Basi di Dati. (1999)

[5] Consens, M., Mendelzon, A.: Expressing Struc-
tural Hypertext Queries in GraphLog. In: Second
ACM Hypertext Conf. (1989) 269–292

[6] Pietriga, E., Quint, V., Vion-Dury, J.Y.: VXT:
A Visual Approach to XML Transformations. In:
ACM Symp. on Document Engineering. (2001)

[7] Munroe, K.D., Papakonstantinou, Y.: BBQ:
A Visual Interface for Integrated Browsing and
Querying of XML. In: VDB. (2000)

[8] Erwig, M.: A Visual Language for XML. In:
IEEE Symp. on Visual Languages. (2000) 47–54

[9] Maier, D.: Database Desiderata for an XML
Query Language. In: Proc. of QL’98 - The Query
Languages Workshop. (1998)

[10] Deutsch, A., Fernandez, M., Florescu, D., Levy,
A., Suciu, D.: A Query Language for XML. In:
Proc. of Eighth Int. WWW Conf. (1999)

[11] Bry, F., Schaffert, S.: Towards a Declarative
Query and Transformation Language for XML
and Semistructured Data: Simulation Unifica-
tion. In: Proc. Int. Conf. on Logic Programming
(ICLP). LNCS 2401, Springer-Verlag (2002)

[12] Abiteboul, S., Buneman, P., Suciu, D.: Data on
the Web. From Relations to Semistructured Data
and XML. Morgan Kaufmann (2000)

4

