INSTITUT FUR INFORMATIK

Lehr- und Forschungseinheit fiir

Programmier- und Modellierungssprachen

Oettingenstrafie 67, D-80538 Miinchen

An Evaluation of
Regular Path Expressions with Qualifiers
against XML Streams

Dan Olteanu, Tobias Kiesling, Francois Bry

Technical Report, Computer Science Institute, Munich, Germany
http://www.pms.informatik.uni-muenchen.de/publikationen

Forschungsbericht/Research Report PMS-FB-2002-12, May 2002 (Revised Dec. 2002)

LMU

Ludwig——
Maximilians—
Universitdt__
Miinchen____

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 1

Abstract

This paper presents SPEX, a streamed and progressive evaluation of regular path expressions with
XPath-like qualifiers against XML streams. SPEX proceeds as follows. An expression is translated in
linear time into a network of transducers, most of them having 1-DPDT equivalents. Every stream message
is then processed once by the entire network and result fragments are output on the fly. In most practical
cases SPEX needs a time linear in the stream size and for transducer stacks a memory quadratic in the
stream depth. Experiments with a prototype implementation point to a very good efficiency of the SPEX

approach.

I. INTRODUCTION

Querying data streams is a field of growing importance motivated by applications such as
real time measurements (e.g. monitoring the number of passing objects on a channel for traffic
routing) and continuous services which select informations from a continuous stream of data
(e.g. stock exchange or meteorology data). For a selective dissemination of information (SDI),
streams have to be filtered according to complex requirements, specified as queries, before being
distributed to the subscribers [1], [17]. To integrate data over the Internet, particularly from
sources with low troughputs, it is desirable to progressively process the data before the full
stream is retrieved [2], [3]. The data streams considered in such applications can be infinite (or,
more precisely, unbound) and consist of structured messages. Such messages are conveniently
modeled with XML. Message selection, i.e. queries, are naturally expressed using regular path
expressions with qualifiers [4].

This paper describes a model called SPEX for a streamed and progressive evaluation of regular
path expressions against XML streams. Streamed evaluation means that a data stream is not
completely buffered, progressive processing means that results are streamed and delivered on the
fly. The SPEX model handles not only simple regular path expressions, but also regular path
expressions with qualifiers like those of XPath [5].

Some approaches to streamed query evaluation consider fixed size windows on the data stream
for restricting the query evaluation to parts of the input data [6]. This way, input streams
of unbound sizes can be processed without storing more data than specified by the window.
However, this is at the cost of returning incorrect and/or incomplete answers. In SPEX, windows
are not considered (although windows could easily be combined with SPEX), i.e. SPEX performs

an exact evaluation. SPEX does store parts of the input data stream in memory only if their

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 2

appartenence to the query result is not yet determined.

The approach proposed here enjoys the following attractive features:

o The translation of regular path expressions with qualifiers into a SPEX transducer network
takes a time linear in the size of the input expression.

e The evaluation of a SPEX network is performed in one pass over the stream and requires
for every transducer stack a number of entries bounded in the depth d of the stream. In most
practical cases it takes a time linear in the stream size and uses formulas with a size bounded
in d. Without qualifiers or closure steps the size of a formula is constant. The evaluation of
expressions with qualifiers on n wildcard closure steps can require formulas with size exponential
in the number of such steps, i.e. d”. The last transducer takes care of outputting ordered result
and in the worst case it needs a memory linear in the stream size. However, it buffers messages
only if their membership in the result can not be decided based on the stream fragment already
processed.

o The computational power needed by a transducer from a SPEX network, except its last trans-
ducer, is within the 1-DPDT class. Note that this is the lowest bound for the computational
power needed for querying XML streams with regular path expressions [7]. The output trans-
ducer needs the computational power of a Turing machine.

o Experiments with a prototype implementation point to a very good efficiency of SPEX. The
prototype supports also other XPath navigational capabilities, i.e. following and preceding, and
node-identity joins. Compared with existing XPath processors, SPEX overcomes them in most
of the medium-sized scenarios and scales acceptable in cases when the other processors can not
handle huge data, e.g. > 1 GB [7]. The prototype was tested also against application-generated
infinite streams and proved stable in cases where the depth of the tree conveyed in the stream is
bounded.

The paper is organized as follows. Section II shortly recalls the XML stream data model
and regular path expressions. The SPEX evaluation model is introduced in Section ITI. In this
section, SPEX transducers for each expression construct are first specified. Then the translation
of regular path expressions with qualifiers into a SPEX transducer network is explained. The
computational power of a SPEX transducer is investigated in Section IV. Complexity results are
given in Section V. Section VI compares the efficiency of a SPEX prototype with other XML

query implementations that construct in-memory representations of the streams. The migration

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 3

to conjunctive queries with regular path expressions is outlined in Section VII. Related work is

summarized in Section VIII. Section IX is a conclusion.

II. PRELIMINARIES
1. XML Streams

In this paper, an XML stream denotes a sequence of document messages (or events). A
stream carries parent-child relationships between document messages, i.e. it specifies structural
information. Streaming an XML document corresponds to a traversal of the XML document in
so-called document tree order, i.e. a depth-first left-to-right traversal of the document tree. At
the start (end, resp.) of the document a start-document message <$> (end-document message
</$>, resp.) is placed on the stream. Such streams are similar to the event streams generated
by the Simple API for XML (SAX) [8]. Figure 1 illustrates on a simple example the streams

considered in this paper.

Fig. 1 Three Representations of an XML Document

1. Serialized XML Document 2. XML Tree (after the XPath Data Model)
<?xm version="1.0"?> °
<a>
<a> l
<c/ > ®a
</ a> /N
<b/ > ®a e b eC
<c/ > l
< a> ecC

3. XML Stream

<$> <a> <a> <c> </c> <c> </c> </ $>

For reasons of conciseness, XML specificities such as attributes, namespaces, processing in-
structions and comments, are not considered. The necessary extensions are technical, but not

difficult.

2. Regular Path Ezpressions with Qualifiers (RPEQ)

The query languages for semistructured data and XML have the ability to express queries in
form of path expressions [4]. A path expression is a query composed of steps that express a
navigation through the tree associated with the XML data. Using path expressions one might
express (direct or indirect) parent-child relationships on the nodes of a document tree.

A regular path expression is a regular expression [9] over an alphabet V' with the operators

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 4

closure (*), concatenation (.), and union (]). Here, V is the set of labels of the nodes of an
XML document tree (cf. Figure 1). The evaluation of a regular path expression E against a
stream representing an XML document D is the sequence of nodes in the data tree of D that
are reachable from the root of this tree by paths conforming to E.

A natural enhancement for regular path expressions, as encountered in the XML query lan-
guage XPath [5], is the addition of qualifiers. Here, a qualifier [F] is defined in terms of a
regular path expression E. The evaluation of the qualifier [E] returns the truth value true, if
the evaluation of the regular path expression E returns a non-empty set of nodes, and false,
otherwise.

The regular path expression with qualifiers, short rpeq, considered in this paper, are described

by the following grammar:

rpeq == € | label | label * | label™ | (rpeq|mpeq) | (rpeq . rpeq) | rpeq? | rpeq [rpeq]

The symbol label stands for a node label or for the wildcard (_) that matches every node labels.
Note that the operators * and ? can be defined as follows using other operators: label* is
equivalent to (label” | €) and rpeq? is equivalent to (rpeq | €). E.g. *.al[bl._*.c is a rpeq which
selects the c labeled nodes that are descendant of an a labeled node having at least one b labeled
child. In this rpeq, [b] is a qualifier.

The language of rpeq covers the XPath fragment with no other steps than the forward steps
child and descendant and no other qualifiers than structural qualifiers. Backward steps like
ancestor and parent are expressible with rpeq, since, as shown in [10], they are expressible in

the above-mentioned XPath fragment.

III. THE SPEX EVALUATION MODEL

This section describes an evaluation of regular path expressions with qualifiers (rpeq) based
on transducers. For each rpeq construct, a so-called SPEX transducer is specified. An rpeq is

translated into a SPEX network consisting of interconnected SPEX transducers.

1. SPEX Transducer Network

A finite-state transducer (FST) is an abstract computing machine with a finite state control,
a read-only input tape, and a write-only output tape. A pushdown transducer (1-PDT) is a
finite-state transducer augmented with a pushdown store [9]. A SPEX pushdown transducer,

as introduced here, is similar to a conventional deterministic pushdown transducer (1-DPDT),

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 5

except that it does not have accepting states and that it has two stacks, a “condition stack” and
a “depth stack”, instead of only one, i.e. it is a 2-DPDT. The condition stack is used for keeping
track of condition formulas on which query results depend, and the depth stack used for counting

the document tree level of elements.

Definition 1 (SPEX Transducer). A SPEX transducer
T= (Qa 27 Qa Fdeptha Fconda q0, (5)

is a 2-DPDT with two stacks, called condition and depth stacks, such that:
o @ is a finite set of states,

e X is the input alphabet,

e () is the output alphabet,

Lgeptn is the alphabet of the depth stack,

['cond is the alphabet of the condition stack,

qo € Q is the initial state, and

¢ is the transition function

0: 38X QX Taepth X Teong — Q X (Pdepth U{e}) X (Ceona U {€}) x (2U {e}).

Each transition depends on the next input symbol, the current state, the top of the depth and
condition stacks. It possibly changes the state, the top of both stacks, and the output tape.

The transitions of different SPEX transducers are specified in the following sections by means
of configurations. A configuration of a SPEX transducer is a triple ¢ € Q % Leptn X Toong = @-
The transitions are specified as relations from 3 x ® to ® x 2*, i.e. as relations from configurations
under input symbols to new configurations with output symbols.

SPEX transducers can be modified by adding extra input and/or output tapes, as shown in
Section IT1.6. For conciseness, the notation T2, is used to refer to a SPEX transducer with
input tapes in = inq,...,in, and output tapes out = outy, ..., out,. In Sections I11.3 through
I11.7, several SPEX transducers are introduced. Note that their computational power is that of

1-DPDT as argued in Section IV. Section III.8 introduces a more complex transducer that has

the computational power of a general 2-DPDT, hence of a Turing machine [11].

A SPEX network consists in a collection of SPEX transducers with their interconnections.

A connection is used to transmit different kinds of messages between transducers: Document

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 6

messages, activation messages, and condition determination messages. The last two kinds of

messages serve only the communication between transducers.

Definition 2 (SPEX messages). There are three kinds of messages in a SPEX network:
Document messages of the forms <a> or indicate the beginning or the end of elements in
an XML stream.

Activation messages of the form [f] activate transducers with a condition formula f, i.e. make
transducers return results when f becomes true. A condition formula consists of conjunctions
and/or disjunctions of condition variables.

Condition determination messages of the form {c,v} signal the value v (true or false) of a con-

dition variable c.

A condition variable represents an instance of a qualifier. Most SPEX transducers, e.g. the
child, closure, split, and join transducers, do not process condition formulas, but just receive,
store and send them as they are. In contrast, the variable-filter SPEX transducer decomposes

formulas into a stream of condition variables and filters out or check some of the variables.

Definition 3 (SPEX Network). A SPEX Network SN of degree n is a tuple
SN = (DM, AM, CM, G)

where

o DM, the set of document messages, is the input and output alphabet of the network,

o« AM is the set of activation messages that may be passed in the network,

o CM is the set of condition determination messages that may be passed in the network,

e G = (N,E) is a directed acyclic graph (DAG) with a set of nodes N = {T1,...,T,} of
cardinality n and with set of edges FE.

A node T; (1 <i<n)of Gisa SPEX transducer

Tzi = (Qza Ea Qa Iw(:jeptha Fconda CI(Z), 52)

where ¥ = Q = DMUAMU CM, and where T ;g = {f | [f] € AM}, Fz;iepth’ ¢, 0" and Q° depend
on the type of the SPEX transducer. An edge of G represent a connection between two SPEX
transducers: (T3,T;) € E, if an output tape of T; is connected with, i.e. is identical to, the input

tape of Tj.

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 7

Using the short-hand notation for transducers, a graph G defining a SPEX network can be
represented as the set {Tlin1 T M of its transducers, i.e. of its nodes: The connections

outy1? " Nout,

between the transducers, i.e. the edges of G, can be determined as follows:

(Tim, | T;™.) € E < out; Nin; # 0

iouti’ Jout;

The SPEX networks considered below are directed acyclic graphs (DAG) with one root (or
source) and one sink.

The translation of a regular path expression with qualifiers into a SPEX network is given in
Section II1.9 after the SPEX transducers corresponding to the rpeq constructs are introduced.
SPEX transducers have transitions (left implicit in the following specifications) that forward doc-
ument messages along the SPEX network without processing them, in case no other (explicitely

specified) transition applies.

2. Input Transducer: INy,,

A SPEX network for a given query is formalized as a DAG with one source and one sink.
One source means querying a single stream. One sink means collecting results for a single query.
Extensions of SPEX networks are possible e.g. allowing multiple sources, i.e. querying several
streams, or allowing multiple sinks, i.e. evaluating several queries.

The source of a SPEX network is an input transducer which has the task of sending an
activation message on the start document message and of forwarding one document message at
a time. After a message reaches the network’s sink, the next message is forwarded by the input
transducer into the network, thus ensuring that at any time there is only one message in the

network.

3. Child Transducer: CH™. (I,

A child transducer, cf. Figure 2, represents a label selection for, say, label [,,, i.e. it selects
<lp> document messages at a specific depth (of the unmaterialized document tree) . Such a
transducer tries to match only document messages that are direct children of the activating
document message, i.e. that have a tree level of n + 1, where n is the tree level of the activating
document message. The document messages, that can be matched by a transducer, define its
match scope.

For matching only direct children of the activating document messages, the transducer must

An Evaluation of

Regular Path Expressions with Qualifiers

against XML Streams

Fig. 2 Transitions of child transducer CH™ (1

m) for matching [,

document messages

Pgn = {m,1} Q% = {waiting,matching,activatedl,activated2} ¢§* = waiting
1 ([f1 , (waiting , «, B)) F ((activatedl, a, flB), €)
2 (kI> , (waiting , a, B)) F ((waiting , lla, B8), <I>)
s (</I> , (waiting , 1la, B) F ((waiting , a, 8), </l>)
4 (/1> , (waiting , mle, B)) F ((matching , «, B), </1>)
5 (<I> , (activatedl, «, B)) F ((matching , 1lla, B), <>)
6 ([f] , (matching , a, B) F ((activated2, a, f18), e)
7 (<lm> , (matching , a, f18) F ((waiting , mla, F18), [f1;<lm>)
8 (<l,> , (matching , a, B)) F ((waiting , mla, B), <>)
o (</l> , (matching , lla, fIB))F ((waiting , a, 8), </l>)
10 (/1> , (matching , mla, f18)) F ((matching , a, B), </l>)
11 (<lm> , (activated2, a, filf218))F ((matching , mla, Filf218), [foli<lm>)
12 (Klp> , (activated?2 a, B)) F ((matching , mla, B), <lp>)
13 ({c,v}, (any_state , «, B) F ((any-state , «, update(c,v,8)), {c,v})

keep track of the tree level, i.e. the depth reached in the (unmaterialized) document tree, and
distinguish between the levels of direct children and the other tree levels; these levels are marked
with different symbols (m for match and 1 for level) on the depth stack.

The child transducer can be activated in two contexts: While waiting for being activated, as
shown in transition (1) of Figure 2, or while trying to match, as result of a previous activation
(6). Hence, it is able to match in several matching scopes originating from different activating
messages.

Note that the transitions of SPEX transducers consider only one input symbol. In Figure 2 (and
later in Figure 3), two extra states activatedl (1,5) and activated2 (6,11,12) are introduced
to accommodate the case where two consecutive input messages have to be treated, i.e. when a
transducer gets activated by receiving an activation message and a document message which led

to the activation.

Ezample 111.1. Consider the evaluation of the rpeq a.c against the stream from Figure 1. For
a and ¢ rpeq constructs two child transducers are created. The second transducer, 1>, has as
input tape the output tape of the first transducer, 77. The first component in the network is an

input transducer IN and its output tape is the input tape of T7. The transitions of transducers

An Evaluation of

Regular Path Expressions with Qualifiers

against XML Streams

Fig. 3 Transitions of closure transducer CL

n
out

(In) for matching [, document messages

= {1,s,ns,e}

waiting
waiting
waiting

waiting

activatedl,

matching

matching
matching
matching

matching

activated2,

activated2,

(
(
(
(
(
(
(matching
(
(
(
(
(
(
(

any_state

C.

O = {waiting,matching,activatedl,activated2} ¢f' = waiting

R a, B)) F ((activated1, a, fl18), e)
, a, B)) F ((waiting , 1lla, B), <>)
., 1la, B) F ((vaiting , a, 8), </l>)
, ela, B)) F ((matching , a, B), </1>)
a, B3)) F ((matching , sla, B), <>)

, a, B3)) F ((activated2, a, fl1B8), e)
, a, f18)) F ((matching , 1la, f1B), [f1;<lm>)
R a, B)) F ((waiting , ela, B), <lp>)
, 1lla, B) F ((matching , «, 8), </)
, nsla, f18)) F ((matching , a, B), </1>)
, sla, fIB)F ((waiting , a, 8), </l)
a, filf218)) F ((matching , nsla, fiV falf21B), [f2l;<in>)

a, B)) F ((matching , ns|a, B), <>)

R a, B)) F ((any-_state a, update(c,v,0)), {c,v})

Ty and T3 for processing the entire stream are shown in Figure 4.

Fig. 4 The sequence of transitions for child transducers T and T5 from Example TI1.1

CHf,Zt/DM <$> <a> <Ka> <> /> <> /> <Ja> </
T 1,5 7 2 2 3 3 2 3 2 3 4 9
Ts 2 1,5 8 2 3 4 8 4 7 4 9 3

When a start-document message <$> is encountered, I N sends to 77 an activation message
with the formula true, cf. transitions (1) and (5) of T} (T1: 1,5). The first <a> document message
is matched by T that sends an activation message to Ty (77: 7). After matching, T} enters in
the waiting state, and remembers the tree level where it is supposed to match by pushing an m
symbol on its depth stack. The transducer 7T is activated and prepared for matching (T5: 1,5).
The second <a> document message is not matched by 715, that enters in the waiting state, and
remembers in the same manner the tree level where it is supposed to match (75: 8). The next two
document messages, <c> and </c>, are not matched, as both transducers are waiting to reach
their marked tree level. At the level of document message, T, tries to match again (To: 8).

When 75 encounters the <c> document message, at the same level with , and corresponding

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 10

to the tree level marked on its depth stack with the m symbol, it matches and creates a candidate
for the result (75: 7). Exiting the match scopes is done for T3 after encountering the last but

one document message, and for T; after encountering the end-document message (71, Ts: 9).

4. Closure Transducer: CL™,(I,)

out

A closure transducer, cf. Figure 3, implements the logic of the positive closure + on a label
lm, i.e. it selects nested <[,,> document messages. Kleene closure * can be derived from positive
closure, as described in Section II1.2.

The match scope of this transducer contains all nested document messages that are descendants
of the activating document message in the tree, and have the same label [,,. Like the child
transducer, the closure transducer can be activated while waiting for being activated (1), or
while trying to match, as result of a previous activation (6). This transducer is able to match
for several nested activations at the same time, hence it can have several match scopes. Keeping
track of the tree levels corresponding to the window of each match scope is done by using three
symbols on the depth stack: s, for marking the beginning of a match scope that is not nested
inside other scopes, ns for marking the beginning of a match scope that is nested inside other
scopes, and e for marking the end of a match scope. The further symbol 1 is used for marking the
tree levels that do not fall in one of the special cases mentioned above. A nested match scope can
appear if the transducer was already activated and is in the process of matching. The reason for
differentiating between the match scopes is that leaving the first kind of scope leads to changing
the matching state to the waiting state (11), while a nested scope leaves the transducer in the
same matching state (10), since there remains at least one other match scope, which contained
the current one.

An interesting property of the closure transducer is that, for a nested scope, a disjunction
of the formula received and of the topmost formula of its condition stack is pushed on the
condition stack (12). This reflects the fact that a closure transducer can match due to both
nesting and nested scopes, while being inside the nested scope. Note, that such a disjunction can
be normalized by removing multiple occurrences of the same conjuncts. In this way, a formula

contains at most one reference to a condition variable.

Ezample 111.2. Consider the evaluation of the rpeq a+.c+ against the stream from Figure 1. For

a+ and c+ rpeq constructs two closure transducers are created. The second transducer, 75, has

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 11

as input tape the output tape of the first transducer, T;. The first component in the network
is an input transducer /N and its output tape is the input tape of T7. The transitions of both

transducers for processing the entire stream are shown in Figure 5.

Fig. 5 The sequence of transitions for closure transducers 77 and Ty from Example II1.2

CLf,’;t/DM P> <a> <a> <> </fc> <> <> /o> <Ja> </$>

T 1,5 7 7 8 4 9 8 4 8 4 9 11

T> 2 1,5 6,13 7 9 10 8 4 7 9 11 3

When a start-document message <$> is encountered, IN sends to 77 an activation message
with a true formula. When the first <a> is encountered, 77 matches and sends to T an activation
message with the formula from the top of its condition stack (i.e. true), cf. transition (7) of
T) (T1: 7). Hence, T, is awaken (T5: 1,5). The next document message is also an <a>, that is
matched by Ty (T1: 7), causing a nested match scope for T (T5: 6). The transducer 75 also tries
to match the <a> in the previous scope. It does not match, but it enters again in a matching
state, due to the second scope (T2: 13). When <c> is encountered in the stream, 75 matches and
creates a candidate for the result, which depends on the formula from the top of its condition
stack (Th: 7). Note that this matching is due to the second scope. After the next </c¢> and
 document messages are processed, the second scope is closed and both transducers are
still in their first scope (T7: 9, T»: 10). The document message closes the scopes for both
transducers (71,7%: 8), and opens them again (71,75: 4), in a new attempt to match <a>
and <c> document messages, respectively. A <c> document message is encountered, which closes
the scope window of 77 (T3: 8). This document message is matched by 75 and becomes part of
a result candidate (Ty: 7). Processing the </c> and the <$> document messages, respectively,

leads to the ending of the match scope of T» and T, respectively (T1,75: 11).

5. Qualifier Transducers

A qualifier instance can be seen as a condition variable, on which candidates for the result
depend. Consider for example the expression _*.a[b], where [b] is a qualifier. For each a in the
document that is matched, an instance of the qualifier [b] is considered. This instance has a truth
value, which represents the fulfillment of the qualifier for a node a.

In a SPEX network, variables are created for each qualifier and — depending on the fulfillment

of their related qualifier instances — evaluated to a truth value. A qualifier adds to a network

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 12

transducers for creating variables and for handling determination of the values of variables.

I11.5.1 Variable-Creator Transducer: VC™ (9)

out

A wariable-creator transducer is responsible for creating a condition variable ¢ for each instance
of the qualifier ¢q. Its transitions are shown in Figure 6. The creation of variables is triggered
by a received activation message [f], when it outputs a new activation message, consisting of
a conjunction between the received boolean formula and the newly created variable (1). This
transducer also invalidates the created variable ¢ when its scope has been left, by sending a

condition determination message {c,false} (4).

Fig. 6 Transitions of variable-creator transducer VC™,(q)

c

Fgeptn = {1,s} Q" = {working,activate} ¢;° = working

1([f] , (working , a, f))F ((activate, a, clf), [fAC])
2(<l> , (working , «, f))F ((working , lla, pB), <I>)
3(</I> , (working , lla, fA))F ((working , a, f), </I>)
4(</l> , (working , sla, clf))F ((working , «, f), {c,false};</I>)
5 (<I> , (activate, «a, f))F ((working , sla, f), <I>)
6 ({c,v}, (any_state, a, PB))F ((any_state, o, B), {c,v})

I11.5.2 Variable-Filter Transducer: VF™ (q+)

out

A wvariable-filter transducer is defined for a qualifier ¢ and is sensitive to condition variables
created for that qualifier. There are two distinct variable-filter transducers, a negative variable-

filter transducer V i’;t(q—) for dropping the variables created for a qualifier ¢, and a positive

in
out

variable-filter transducer VFY..(q+) for dropping everything else but those variables.

I11.5.3 Variable-Determinant Transducer: VD,

A wvariable-determinant transducer for a given qualifier ¢ provides determination messages for
the instances of that qualifier. If an instance c¢ of ¢ is satisfied, then a determination message
that assigns a true value to c is sent (1), as described in Figure 7.

Each instance ¢ of ¢ is received within an activation message from a positive variable-filter
VF™,(g+), which filters out from condition formulas all other variables that do not belong to g.

Every instance c of ¢ that reaches this transducer via an activation message is satisfied.

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 13

in

Fig. 7 Transitions of variable-determinant transducer VD},,

Tiaen = 0 Q™ = {working} ¢° = working

1 ([l , (working , a, B3))F ((working , «a,), {c,true})

2 ({e,v}, (any_state, a, B))F ((any-state, a, B), €)
6. Split and Join Transducers: SPiay; ousy» Joimin

Split and join transducers allow more complex SPEX networks than simple transducer chains,
by providing support for parallel stream processing and synchronization primitives, encoded at
the level of transducer transitions.

The split transducer has two output tapes. Its task is to forward every received message to both
of the output tapes. The join transducer has two input tapes. Its task is to collect the messages
coming on its input tapes and to send (some of) them to the output. Its behaviour is similar
to an AND-gate, where a signal level (here a document message) is produced at the output when
on both inputs that signal level is encountered. Because of this particularity, this transducer
plays an important role in the synchronization of the network, ensuring that both network
branches before the join transducer are expected to finish before other components, situated after
the join transducer, can continue their work. A join transducer is only sensitive to document
messages, hence activation and condition determination messages can pass unconditioned through
it without an explicit treatment.

In the specification given for a split transducer in Figure 8 the right-hand side of the transition
is a 5-tuple, as it shows both of the output tapes. The right-hand side of the transition relation
for a join transducer, as presented in Figure 9 is shortened to a 2-tuple consisting of the new
state and the output tape. The left-hand side of transitions is also changed to show the current

state and both input tapes.

n
out,outz

Fig. 8 Transitions of split transducer SP

Papen = 0 QF = {working} ¢;° = working

1 (any_symbol, (working, «, B))F ((working, a, B), any-_symbol, any-symbol)

Note that a split (a join, resp.) transducer with n output (input, resp.) tapes can be simulated

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 14

iny,ing

Fig. 9 Transitions of join transducer JO,,;

Pg:pth =0 Q% = {none, left, right} ¢° = none

1 (1> , <d> , none) (none , <I>
2(<> , [f1 , none) (left , [f]
3 (<> , {c,v} , nome)F (left , {c,v}
a([f1 , <d> , none)} (right, [f]

()
()
()
()
5 ({c,v} , <d> , none) I (right, {c,v})
6 (L[f] , {¢c,v} , none) (none , [fIl;{c,v})
7({c,v} , [f] , none)k (none , [f1;{c,v})
s([fil , [fo1 , none)k (none , [fil;[f:])
9 ({c1,v1}, {c2,v2}, none)F (none , {ci,v1};{c2,v2})
10 (e » [f] , left) (left , [f]
11 (e , {c,v} , left) F (left , {c,v}
12 (e , <d> , left)+ (none , <I>
13 (Lf] , € , right) I (right, [f]
14 ({c,v} , e , right) I (right, {c,v}

(

~— ~— ' ~— ~—

15 (KI> , € , right) I (none , <I>

by n — 1 transducers with 2 output (input, resp.) tapes.

7. Union Transducer: UN™

out

A connector transducer has the task of creating a condition formula from two formulas it
receives. Such a new formula is a disjunction or a conjunction of the formulas received.

A union transducer UN™, is a connector that creates a disjunction between formulas from two
activation messages it receives. As described in Figure 10, it stores a condition formula from a
received activation message [f1] in (1), and then a second condition formula f9 in (2), when it
also sends an activation message with a disjunction of them ([f1 V f2]). If it receives only one
activation message, then it forwards it (3).

At the query language level, a union transducer conveys the semantics of a union operation.
The union of two sets of document messages is computed here by looking at one message from
one or both sets at a time. If a document message <1> is part of a set, then the transducer that
matched the document message sends an activation message followed by the matched document
message (1,3). The same document message may become part of the second set only at the same

time, since only one document message is passed at a time through the network. In this case,

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 15

n

Fig. 10 Transitions of union transducer UNY,,

Taoptn = @ Q™ = {waiting, activate} ¢3" = waiting

1([A] , (waiting , a, B)) F ((activate, «a, f118), €)
2 ([f2] , (activate, «, filB))F ((waiting , «, B), [fiV f21)
3 (<> , (activate, a, f1lB))F ((wvaiting , «, B), [fil;<>)
4 ({c,v}, (any_state, «, B)) F ((any_state, «, B8), {c,v})

an activation message for that document message depending on the disjunction of the condition
formulas of both received activation messages is output (1, 2).

Note that a connector transducer has only one input tape. For simulating a set operation, it
is assumed to appear in a network after a join transducer, which can interleave messages coming
from separate branches. Also the problem of removing duplicates for the union operation is

solved by the join transducer, which allows only unique document messages to pass.

8. Output Transducer: OUL.,

The sink of a SPEX network is an output transducer, which processes results, i.e. query answer
candidates. Its task is to identify and store candidates, to evaluate conditions formulas so as to
decide whether a result candidate is a result, and to output results in document order.

The output transducer acts as follows: If an activation message is on its input tape, a new
candidate is created, which consists of the range of document messages starting with the first
received one, e.g. <1>, and ending with its corresponding end document message, e.g. </1>. If
a condition determination message {c,v} is on the input tape, then the transducer updates the
candidate formulas with the assignment v for ¢. In such a case, it is possible that the truth
value of a formula attached to a candidate is determined and thus the candidate becomes part
of the result, or is dropped. However, if a candidate is part of the result, the preservation of the
document order can impose that it must be stored until all earlier candidates are determined.

The output transducer is more complex than the other introduced transducers, as it needs

random access to result candidates and condition formula stacks.

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 16

9. Translation from Regular Path Expressions to SPEX Networks

The translation of a regular path expression with qualifiers into a SPEX network is done
statically, before starting the process of query evaluation, and is given by means of a denotational
semantics, specified as a function C shown in Figure 11. The function C is defined by induction
on the structure of regular path expressions, as introduced in Section II. This is possible due to
the compositional nature of regular path expressions and SPEX networks.

C maps a regular path expression, a given SPEX network configuration o, and its output tape ¢
to an updated SPEX network and an output tape, the new network being formed from the initial
network and the network representation of the given expression. A SPEX network is represented

as a set of interconnected SPEX transducers, cf. Definition 3.

Fig. 11 A denotational semantics for regular path expressions with qualifiers

C : Expression — (Network, Tape) — (Network, Tape)
Cl(rpeqy | rpegy)](0,t) = {(04,t6) | o1 = {0, 5Py, 4, }, (02, 85) = Clrpeq;] (o1, 1),
(03,t4) = C[rpegy](02,t2),04 = {03,J0§§’t4, UNif;}}

C[(rpeg, . rpegs)](0,t) = Clrpeg](Clrpeg] (o, 1))

Clrpeq?](o,t) = {(03,t4) | 01 = {G,SPil,tz}, (03,t3) = C[rpeq](o1,t1),03 = {02,J0§j’t3}}
C[[label *](o, 1) = {(03,t1) | o1 = {0,SP}, 4, }, (02, t3) = C[label *[(01,t1), 03 = {02,J0;>"*}}
C[label | (o,) = ({o,CH (1)}, t1)

C[label *](o,t) = ({0, CL}, (label)}, 1)

Clrpeq, [rpeg, 1](o,t) = C[[rpegy 1 [(Clrpeq,](a,t))

C[[rpeq]](o,t) = {(03,t7) | o1 = {0, VC}, (q),SPiL 1, }, (02, t4) = C[rpeg] (o1, t2),

03 = {027 VFi: (q+)7 VD%Z) Joii’tﬁ }}

The input and output transducers are added to a SPEX network after the internal components
are set up by means of C. Hence, a SPEX network corresponding to a regular path expression

with qualifiers rpeq is ({o, OU%} | (0,t1) = Crpeq] (INP", 1)).

10. Complete Example

Assume the regular path expression with qualifiers _ % .a[b].c is to be evaluated against the
stream of Figure 1. The corresponding SPEX network is shown in Figure 12 where each box
represents a transducer. The transition sequence of each transducer is given in Figure 13.

The following explanations are focused on handling qualifier instances, i.e. condition variables,

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 17

Fig. 12 SPEX Network for _ * .a[b].c
! | !

— IN > SP JO [CH(a) F*|VC(q) > SP JO [CH(c) [* OU [~

T1 T4
T2 T3 T5
—» >

cL() CH(b) [VF(g+) [VD

and result candidates depending on them. The start-document message <$> is processed by
the input transducer by writing to its output tape an activation message with a true formula
([truel), as there are no qualifiers before the input transducer. 77 and 75 receive the activation
message, push the formula on their condition stack and forward the start-document message.
The other transducers are not activated, they just forward the start document message and
count the tree level. For the start-element message <a>, 17 and 75, respectively, succeed to
match, and they activate 75 and T3, respectively. T3 on its turn activates T, and 75 with a
conjunction between the formula within the received activation message and a newly created
condition variable co;. The second document message <a> is matched again by 77, T% and T3
and a new condition variable cos is created by T3. T5 matches the first <c> document message,
and proposes a new result candidate candidate; containing this message. This candidate depends
on variable coe, which is not yet determined. When the first is encountered, T3 sets cos to
false by sending a condition determination message {coq, false}. This is done since the match
scope of the inner <a> has been left, and no has been encountered for satisfying the qualifier.
As coy is determined to have a false value, the output transducer can discard candidate;. When
the first document message is encountered, the first instance of the qualifier is satisfied, i.e.
the variable-determinant transducer VD sends a condition determination message {co;,true}.
The first candidate that depends on co1, i.e. candidates, is created after processing the second
<c> document message. This candidate is directly sent to output, since the formula it depends

on is determined and has a true value.

IV. COMPUTATIONAL POWER OF SPEX TRANSDUCERS

The following theorem gives a lower bound for the computational power needed by a rpegq

evaluator for querying well-formed XML documents.

Theorem IV.1 (Querying well-formed XML Documents with rpeq). The computational

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 18

Fig. 13 The sequence of transitions for SPEX transducers from Figure 12

T/DM <$> <a> <a> <c> </c> <c> </c> </$>
T 15 7 7 7 9 9 7 9 7 9 9 11
T 1,5 6,11 611 612 10 10 612 10 612 10 10 9
Ts 2 15 15 2 3 4 2 3 2 3 4 3
Ty 2 15 612 8 4 1310 7 4 8 4 9 3
Ts 2 15 612 7 4 1310 138 4 7 4 9 3

power needed for querying well-formed XML documents with rpeq is at least that of pushdown
automata with one stack (1-PDA).

Proof. (sketched) The problem of querying an XML document with rpeq consists in (1) identi-
fying parts of document that are considered for the result, and (2) constructing the result from
those identified parts. In the following, the first subproblem is analyzed. An rpeq evaluator
is a recognizer of well-formed XML documents, where the language describing a document and
recognized by the evaluator is enriched with constraints derived from the semantics of rpeq. It is
shown that there exists a regular path expression that needs the computational power of 1-PDA.

Consider the regular path expression a that selects all nodes with label a (<a>...) that
are children of the document root (<$>...</$>). A language that conveys the same semantics

as the given regular path expression and has any well-formed XML document as instance is
L(a) =<$> (<x></x>™ (<a> <y>" </y>")*)*x </$>,

where m,n > 0, y can be any tag, and z can be any tag but a. By the pumping lemma, for
regular languages [9], the language L is not regular, hence it can not be accepted by a finite state
automaton, but rather by a pushdown automaton. Hence, the rpeq query subproblem needs at
least the computational power of 1-PDA. By extension, the rpeq querying problem needs at least
the same computational power.

Informally, the reason behind this needed computational power is that inside an a matching
node there can be an arbitrary number n of nested subnodes, which can also be a nodes. Keeping
track of their proper nesting in order to match nodes with label a only appearing at the level

immediate below the root implies the use of a pushdown store. U

In the following, it is shown that the computational power of the SPEX evaluation model is

the very lower bound of the previous theorem. I.e. in terms of computational power, the SPEX

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 19

model is optimal. Recall that a pushdown transducer is in fact a pushdown automaton with one
write-only output tape, i.e. pushdown transducers and pushdown automata with one write-only

output tape have the same computational power.

Theorem IV.2 (Computational Power of SPEX Transducers). The computational power
of the child (closure, union, qualifier, resp.) SPEX transducer is that of deterministic pushdown
transducers with one stack (1-DPDT).

Proof. SPEX transducers are introduced in Section II1.3 through III.7 as deterministic pushdown
transducers with 2 stacks (2-DPDT). The child, closure and variable-creator transducers use both
stacks, i.e. the depth and the condition stack. Note, however, that the use of the stacks is done
in a highly synchronized manner, and there are no transitions that push onto one stack and pop
from the other one, so as to simulate a Turing machine [11]. The only operations done at a time
on the stacks are: pushing from both stacks or popping from both stacks, pushing or popping
from one stack, while the other one remains unchanged. Hence, both stacks can be simulated by
one stack, where an entry is represented by a data structure composed of two entries, from the
depth stack and the condition stack, respectively.

The union transducer uses only one entry on the condition stack for storing temporary a
condition formula, hence it is in 1-DPDT class. The variable-filter, variable-determinant, split,
and join transducers do not use stacks at all, hence they are in FST (finite state transducer)

class, which make them also part of 1-DPDT class. O

The only transducer that uses two stacks in an unsynchronized manner is the output trans-

ducer. Its computational power is that of 2-DPDT class, hence that of Turing machines [11].

V. COMPLEXITY RESULTS

In the following, an XML stream is described by its size s and the depth d of its (unmaterialized)
associated document tree, rpeg(n) denotes a regular path expression with qualifiers of length n,
St (T}, resp.) denotes the space (time, resp.) a SPEX transducer ¢ needs for processing an

expression rpeq(n) against an XML stream.

Lemma V.1 (SPEX Network Construction). The translation time and the degree (cf. Def-

inition 3) of a SPEX network for rpeq(n) is linear in n.

Proof. The expression rpeq(n) is translated into a network of SPEX transducers, as presented in

Section II1.9. The number of SPEX transducers created for each expression construct is constant,

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 20

hence the degree of the network corresponding to rpeq(n) is linear in n. The time for adding

each transducer to the network is constant, hence the translation time is linear in 7. O

The space complexity for a SPEX transducer depends on the maximum sizes of its depth and
condition stacks. The entries of a depth stack are of a constant size and a depth stack can have
at most d entries, since it counts the tree levels conveyed in the stream. Therefore, the space
needed by a depth stack is linear in d. The time for pushing and popping a depth stack entry is
constant. Hence, the time needed for managing a depth stack while processing the entire stream
is linear in s. Below, only results concerning the condition stacks are given.

As described in Section III, an activation message carries a condition formula. An rpeq ex-
pression can match nested document messages at most d times. For each qualifier, condition
instances are created which are represented by condition variables. The number of undetermined
condition variables at a time in the system is at most d and a condition formula can refer at
a time to at most d condition variables. A closure transducer can create formulas that repre-
sent disjunctions of formulas; a variable-creator transducer can create formulas that represent
conjunctions of other formulas.

The size o of a boolean formula. First, the size o of a boolean formula is analyzed. Here it
is considered only the size of a boolean formula in the case of a rpeq without unions and multiple
qualifiers on a single step.

The results can be extended to rpeq with unions in the following way: if an rpeq has m union
terms, then the size o of a boolean formula ¢' is 0(¢') = m * o(¢), where o(¢) is the maximum
size of a formula created during the evaluation of a single union term. In the same way, the
results can be extended to multiple qualifiers on a single step.

Regarding the supported rpeq language fragment, the following cases can be distinguished:

o the language fragment without qualifers, i.e. rpeq*.

In this case, there can be only a single boolean formula in the condition stacks, i.e. true. For
this language fragment, the condition stacks can be even dropped.

o(¢) = 1.

o the language fragment without closure, but with qualifiers, i.e. rpeql.

In this case, a boolean formula can consist only in conjunctions between boolean variables. More
specifically, a boolean formula can consist of at most min(n,d) boolean variables, where n is the

number of qualifiers in the expression and d is the depth of the tree conveyed in the stream.

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 21

o(¢) = min(n,d).

« the language fragment with closure and qualifiers, i.e. rpeq*l.

Consider the following general form for a rpeq™l: rpei[g1].rpes[go]. rpen[qn], where every rpe;
contains a closure step. The boolean variables created for [¢;] are generally denoted v;, e.g.

v}l is the first variable created for the qualifier [¢;]. There are n; variables created for [g;] that

i
correspond to the number of active matchings at a time of rpe;. In the general case, n; is bounded
in the depth d of the stream.

On the stacks of the first rpes closure step there can be formulas representing disjunctions of
variables v1, at most n;. The biggest formula ¢o looks like: ¢ = v% \; 'u% .Vl o(da) = ng.
On the stacks of next steps from rpey the previous formula can appear in every entry, thus a
stack entry has an n; size.

Going further, on the stacks of the first rpes closure step there can be formulas representing a
conjunction between a disjunction of all variables of the first qualifier and a disjunction of all
variables of the second qualifier: ¢35 = (vi VvZ... Vo) Avi V...V (v Vo2 ...V olt) Avg?,
o(¢3) = (n1 + 1) X ng. This formula can appear in every entry, thus a stack entry in this case
has an (n1 + 1) X ng size.

We can conclude that a result candidate depends on a formula ¢ that can have the size:

o(¢) = B7_ (I} ;(ni)). Therefore, o(¢) = O(d").

Remark V.1. In the cases in which two distinct rpe steps do not match the same stream messages
the following assumption holds: X7, (n;) < d, i.e. the sum of the number of active matchings at
a time for all steps is bounded in the stream depth d. This happens when rpe; to rpe, match
altogether sequentially in depth.

In this simplified case, a better result can be provided. Consider again a formula from the stack
of an rpes step, i.e. p3 = (vi V... Vo) Avi V...V (vl V... Vo) Avh?. Tt is easy to see that
¢3 = (vi... Vo)A (vl V... Voh?). In this case, o(¢3) = n1 + ng. Furthermore, a formula
¢n, from the stacks of rpe, steps is: ¢, = (v} V...V o)A ... A (vl_; V... Vv, "7"). Thus,
o(9) = Ty (ni) < d.

Lemma V.2 (Space and Time Complexity of SPEX Transducers). The space and time
needed for querying a stream with size s and depth d by
1. a child or closure transducer is Scg = Scr, = O(d X 0), Tecg = Ter, = O(o - 3);

2. a variable-creator is Syc = O(d), Tyc = O(0o - 8);

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 22

3. a wariable-creator or union transducer is Syn = O(0), Tun = O(o - 8);
4. an input, variable-filter, condition-determinant, split or join transducer is Sy = O(1), Ty =
O(o - s), where t € {IN,VF,CD,SP,JO};

5. and an output transducer is Soy = O(o - s), Toy = O(0 +).

Proof. 1. A condition stack allows entries, represented by condition formulas, which can have
size 0. There can be d entries on a condition stack, due to the maximum of d nested activations.
Hence, the space needed by a child and closure transducer is: Socg = Scr, = O(d X o).

The processing time needed for one incoming message is determined by the received formulas
within activation messages. A transducer needs time o for copying a formula to and from its
stack. For the entire stream, the processing time is linear in s: Toy = T = O(o - 3).

2. A variable-creator for a qualifier ¢ instantiates for each received activation a new condition
variable with ¢ stamp. Each condition variable is stored on an entry on the condition stack,
and the condition stack can have at most d entries, which is the maximum number of nested
activations. Hence, the space needed by a variable-creator transducer is: Sy¢c = O(d).

The processing time needed for one incoming message is determined by the received formulas
within activation messages. A transducer needs time o for copying a formula to and from its
stack. For the entire stream, the processing time is linear in s: Ty = O(o -).

A union transducer needs one entry on the condition stack for storing a formula: Spc = O(0).
The processing time of one message from the input stream implies the time for handling also
the possible related activation message, i.e. the time for copying it on the stack, which is o, and
the time for creating a disjunction of two formulas with conjuncts duplicate elimination, which
is also linear in o. For the entire stream, Tpc = O(o -).

3. Input, variable-filter, condition-determinant, split and join transducers do not use their push-
down store, hence their space requirement is constant: S; = O(1). Copying an activation message
of size ¢ from input to output requires o time. Since there can be as many activation messages
as document messages, the time needed for copying all the s activation messages is: T; = O(c-s).
The input transducer does not encounter activation messages: Ty = O(s).

4. The output transducer needs space for candidates and for their formulas. A formula has size
o, a candidate can be of size linear in s, e.g. the entire stream is a candidate that depends on a
qualifier instance that can be evaluated only at the end of the stream: Soy = O(o - s).

Managing the candidates and their related formulas implies time for copying a formula for each

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 23

candidate. There can be s candidates, alltogether of size s, and for each of them a formula of
size o is copied on a store: Toy = O(0 - 8).

O

Theorem V.1 (Querying XML Streams with SPEX Networks). The space Spet and the
time Tpetr needed by a SPEX network net for querying a stream with size s and document depth

d are Spet = O(maz(d X 0,)) and Typer = O(0 - 8).

Proof. The space and time used by a SPEX network net for querying a stream with size s and
depth d is given by the sum of the space and the time, respectively, needed by its components.

Hence, the space and time complexity is: Spet = O(s) and Tper = O(0 - 3). O

Under the assumption that d < s, i.e. the document depth is significantly smaller than the
size of the stream, and the size of a query is constant (then o is constant) the results become

Snet = O(s) and Ty = O(s).

VI. EXPERIMENTAL RESULTS

For experimentally evaluating the performance of the SPEX model, a (rather straightforward)
prototype has been implemented in Java and tested against databases of various sizes and char-
acteristics: The MONDIAL geographical database [12] as a small and highly structured XML
document, an excerpt of the lexical WordNet database [13] as a medium sized, flat, and highly
repetitive RDF representation, and the structure and content of the Open Directory Project
(DMOZ) [14] as large, flat RDF documents. Four classes of queries have been considered for
comparing the efficiency of the SPEX prototype with existing regular path expressions imple-
mentations:

1. simple structural queries that do not create nested results, e.g. _*.province.city, and
_*.Noun.wordForm, and _x.Topic.Title.

2. queries with structural qualifiers that create “future conditions”, i.e. conditions on candidate
answers whose values are unknown at the time the candidate answers are encountered,

e.g. *.country[province] .name, and _*.Noun[wordForm], and _*.Topic[editor].Title.

3. structural queries that create nested results, e.g. _*. _.

4. queries with structural qualifiers that create “past conditions”, i.e. conditions on candidate
answers whose values are already known when the candidate answers are encountered,

e.g. _*.country[province] .religions and _*.Topic[editor] .newsGroup.

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 24

Fig. 14 Comparison between processors for small and medium-size documents

N~
. ™
9| Mondial (1.2 MB) 9| Wordnet (9.5 MB) b
@ nr. elems.: 24,184 @ nr. elems.: 207,899 G
maximum depth: 5 maximum depth: 3
8 80
M sPex - = M sPex
6) 60 il
[saxon] [saxon 2
<
[] Fxgrep o [] Fxgrep]
4 - 2 40
i % ©
© o &
NN N — o
~ ~ o~ ~ @« ™ ~
2| — — 20 S o -
~ 3
N~
1 2 3 4 1 2 3

Figure 14 shows the results of processing queries from the above-mentioned classes on the
MonNDIAL and WordNet databases using a Pentium III 1 GHz, 512 MB system running under
SuSE Linux 7.3. Processors used for comparison are the Saxon XSLT processor [15] and Fxgrep
[16], an evaluator for regular tree expressions. The times given in Figure 14 for SPEX includes
the compilation of the rpeq into a SPEX network.

These results show that the SPEX prototype achieves a very competitive performance on the
smaller MONDIAL database and in most cases outperforms the other processors on the medium-
sized WordNet database. A further comparison of the processors on larger databases like the
DMOZ files could not be performed, for the memory consumption of both Saxon and Fxgrep
was beyond the limitations of the system used. In contrast, the SPEX prototype, uses a constant
amount of memory (between 8.5 and 11 MB, including the Java Virtual Machine) for all of the
given queries and documents. The results of the query processing for the DMOZ documents
are given in Figure 15, demonstrating that the proposed evaluation model can also be used for

querying very large documents.

VII. MIGRATING TO CONJUNCTIVE QUERIES WITH REGULAR PATH EXPRESSIONS

In the following, it is sketched how the SPEX model can be enhanced so as to accommodate
conjunctive regular path queries with variables. Such an extension is a first step towards a

streamed and progressive evaluation of query languages such as XPath and XQuery.

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 25

Fig. 15 Query processing for large and very large-size documents using SPEX networks

Ln
DMOZ S
7 o
structure (300 MB) Q =
N
nr. elems.: 3,940,716 ®
maximum depth: 3 < \X
_ 600 p
content (1 GB) ~ 2
(o]
nr. elems.: 13,233,278 g \
maximum depth: 3 400 § 3
I
o [32)
S i
N
200 ~ 2
< S 3
3 7 7
1 2 4 3

Definition 4. A conjunctive query is an expression of the form
CQ:q(X):-Y1r12Z1,...,YyrnZn, n>1.

where var(CQ) = {Y1,...,Yn,Z1,...,2Z,} is the set of query variables of CQ, ri,...,r, are
regular path expressions, and X C var(CQ) denotes the head variables of CQ. (The Y; (1 <i <

n) are not necessarily pairwise distinct.)

For example, the conjunctive query ¢(X3) : —Root(_*.a) X1, X1(b) X2, X1 (c) X3 selects c labeled
nodes that are descendants of a labeled nodes having b labeled children. Root is a special variable
always bound to the document root. Note that this conjunctive query is equivalent to the rpeq
query from Section III.10. For integrating conjunctive queries in the SPEX framework, the
following changes are necessary. A SPEX network corresponding to a conjunctive query has a
sink for each head variable of the conjunctive query. A path in a conjunctive query that does
not lead to a head variable corresponds to a qualifier. The translation of a conjunctive query
into a SPEX network is sketched in Figure 16 in terms of a function 7 mapping a network ¢ and
an environment env to an updated network and environment. There, an environment specifies
bindings of variables to (transducer) tapes. The function reach(Z, X) checks whether Z is on
a path leading to a head variable, and function head(Z) checks whether Z is a head variable.
Some issues are left out, e.g. identity-based joins expressed in conjunctive queries by variables

reachable via distinct paths. These issues will be the subject of future work.

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 26

Fig. 16 A denotational semantics for conjunctive queries

T : CQ — (Network, Environment) — (Network, Environment)
TIViR1Z1,...,YoRnZyn] (0,env) = T[YnRnZn](. .. (T[Y1R1 Z:1]({INi"}, (Root, t) :: nil))...)
TIY R Z](o,env) = if (reach(Z,X))
if (head(Z)) (({o1,0U%},env) | (01,t1) = C[R](0, getTape(Y,env)))
else ((o1,(Z,t1) :: env) | (o1,t1) = C[R] (o, getTape(Y, env)))
else ((01,(Z,t1) = env) | (o1,t1) = C[[R] (o, getT ape(Y, env)))

VIII. RELATED WORK

There are by now several proposals towards an efficient streamed evaluation of XML queries
[2], [17], [18], [19]. SPEX adds to this common effort a formal framework and reasonable features,
by keeping in the same time the expressiveness of the supported XML query language (at least)
as powerful as of the above-cited proposals. To the best of our knowledge, SPEX is the only
current approach that accomodates XPath qualifiers, closure and backward navigation.

The query operator X-Scan from the Tukwila data integration system [2] compiles regular path
expressions into deterministic finite automata (DFA). The DFA reports to a host application
when a node is reached in a final state. An improved version [18] considers an evaluation model
based on the on-demand (lazy) creation of DFA. An interesting result of [18] is its scalability
to tens of thousands of queries. Both approaches use also stacks for keeping track of previous
states. In [18] some expressions can be considered qualifiers, but their relations to the other
expressions are left to a host application. SPEX is based on the evaluation of these connections
between expressions inside and outside qualifiers and does not need extra logic for providing
correct result.

The XFilter [17] and YFilter [19] engines are used for deciding if entire XML documents are
matched by XPath expressions that represent user profiles. Therefore, they are not focused
on answering XPath expressions. YFilter [19] proposes also a basic multi-query optimization
technique for reusing common prefixes of several queries.

XSM [20] was developed in parallel to SPEX. Although both use a novel approach for a query
execution plan based on transducer networks, their evaluation models, transducer types and
query language features are quite different. SPEX is designed for low computational power

and memory usage, which we consider essential in a stream-based context. It uses strongly

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 27

coupled (i.e. without in-between queues) pushdown transducers and supports closure steps and
qualifiers. XSM uses more general loosely coupled transducers with unbounded buffers and
(therefore) supports value-based joins and element creation constructs.

A problem closely related to a streamed and progressive evaluation of regular path expressions
with qualifiers is the validation of XML streams under memory constraints. In [21] DTD valida-
tion and strong validation, i.e. checking the well-formedness of XML documents, are investigated.
It is shown that for certain DTD classes, the validation can be done by an FSA. However, in
general, the validation requires the computational power of PDA, where the size of the stack is

bounded in the depth of the XML document.

IX. CONCLUSION

In this paper, the SPEX model for a progressive evaluation of regular path expressions with
qualifiers against XML data streams has been described. With this model, a regular path ex-
pression is translated into a network of pushdown transducers. The approach needs less memory
than standard approaches that store the document tree in memory. This is beneficial e.g. for
mobile devices with limited memory, for data-centric applications that handle large amounts of
data, for continuous services, and for a selective dissemination of information (SDI).

A salient feature of the SPEX model is the use of communicating pushdown transducers. The
SPEX model requires no more computational power than necessary for querying well-formed
XML documents, i.e. it is within the 1-DPDT class. Furthermore, the memory space needed by
a SPEX transducer network is at most quadratic in the depth of the document tree in encountered
practical cases. The size of the SPEX transducer network into which a regular path expression
with qualifiers is translated is linear in the size of the regular path expression. Experiments
with a prototype demonstrate a remarkable efficiency: Applied on different kinds of databases,
a prototype implementation of the SPEX approach mostly outperformed standard regular path
expression processors used for comparison.

Issues for further research are the migration of SPEX to conjunctive queries with variables
and the integration of multi-query optimization techniques in the evaluation model. A single
transducer network can be used for processing several queries having common subparts. Such a

multi-query processor could be a corner stone of efficient XSLT and XQuery implementations.

An Evaluation of Regular Path Expressions with Qualifiers against XML Streams 28

[1]

2]

[10]

[11]
[12]

[13]

[19]

[20]

(21]

REFERENCES

C. Chan, P. Felber, M. Garofalakis, and R. Rastogi, “Efficient Filtering of XML Documents with XPath
Expressions,” in Proc. 18th Int. Conf. on Data Engineering, 2002.

A. Levy, Z. Ives, and D. Weld, “Efficient Evaluation of Regular Path Expressions on Streaming XML Data,”
Tech. Rep., Univ. of Washington, 2000.

T. J. Green, M. Onizuka, and D. Suciu, “Processing XML Streams with Deterministic Automata and Stream
Indexes,” Tech. Rep., Univ. of Washington, 2001.

S. Abiteboul, P. Buneman, and D. Suciu, Data on the Web. From Relations to Semistructured Data and
XML, Morgan Kaufmann, 2000.

W3C, “XML Path Language (XPath) Version 1.0, W3C Recommendation, 1999,
http://www.w3.org/TR /xpath.

D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. Zdonik, “Monitoring streams: A new class of data management applications,” Tech. Rep. CS-02-04, Brown
Computer Science, February 2002.

D. Olteanu, T. Kiesling, and F. Bry, “An Evaluation of Regular Path Expressions with Qualifiers against
XML Streams,” Tech. Rep. PMS-FB-2002-12, Univ. of Munich, 2002.

D. Megginson, “SAX: The Simple API for XML,” 1998.

A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation, and Compiling, Prentice-Hall, 1972.

D. Olteanu, H. Meuss, T. Furche, and F. Bry, “XPath: Looking Forward,” in Workshop on XML-Based Data
Management, 2002, Springer LNCS 2490.

D. Cohen, Introduction to Computer Theory, John Wiley & Sons, 1991.

W. May, “Information extraction and integration with FLORID: The MONDIAL case study,” Tech. Rep. 131,
Univ. of Freiburg, 1999.

C. Fellbaum, Ed., WordNet — An Electronic Lezical Database, MIT Press, 1998, available at http://wuw.
cogsci.princeton.edu/ wn/.

“dmoz — The Open Directory Project,” located at http://dmoz.org/.

“Saxon 6.5.2,” available at http://saxon.sourceforge.net/.

A. Neumann, “Fxgrep: The functional XML querying tool,” 2000.

M. Altinel and M. Franklin, “Efficient Filtering of XML Documents for Selective Dissemination of Informa-
tion,” in Proc. 26th Int. Conf. on Very Large Data Bases, 2000.

T. J. Green, G. Miklau, M. Onizuka, and D. Suciu, “Processing XML Streams with Deterministic Automata,”
Tech. Rep., Univ. of Washington, 2002.

Y. Diao, P. Fischer, M. J. Franklin, and R. To, “YFilter: Efficient and Scalable Filtering of XML Documents,”
in Proc. 18th Int. Conf. on Data Engineering, 2002.

B. Ludischer, P. Mukhopadhyay, and Y. Papakonstantinou, “A Transducer-Based XML Query Processor,”
in Proc. 28th Int. Conf. on Very Large Data Bases, 2002.

L. Segoufin and V. Vianu, “Validating Streaming XML Documents,” in Proc. 21st ACM Symp. on Principles
of Database Systems, 2002.

