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RÉSUMÉ.

ABSTRACT. One lesson learned from practical applications is that constraints are often hetero-
geneous. Solving such constraints requires a collaboration of constraint solvers. In this paper,
we introduce a methodology for the tight integration of CHR constraint solver programs into
one such program. CHR is a high-level rule-based language for writing constraint solvers
and reasoning systems. A constraint solver is well-behaved if it is terminating and conflu-
ent. When merging constraint solvers, this property may be lost. Based on previous results on
CHR program analysis and transformation we show how to utilize completion to regain well-
behavedness. We identify a class of solvers whose union is always confluent and we show that
for preserving termination such a class is hard to find. The merged and completed constraint
solvers may contain redundant rules. Utilizing the notion of operational equivalence, which is
decidable for well-behaved CHR programs, we present a method to detect redundant rules in a
CHR program.
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1. Introduction

Many applications of constraint-based reasoning involve heterogeneous
constraints. Solving such constraints requires a collaboration of two or more
constraint solvers. In this paper, we are concerned with solvers written in CHR
language.

CHR (Constraint Handling Rules) [FRÜ 98] is a concurrent committed-choice
constraint logic programming language consisting of guarded rules that manipulate
conjunctions of constraints. In CHR, we distinguish two kinds of rules : simplification
rules replace constraints by simpler constraints. Propagation rules add new constraints
which may cause further simplification.

Usually, CHR solvers are well-behaved, i.e. terminating and confluent. Confluence
means that it does not matter for the result which of the applicable rules are applied
in a computation. Once termination has been established [FRÜ 00], there is a deci-
dable, sufficient and necessary test for confluence [ABD 97]. Confluence also implies
consistency of the logical reading of the solver program [ABD 97].

Given two well-behaved constraint solver CHR programs, then their tight integra-
tion is simply the union of their rules. There is no restriction on the signature of the
solvers. In particular, solvers may fully or partially define the same constraints. Any
computation that was possible in one of the solvers will also be possible in the union
of the solvers, since additional rules cannot inhibit the application of old rules (as can
be seen from the operational semantics of CHR).

However, the union of the solvers could loose termination and/or confluence, and
thus their well-behavedness.

Example 1.1 Consider a solver program
���

with the single simplification rule ������
	
that replaces the CHR constraint � by the constraint

�
and a solver program

���
with the single rule � � � � 	 that replaces the CHR constraint

�
by the constraint � .

The union of
���

and
��

, ����� ����� � � 	 , is obviously non-terminating.

Consider a program
� �

with the single rule ����� ��	
and a program

� �
with the

single rule ����� � 	 . Their union ����� ��� ��� � 	 is terminating, but obviously
non-confluent, since a computation for � may result in either

�
or � depending on the

(committed) choice of the rule.

While establishing termination for CHR programs without propagation rules is in
practice often rather simple [FRÜ 00], termination is in general undecidable for
CHR programs. On the other hand, completion can make non-confluent programs
confluent [ABD 98]. Thus there is a chance to automatically produce from two well-
behaved constraint solvers a solver that behaves well, too.

Example 1.2 Consider the union of
� �

and
� �

of Example 1.1, ����� ��� ���
� 	 . To make the union confluent, the rule

� � � can be added.

In the paper, we also consider the special case of so-called non-overlapping solvers
that define different constraints. Non-overlapping solvers may have common (sha-



red) CHR constraints and function symbols and have common built-in constraints.
We prove that they are well-behaved if their union is terminating. While confluence
is modular (preserved) for well-behaved, non-overlapping solvers, we will argue that
it is very hard to find a syntactic class of solver programs that admits modularity for
termination.

In practice, non-overlapping solvers are integrated using so-called bridge rules
between the different constraints they define. These bridge rules often destroy well-
behavedness and we show by example how completion fares with such solvers.

The resulting constraint solver may contain redundant rules. Based on the ope-
rational equivalence notion [ABD 99a], we present a method to detect and remove
redundant rules in a CHR constraint solver.

Related Work. There is a renewed interest in languages and models for constraint
solver cooperation. An overview of the issues in cooperative constraint solving can be
found in [GRA 01]. Recent work in this area includes BALI [MON 00], a scheme for
integrating heterogeneous solvers by encapsulation : a cooperation language based on
strategies is compiled into solver specific communication code. Similarly, the frame-
work of [CAS 00] relies on strategies to specify when component solvers are to be
applied. The framework of [HOF 00] requires specific interfaces from the constraint
solvers and a meta constraint solver to coordinate the cooperating solvers. Examples
and implementations of this framework concentrate on numerical constraints.

When CHR is used as an implementation language for constraint solvers, desi-
rable properties like confluence and operational equivalence can be decided once ter-
mination has been established. There is no need for specific interfaces, because the
constraint solvers communicate freely via shared variables using their common built-
in constraints. In well-behaved CHR solvers, it does not matter which of the applicable
rules are applied. In particular, in well-behaved merged solvers, it does not matter
from which solvers the rules are coming from. Thus any type of cooperation strategies
[GRA 01], be it hard-coded, be it based on priorities or explicit operators, is possible.
Moreover, the strategies can be very fine-grained, at the level of the application of a
single rule from the solver program, i.e. single computation step.

The work of [TIN 98, BAA 01] focuses on building a constraint solver for the
union of theories with given solvers. These theories are usually cast as equational
theories. In [BAA 01], the theories are assumed to be disjoint. In [TIN 98], combina-
tion of theories sharing constructors have been investigated. In CHR, equalities refer-
ring to distinct theories are assumed to be represented by different constraint symbols.
CHR programs represent first-order theories, that can be unioned without any require-
ments. Operationally, however, we want to make sure that the resulting solver is still
well-behaved.

Outline of Paper. In Section 2, we define the CHR language and summarize pre-
vious results on confluence, completion, and operational equivalence. In the next sec-
tion of the paper, we show how to merge CHR constraint solvers utilizing completion.
We then investigate when termination and confluence are preserved under union of



solver programs. We consider the special case of so-called non-overlapping solvers
that define different constraints and introduce the notion of so-called bridge rules to
integrate such solvers. In Section 6, we show how to remove redundant rules from a
solver utilizing operational equivalence.

2. Preliminaries

In this section we give an overview of syntax and semantics for constraint hand-
ling rules (CHR) as well as previous results on confluence, completion, and opera-
tional equivalence. More detailed presentations can be found in [ABD 97, ABD 99b,
ABD 98, ABD 99a].

2.1. Syntax of CHR

We use two disjoint sets of predicate symbols for two different kinds of
constraints : built-in constraint symbols and CHR constraint symbols (user-defined
symbols). We call an atomic formula with a constraint symbol a constraint. Built-
in constraints are handled by predefined given constraint black-box solvers. We as-
sume that these solvers are well-behaved. Built-in constraints include � ,

�������
, and�
	��� �

. The semantics of the built-in constraints is defined by a consistent first-order
constraint theory ��� . In particular, ��� defines � as the syntactic equality over finite
terms.

CHR constraints are defined by a CHR program.

Definition 2.1 A CHR program is a finite set of rules. There are two kinds of rules :
A simplification rule is of the form ����������� � � !#" A propagation rule is of the
form �����������%$&� !#' where Name is an optional, unique identifier of a rule, the
head � is a non-empty conjunction of CHR constraints, the guard � is a conjunction
of built-in constraints, and the body ! is a goal. A goal is a conjunction of built-in and
CHR constraints. A guard “true” is often omitted together with the commit symbol .

A CHR symbol is defined in a CHR program if it occurs in the head of a rule in
the program.

Example 2.1 We define a CHR constraint for a partial order relation ( :
)+*-,/. (10�� . ��03254�6879�;:)=<>,/. (10>?@0
( . � . ��0A:)=B>,/. (10>?@0
(DC�$ . (DCE:)�FG,/. (10>? . (10�� . (10A:

The CHR program implements reflexivity ( );* ), antisymmetry ( )=< ), transitivity
( )HB ) and idempotence ( )IF ) in a straightforward way. The reflexivity rule );* states
that . (10 is logically true, provided it is the case that . ��0 . The antisymmetry rule )H<
means . (10J?K0
( . is logically equivalent to . ��0 . The transitivity rule )HB states that
the conjunction of . (10 and 0
(DC implies . (DC .



2.2. Operational Semantics of CHR

The operational semantics of CHR is given by a transition system. A state is simply
a goal, i.e. a conjunction of built-in and CHR constraints. Given a CHR program

�
we

define the transition relation ���� by introducing two computation steps (transitions),
one for each kind of CHR rule (cf. Figure 1). In the figure, all meta-variables stand
for conjunctions of constraints. The notation

�����
denotes the built-in constraints of

�
.

Since the two transitions are structurally very similar, we first describe their common

Simplify

If 	 � � � !�
 is a fresh variant of a rule with variables ��
and ���� ����	 � ��� ��� �� 	 � ����� ? ��
�

then 	 ��� ? � 
��������� �"!#�%$#&� 	 � ? !�? � ? � �����'


Propagate

If 	 �%$&� !�
 is a fresh variant of a rule with variables ��
and ���� ����	 � ��� ��� �� 	 � ����� ? ��
�

then 	 ��� ? � 
���)(+*-,.�0/212/4365� 	 ��� ? � ? !�? �-? � �����'


Figure 1. Computation Steps of Constraint Handling Rules

behavior and only at the end point out their differences. A fresh variant of a rule is
applicable to a state ���=? � if ��� matches its head � and if its guard � is implied
by the built-in constraints appearing in

�
. A “fresh variant” of a rule is obtained by

renaming its variables to fresh variables, listed in the sequence �� . “Matching” means
that ��� is an instance of � , i.e. it is only allowed to instantiate (bind) variables of
� but not variables of ��� . This is achieved by equating �7� and � but existentially
quantifying all variables from the rule, �� . This equation �8� ��� is shorthand for pair-
wise equating the arguments of the constraints in �7� and � , provided their constraint
symbols are equal.

If an applicable rule is applied, the equation � ��� � , its guard � and its body
! are added to the resulting state. A rule application cannot be undone (CHR is a
committed-choice language without backtracking). When a simplification rule is ap-
plied in the transition Simplify, the matching CHR constraints �8� are removed from
the state. The Propagate transition is like the Simplify transition, except that it keeps
the constraints ��� in the resulting state. Trivial non-termination caused by applying
the same propagation rule again and again is avoided by applying it at most once to
the same constraints [ABD 97].

A computation of a goal
�

in a program
�

is a sequence 9;: '<9 � ' " " " of states with
9 � ��)� 9 �>= � beginning with the initial state 9+: for

�
and ending in a final state or

diverging. A final state is one where either no computation step is possible anymore or
where the built-in constraints are inconsistent. ��@?� denotes the reflexive and transitive
closure of �� � . When it is clear from the context, we will drop the reference to the
program

�
.



Example 2.2 Recall the solver program for ( of Example 2.1. Operationally the rule)+* removes occurrences of constraints that match . ( . . The antisymmetry rule )=<
means that if we find . (10 as well as 0
( . in the current store, we can replace them
by the logically equivalent .�� 0 . The transitivity rule )HB propagates constraints. We
add the logical consequence . (DC as a redundant constraint. The idempotence rule )IF
absorbs multiple occurrences of the same constraint.

A computation of the goal
� (�� ?���( � ?��+(�� proceeds as follows :

� (�� ?	��( � ?
�+(�� �� (+*-,.�0/41./ 3 5� (��/?	��( � ?
�+(�� ?
��(�� �� ����� �"!���$#&� (�� ?��+( � ?�� �� �� ����� �"!���$#&� ���/?�� ���

2.3. Confluence

The confluence property of a program guarantees that any computation for a goal
results in the same final state no matter which of the applicable rules are applied.

Definition 2.2 A CHR program is called confluent if for all states 9 ' 9 � '<9 � : If 98���?
9 � and 9 ���? 9 � then 9 � and 9 � are joinable. Two states 9 � and 9 � are called joinable

if there exist states � � and � � such that 9 � ���? � � and 9 � ���? � � and � � and � � are
variants1.

To analyze confluence of a given CHR program we cannot check joinability starting
from any given ancestor state 9 , because in general there are infinitely many such
states. However for terminating programs, one can restrict the joinability test to a
finite number of “minimal” states.

A CHR program is called terminating, if there are no infinite computations. For
many existing CHR programs simple well-founded orderings are sufficient to prove
termination [FRÜ 00]. In general, such orderings are not sufficient because of non-
trivial interactions between simplification and propagation rules. In this paper we as-
sume that the constraint solvers are terminating.

Definition 2.3 Let � � be a simplification rule and � � be a (not necessarily different)
rule, whose variables have been renamed apart. Let � � ?�� � be the head and � � be the
guard of rule � � 	�� ��� '��0
 . Then a critical ancestor state of � � and � � is

	 � � ?�� � ? � � ?8	�� � ��� � 
;? � � ? � � 
 '
provided � � and � � are non-empty conjunctions and �D�  � � 	 	�� � ��� � 
 ? � � ? � � 
 .

Let 9 be a critical ancestor state of � � and � � . If 9 �� 9 � using rule � � and
9 �� 9 � using rule � � then the tuple 	�9 � '<9 � 
 is a critical pair of � � and � � . A
critical pair 	�9 � '<9 � 
 is joinable, if 9 � and 9 � are joinable.

�
. Two states are variants of each other if they are equal up to a variable renaming.



The following theorem from [ABD 97, ABD 99b] gives a decidable, sufficient and
necessary condition for confluence of a terminating CHR program :

Theorem 2.1 A terminating CHR program is confluent iff all its critical pairs are
joinable.

Example 2.3 Recall the program for ( of Example 2.1. The following critical pair
stems from the critical ancestor state �
(���?��
(���?��
(�� of )H< and )HB

	�9 � ' 9 � 
 � 	��9���/?��
(��9'	�
(
�/?��
(�� ?��
(��-?��
(��"

is joinable : 9 � is a final state, i.e. no computation step is possible. A computation
beginning with 9 � results in 9 � :

�
(�� ?�
(�� ?��
(�� ?��
(�� �� ����� �"!���$#&
�
(�� ?�
(�� ?��9��� �� ����� �"!���$#&
�
(��-?�9���

2.4. Completion

Completion is the process of adding rules to a non-confluent program until it be-
comes confluent. Rules are built from a non-joinable critical pair to allow a transition
from one of the states into the other while maintaining termination. In contrast to
other completion methods, in CHR we need in general more than one rule to make a
critical pair joinable : a simplification rule and a propagation rule [ABD 98]. When
these rules are added, new critical pairs may be produced, but also old non-joinable
critical pairs may be removed, because the new rules make them joinable. Completion
tries to continue introducing rules this way until the program becomes confluent. The
essential part of a completion algorithm is the introduction of rules from critical pairs.

Definition 2.4 Let � be a termination order and let 	 ����� � ? � ��� � ' �
��� � ?5� ��� � 
 be
a critical pair, where the states are ordered such that � ��� � is a non-empty conjunction
and � ��� � � � ��� � . Then the orientation of the critical pair results in the two rules :

� ��� � � � ��� �  � ��� � ? � ��� �
� ��� � $&� ��� �  � ��� � if ����� � is a non-empty conjunction and

�D��� � � ��� � � � ��� �

Examples of completion will be shown in the next section of the paper. In these
examples, unless otherwise noticed, a simple termination order will suffice, where
� � � � � if � � � 	 � � ?5��
 , i.e. the conjunction � � contains all conjuncts of � � and
more ( � is non-empty).

In [ABD 98] it was shown that if the completion procedure stops successfully, then
the resulting program is well-behaved. But completion cannot always be successful :
completion is aborted if a critical pair cannot be transformed into rules. Completion
may not terminate, because new rules produce new critical pairs.



2.5. Operational Equivalence

The following definition clarifies when two programs are operationally equivalent :
if for each goal, all final states in one program are the same as the final states in the
other program.

Definition 2.5 Let
� �

and
� �

be programs. A state 9 is
� � ' � � -joinable, iff there are

two computations 9 ���?��� 9 � and 9 ���?��� 9 � , where 9 � and 9 � are final states, and 9 �
and 9 � are variants of each other.���

and
��

are operationally equivalent if all states are
��� ' �� -joinable.

In [ABD 99a], we gave a decidable, sufficient and necessary syntactic condition
for operational equivalence of well-behaved CHR programs : when testing operational
equivalence, similar to our confluence test, we can restrict ourselves to a finite number
of critical states that consist of the head and the guard of a rule. These critical states
are run in both programs, and their outcome must be the same.

Definition 2.6 Let
���

and
� �

be programs. Then a critical state of
���

and
� �

is
defined as follows :

� ? � where 	 � � � !�
�� ����� �� and
� � � � ' $ 	

Theorem 2.2 Two well-behaved programs
� �

and
��

are operationally equivalent iff
all critical states of

� �
and

� �
are
� � ' � � -joinable.

Examples for operational equivalence can be found in the subsequent sections.

3. Tight Integration of CHR Constraint Solvers with Completion

In the introduction, Example 1.1 illustrated that the union of two well-behaved (i.e.
terminating and confluent) programs is not necessarily well-behaved. Once termina-
tion of the union has been established, we can use our confluence test to check if the
union of well-behaved programs is confluent again. We call such programs “compati-
ble”.

Definition 3.1 Let
���

and
��

be two well-behaved CHR programs and let the union
of the two programs,

���	� � �
, be terminating.

���
and

��
are compatible if

���	� ��
is

confluent.

The critical pairs of
� � � � �

are the critical pairs of
� �

unioned with the critical
pairs of

� �
unioned with critical pairs coming from one rule from

� �
and one rule from� �

. Since
� �

and
� �

are already confluent, for compatibility it suffices to check only
those critical pairs coming from rules in different programs (cf. proof of upcoming
Theorem 4.1). In other words, the confluence test can be made incremental in the
addition of rules.



If the compatibility test succeeds, we can just take the union of the rules in the two
programs. This holds even for constraints that are fully or partially defined in more
than one of the programs which are merged.

Example 3.1 The well-behaved program
���

contains the following CHR rules defi-
ning ����� , where ����� � . � 0 � C�� means that C is the maximum of . and 0 :

�
��� � . � 0 � C�� � .�� 0 C=��0A:
�
��� � . � 0 � C�� � .�	 0 C=� . :
whereas well-behaved

� �
defines ����� by

�
��� � . � 0 � C�� � . (10 C=��0A:
�
��� � . � 0 � C�� � .�
 0 C=� . :
Note that � , ( , and 	 are built-in constraints in this example.

In order to perform the union of the two programs, we check whether the defini-
tions of �
��� are compatible. There are three critical ancestor states coming from one
rule in

���
and one rule in

� �
:

����� � . � 0 � C�� ? .�� 0 ? . (10
����� � . � 0 � C�� ? .�	 0 ? . (10
����� � . � 0 � C�� ? .�	 0 ? .�
 0

Since the critical pairs of these critical ancestor states are joinable, the two defini-
tions of ����� are compatible. Hence we can just take the union of the rules and define
�
��� by all four rules.

Note that the constraint ����� is “operationally stronger” in
� � � � �

than in each
program alone, in the sense that more computation steps are possible : in

� � � � �
(and� �

) we have the computation

����� � . � 0 � C��E? .�	 0 �� � �� � � C=� . ? .�	 0
while in

��
the goal cannot reduce at all, it is a final state. But like

���
,
� �

is not as
strong as

��� � ��
: the goal ����� � . � 0 � C�� ? . (10 is a final state in

���
, while it has a

non-trivial computation in
� � � � �

and
� �

.

Example 3.2 Here we consider a variation on a solver for ����� that does not use any
built-in constraints (except for implicit syntactical equality). We define ����� with the
inequalities as CHR constraints in two steps.

Given the constraint solver for ( (example 2.1), we add the following simplifica-
tion rule describing the interaction of �
��� and ( :

�
��� * , �
��� � . � 0 � C�� ? . (10�� C=��0J? . (10 :
The resulting solver becomes non-confluent. The critical ancestor state ����� � . � . � C��
? . ( . of the rule ����� * and of the reflexivity rule );* of ( produces the non-joinable
critical pair

� . � C�? . ( . � ����� � . � . � C���� . We use completion to make the solver
confluent. For the above-mentioned critical pair it adds the rule :

�
��� < , �
��� � . � . � C�� � C=� . :



Now, we consider a solver for � which is well-behaved
.��1. ��� ����� � :.�� 0J? .�� 0�� .�� 0A:.�� 0J?K0 � C $ .�� CE:
and we add the rule describing the interaction of ����� and � :

�
��� B , �
��� � . � 0 � C�� ?@0 �1. � C=� . ?@0 �1. :
The resulting solver remains well-behaved.

Finally, we union the solvers for ( and for � that have been extended by the three
rules for ����� , i.e. ����� * , ����� < , and ����� B . The union of these solvers is not confluent.
The completion method adds the following rule to make a non-joinable critical pair
stemming from the rules �
��� * and ����� B joinable :
. (10J?K0 �1. � � ����� � :
The rules derived by completion revealed interesting properties of ����� and the inter-
action of ( and � . The completed program is well-behaved.

4. Modularity of Termination and Confluence

We have seen that well-behavedness is not modular, i.e. it is not preserved under
union of programs. We may ask ourselves if there are syntactic criteria for classes of
programs that admit modularity of well-behavedness. In this section we will show that
while for confluence, the answer is positive and simple (presupposing termination), the
situation seems very difficult for termination.

When the two solvers do not have any defined CHR constraints in common, we call
them non-overlapping. Note that non-overlapping solvers may have common (sha-
red) CHR constraints and function symbols and have common built-in constraints
(by definition, at least syntactical equality). We can show that the union of two non-
overlapping well-behaved solvers is always well-behaved if the union is terminating.

Theorem 4.1 Let
���

and
� �

be two well-behaved CHR programs and let the union
of the two programs,

� � � � �
, be terminating. If

� �
and

� �
are non-overlapping then� � � � �

is confluent.

Proof. To show that
��� � ��

is confluent, we only have to show that all critical
pairs of

���	� ��
are joinable, since

���	� ��
is terminating. The set of critical pairs of� � � ��

consists of all critical pairs stemming from two rules appearing in
� �

(case
1. below), all critical pairs stemming from two rules appearing in

���
(case 2) and all

critical pairs stemming from one rule appearing in
� �

and one rule appearing in
� �

(case 3).

1)
� �

is well-behaved, thus all critical pairs stemming from two rules appearing in� �
are joinable. Therefore, these critical pairs are also joinable in

� � � ��
.

2) Analogous to case 1.



3) Critical pairs from rules of different programs can only exist, if the head of the
rules have at least one constraint in common. Since

� �
and

� �
are non-overlapping,

there exists no critical pair stemming from one rule in
� �

and one rule in
� �

.

For modularity of termination, the situation seems very difficult : even if two ter-
minating programs do not have common CHR constraint symbols, their union may be
non-terminating.

Example 4.1 Consider the following two programs :� ��� � ��� � . ��� � . ��� � 0�� ? � � 0�� :� ����� � � � 0���� � 0H� � � C�� ?	� � C�� :
Any goal (of finite size) terminates in each of the two programs, but the goal � ��� � . ���
?
� � . � does not terminate in the union of the programs (due to common function
symbols).

� ��� � . ��� ?
� � . � �� ����� �"!���$#&. ��� � 0�� ? � � 0��-?	� � � � 0�� � �� ����� �"!���$#&. ��� ��� ��� ��� ?K09� � ��� � ? � ��� ��� ��� ?	� �� � �� ����� �"!���$#& " " "
Actually, even if there are no common symbols in the program text, we may run into
trouble.

Example 4.2 The previous example can be rewritten such that instead of common
function symbols one uses built-in constraints to the same effect :� ��� � ��� . � � � * ��� . � . � 2�� * � . � 0�� ? � � 0�� :� ����� ��� 0�� � � < ��� 0 � 0�� 2 � < � 0 � C�� ?	� � C�� :
where

� � 	�� '�� 
 and
� � 	�� '�� 
 are both defined as �%� � 	�� 
 in the constraint theory

for the built-in constraints and analogously for � �"	�� '���
 and � � 	�� '�� 
 . There are no
common symbols in the CHR program itself, but only in the constraint theory. Any
goal terminates in each of the two programs, but the goal � ��� . � ? � * ��� . � . � ?
� � . � does not terminate in the union of the programs.

Summarizing, as soon as there are common symbols, no matter if they are CHR
constraints, built-in constraints or function symbols (even when only shared in the
built-in constraint theories), termination is in danger. But any non-trivial integration
of constraint solvers will at least share some function symbols, otherwise there could
not be shared variables in goals, and without shared variables there is no non-trivial
communication between the solvers.

5. Cooperation Using Bridge Rules and Completion

In practice, one will often add to the union of non-overlapping solvers a few so-
called bridge rules. These are rules that may translate constraints from one solver to
constraints of the other solver to improve the overall solving power. In general, they
relate constraints from different solvers to enable non-trivial cooperation. In other
words, they define communication between the solvers by sharing data (constraints).



When adding bridge rules, care has to be taken to maintain termination. On the
other hand, bridge rules can be used to re-introduce termination : we may make a
union of solvers terminating by renaming symbols apart and using bridge rules to
control the interaction between the solvers. In any case, terminating bridge rules will
typically cause non-confluence and thus will be the starting point for completion.

Example 5.1 We want to build a Boolean constraint solver from a well-behaved pro-
gram

� �
defining conjunction and a well-behaved program

� �
defining implication. In� �

, the constraint ��� � � . � 0 � C�� stands for . ?@0�� C and in
� �

, � ��� � . � 0�� stands
for . � 0 .� ��� ��� � � . � . � C�� � . � C :

��� � � . � 0 � * � � . � * ?@09� * :
��� � � . � * � C�� � . � C :
��� � � . ����� C�� � C=� � :
��� � � * � 0 � C�� � 09� C :
��� � � � � 0 � C�� � C=� � :
��� � � . � 0 � C�� ? ��� � � . � 0 � C * � � ��� � � . � 0 � C�� ? C=� C * :

� ���	� ��� � ��� . � � 4�6879� :
� ��� � . ��� � � . � � :
� ��� � * � . � � . � * :
� ��� � . � * � � 4�6879� :
� ��� � . � 0�� ?
� ��� � 0 � . � � . ��0A:

We add the following bridge rule :

��� � � . � 0 � . � � � ��� � . � 0�� :
The program containing

� �
and

� �
together with the bridge rule is not confluent :

the critical pair
� 4�6879� � � ��� � . � . ��� stemming from the critical ancestor state

��� � � . � . � . � of the first rule of ��� � and the bridge rule is not joinable. Completion
generates the following rules from the non-joinable critical pairs :

� ��� � . � . � � 4 6879�;:
� ��� � . � 0�� ?
� ��� � . � 0�� � � ��� � . � 0�� :
� ��� � . � 0�� ? ��� � � . � 0 � C�� � � ��� � . � 0�� ? . � CE:
Again, the automatically derived rules reveal interesting properties of the constraints.

6. Removal of Redundant Rules with Operational Equivalence

We can use a variation of the operational equivalence test [ABD 99a] between
programs to remove redundant rules from the (completed) union of constraint solvers.

Definition 6.1 A rule � is redundant in a CHR program
�

iff for all states 9 : If
9 ���?� 9 � then 9����?�������� 9 � , where 9 � and 9 � are final states and 9 � and 9 � are
variants of each other.



Example 6.1 In example 3.1, the union of the two programs defining �
���
)+*-, ����� � . � 0 � C�� � .�� 0 CI��0A:)=<>, ����� � . � 0 � C�� � .�	 0 CI� . :)=B>, ����� � . � 0 � C�� � . (10 CI��0A:)�FG, ����� � . � 0 � C�� � .�
 0 CI� . :
was operationally stronger than each program alone. However, the union contains re-
dundant rules. For example, rule )HB can always make a transition when rule );* does,
with the same result, but not vice versa. Hence rule );* is redundant, and analogously
for rule )�F .

Redundant rules can be discovered using operational equivalence : We remove one
rule from the program and compare it with the original program. If the two programs
are operationally equivalent, then the rule was obviously redundant and we can remove
it. We continue until we have tried to remove all rules. The final program found this
way is not necessarily unique, since the result may depend on the order in which rules
are tried and removed.

However, Theorem 2.2 may not be applicable for our redundancy check : If we
remove a rule from a well-behaved program, it may become non-confluent. In order to
come up with a decidable rule redundancy test, we first have to test confluence of the
program without the candidate rule for redundancy. If the program is not confluent,
it cannot be operationally equivalent to the initial program, and hence the candidate
rule cannot be redundant. If the program is confluent, we can and must check for
operational equivalence.

Theorem 6.1 Let
�

be a well-behaved program. A rule � is redundant with respect
to
�

iff
��� � � 	 is well-behaved and

�
and

��� � � 	 are operationally equivalent.

Proof. First, we prove the claim that
��� � � 	 is well-behaved by contradiction.

Assumption :
��� � � 	 is not well-behaved. We can distinguish two cases :

1)
��� � � 	 is non-terminating, thus

�
is also non-terminating, which is a contra-

diction to the fact that
�

is well-behaved.

2)
��� � � 	 is non-confluent, thus there exists a state 9 such that 9 ��@?�������� 9 � and

then 9��� ?�������� 9 � , where 9 � and 9 � are final states, and 9 � and 9 � are not variants
of each other. � is redundant with respect to

�
, therefore there exists a state 9�� such

that 9 ���?� 9�� , where 9�� is a final state, and 9�� '<9 � as well as 9�� '<9 � are variants of
each other. This is a contradiction to the claim that 9 � and 9 � are not variants of each
other.

Now we prove that
�

and
��� � � 	 are operationally equivalent. � is redundant with

respect to
�

, thus for all states 9 the following holds : 9 ��@?� 9 � then 9 ���?���� ��� 9 � ,
where 9 � and 9 � are final states and 9 � and 9 � are variants of each other. Therefore,
all states are

� ' ��� � � 	 -joinable.

It is easy to see that we can specialize our operational equivalence test for redun-
dancy removal : We only have to check if the computation step due to the candidate



rule that is tested for redundancy can be performed by the remainder of the program,
but we do not have to consider any other rule prefixes.

Example 6.2 The critical states of the program
�

in Example 6.1 are

��� * � ����� � . � 0 � C�� ? .�� 0
��� < � ����� � . � 0 � C�� ? .�	 0
��� B � ����� � . � 0 � C�� ? . (10
��� F � ����� � . � 0 � C�� ? .�
 0
Note that any subset of the program in Example 6.1 is still well-behaved. A program��� � � 	 ( � � ��� � '���� '���� '��
	 	 
 obviously cannot contribute any new critical states.
So if we try to remove rule );* we only have to check the critical state from rule );* ,
that is ��� * , by running it in both programs :

����� � . � 0 � C�� ? .�� 0 ��)� .�� 0>? C=��0 by rule )+*
����� � . � 0 � C�� ? .�� 0 �� ������� � .�� 0J? C=��0 by rule )HB

Since rule )HB enables the same transition, rule );* must be redundant. In an
analogous way, redundancy of rule )IF can be shown. Rule )H< , however, is not
redundant :

����� � . � 0 � C�� ? .�	 0 �� � .�	 0>? C=� . by rule )=<
����� � . � 0 � C�� ? .�	 0 ��� ����������

In program
��� ����� 	 , the critical state is a final state. Hence (the only) redundancy

free program consists of the rules )H< and )HB .

7. Conclusions

In this paper, we have shown that terminating and confluent, i.e. well-behaved
CHR constraint solvers can be merged provided termination is preserved : their tight
integration is the union of the rules, even if some constraints are fully or partially
defined and/or used in several solvers or program parts. In case that the resulting solver
becomes non-confluent, we use our completion method to improve its behavior.

Non-overlapping solvers do not define common constraints but may freely share
them otherwise. We have shown that their union is always well-behaved if it is ter-
minating. We argued that a similar modularity result for termination is likely to be
very hard to obtain. Future work will investigate how to maintain termination of the
union, i.e. modularity results, trying to build on work in term rewriting systems such
as [OHL 95].

We have discussed bridge rules as a communication means to integrate solvers
with disjoint constraints utilizing completion. Finally, we have presented a method to



remove redundant rules from a CHR solver using our operational equivalence test and
our confluence test.

For future work, we are also interested in general notions of confluence and com-
pletion, since we have found that on larger examples, their current requirements are
unnecessarily strict. Finally, a more efficient method for detecting and removing re-
dundant rules should be found.
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