An Almost Classical Logic for Logic Programming and Nonmonotonic Reasoning

François Bry

http://www.pms.informatik.uni-muenchen.de

Institute for Computer Science, University of Munich, Germany
Summary

1. In a Nutshell (p. 3)
2. The Logic N^4 (pp. 4 – 7)
3. N^4 Herbrand Interpretations (p. 8)
4. Nonmonotonic Reasoning (pp. 9 – 10)
5. N^4 Intuitive Meaning (p. 11)
6. Conclusion (p. 12)
1. In a Nutshell

Two levels of modelling are often needed:

- Specifications (e.g. database tuples, logic program clauses)
- Requirements (e.g. database integrity constraints)

Requirements are often expressed as “denials”, e.g.

\[false \leftarrow p(X) \land \neg q(X) \]

suggesting that, in a convenient paraconsistent logic, requirements might be expressed using double negation.

Such a logic, N^4, is defined. N^4 is “almost classical”. N^4 turns out to be convenient for nonmonotonic reasoning, too.
2. The Logic N^4

Standard first-order syntax with \top (verum), \bot (falsum), and:

- $(F \rightarrow G) := (\neg F \lor G)$
- $(F \leftrightarrow G) := ((\neg F \lor G) \land (\neg G \lor F))$

N^4 positive literal:

- atom
- doubly negated atom

N^4 negative literal:

- negated atom
- threefold negated atom
2. The Logic N^4 (cont’d)

N^4 interpretations are defined very much like classical logic interpretations.

A N^4 interpretation assigns relations to

- predicate symbols
- doubly negated predicate symbols

such that $val(p) \subseteq val(\neg^2 p)$

The truth value of a formula in an N^4 interpretation is defined recursively in terms of the truth value of its subformulas, i.e. compositionally.
2. The Logic \mathbb{N}^4 (cont’d)

Possible valuations of p, $\neg p$, \neg^2p, and \neg^3p

- in \mathbb{N}^4 interpretations:

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>$\neg p$</th>
<th>$\neg^2 p$</th>
<th>$\neg^3 p$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td></td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td></td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

- in \mathbb{N}^4 interpretations satisfying $(\neg p \rightarrow p)$:

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>$\neg p$</th>
<th>$\neg^2 p$</th>
<th>$\neg^3 p$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td></td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>
2. The Logic N^4 (cont’d)

Properties (hint: read $\neg^2 F$ as “required F”):

- $F \models_{N^4} \neg^2 F$ (but $\neg^2 F \not\models_{N^4} F$)
- $\neg F \models_{N^4} \neg^3 F$ (but $\neg^3 F \not\models_{N^4} \neg F$)
- Fourfold negation reduction: $\neg^4 F \equiv_{N^4} \neg^2 F$
- Laws of excluded middle:
 $F \lor \neg F \equiv_{N^4} (\neg F \lor \neg^2 F) \equiv_{N^4} (\neg^2 F \lor \neg^3 F) \equiv_{N^4} \top$
- Laws of excluded contradiction:
 $\neg^2 F \land \neg^3 F \equiv_{N^4} (F \land \neg^3 F) \equiv_{N^4} \bot$
3. N^4 Herbrand Interpretations

Classical definitions naturally extend to N^4:

- N^4 Herbrand base: Set of all ground positive N^4 literals (i.e. ground atoms and doubly negated atoms)

- A N^4 Herbrand Interpretation \mathcal{H} is characterized by the set M of ground positive N^4 literals it satisfies: $\mathcal{H} = \mathcal{H}(M)$

- Every closed subset M of the N^4 Herbrand base (i.e. if A atom and $A \in M$, then $\neg^2 A \in M$) characterizes a N^4 Herbrand Interpretation $\mathcal{H}(M)$

- Order on N^4 Herbrand Interpretations: $\mathcal{H}(M_1) \leq \mathcal{H}(M_2)$ iff $M_1 \subseteq M_2$

- Intersection of N^4 Herbrand Interpretations and minimal N^4 Herbrand models

Property: $\mathcal{H}(\bigcap_{i \in I} M_i) = \bigcap_{i \in I} \mathcal{H}(M_i)$
A characterization of classical minimal models extends to \mathbb{N}^4:

Let M be a closed subset of the \mathbb{N}^4 Herbrand base (i.e. if A atom and $A \in M$, then $\neg^2 A \in M$)

Let $\tilde{M} = \{ \neg L \mid L \text{ in the } \mathbb{N}^4 \text{ Herbrand base and } L \notin M \}$

Let S be a set of formulas

$\mathcal{H}(M)$ is a minimal \mathbb{N}^4 Herbrand model of S iff

- $\mathcal{H}(M) \models_{\mathbb{N}^4} S$
- For all $L \in M \cup \tilde{M}$, $S \cup \tilde{M} \models_{\mathbb{N}^4} L$
4. Nonmon. Reasoning (cont’d)

Minimal \(\mathbb{N}^4 \) model of \(p \leftarrow \neg p \equiv_{\mathbb{N}^4} (\neg^2 p \lor p) \):

<table>
<thead>
<tr>
<th></th>
<th>(p)</th>
<th>(\neg p)</th>
<th>(\neg^2 p)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

Minimal \(\mathbb{N}^4 \) models of \(\{b \leftarrow \neg a ; a \leftarrow \neg b\} \equiv_{\mathbb{N}^4} \{(b \lor \neg^2 a), (a \lor \neg^2 b)\} \):

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(\neg a)</th>
<th>(\neg^2 a)</th>
<th>(b)</th>
<th>(\neg b)</th>
<th>(\neg^2 b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td></td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

Property: A \(\mathbb{N}^4 \) Herbrand model of a normal logic program is stable iff it is complete (i.e. classical) and minimal.
5. N^4 Intuitive Meaning

- A N^4 model of S in which both $\neg F$ and $\neg^2 F$ are true can be seen as a witness of incorrectness of S, i.e.
 - incorrectness of the requirements, and/or
 - incorrectness of the implementation

- N^4 double negation can be seen as an epistemic modality:
 - $\neg^2 F$ read as “required F” (and $\neg^3 F$ read as “required $\neg F$” or “not required F”)
 - this reading fits well with “negation as failure”
N⁴: A logic for requirement modeling and nonmonotonic reasoning

- N⁴ implication is material (i.e. \((F \rightarrow G) \equiv_{N^4} (\neg F \lor G)\))
- N⁴ semantics is compositional
- N⁴ naturally extends the Herbrand Model Theory of (negation-free) logic programs to normal logic programs
- N⁴ naturally extends the stable model semantics of normal logic programs: Every normal logic program has a minimal N⁴ Herbrand Model which is a stable model if it is a classical model