
�����������	�
� ���	� ���	�����������	���
���������! �"�#%$'&(�*)*+,�- �"/.0)*�213"����2154�687 ��9:�*&0.(�<;(=>=?15�����: �"�#�@%&A#���B5B315���* /"�.0)*)DC��<;�+,����"

E �24D4<13"/.0��"�)F4<�*;(G0�IHKJMLONQPAR0SKT(U0R�@V7 /"�+,����"

W XAY[Z\ZI]I^_^	` a Z\ZIb-c	de` fgdih jkZIb/dlc
W ^	dmZnho]pYqbMdih rs^tc	bMu v ]o^Vc	]pY[` ` b/dwc

xzyF{D| }_~o���������:�\��������� ���M����{F�:��xQ�:�,�	������xQ��~��:�A��{F����� {FyFy

���K���(�8�<���-�o� ��¡¢�,£F�-¤�¡�¥¦���A¤¨§�©����-ª5�,£��8�A�<�«¤¨�-�¬�®K�-¥¦¯A¥°¡�¥¦�������p���K�!±�£F¤¨�<¡�¥°�,¤¨§�²!³A³A§°¥°�,¤�¡�¥¦���\�¨ª´©����0µ
¶ ¡¢£F¤¨¥°��¡��·�8�F�-�K��§°�¨¸�¥¦� ¶ ¤¨�-�>¹'�¨¸�¥°��±�£��¨¸¨£F¤¨º\ºI¥°�K¸K»K±�²!©¼¹½±[¾�¿¨¿¨¿�À¡¢¡¢³½ÁÃÂ¨Â2Ä�Ä�Ä�ÅÆ³Aº ¶ ÅÇ¥°�Kª3�¨£Fº\¤�¡�¥¦È/ÅÇÉ-�-¥¦µÊºzÉK�8�A�F�K�8�OÅÇ�-�2Â2³AÉK¯A§°¥°È�¤�¡�¥¦���-�8�Ë �¨£ ¶ �D��ÉA�K¸ ¶ ¯��,£F¥°�D�À¡DÂ�Ì!� ¶ �8¤�£F�F�ÍÌ��,³��¨£�¡�±�ÎÏ�(µ Ë´Ð µÑ¾�¿¨¿¨¿�µFÒ�»½ÓÀ¤¨��É-¤�£Ô¾�¿¨¿¨¿



Classroom Assignment using Constraint Logic Programming

Slim Abdennadher, Matthias Saft and Sebastian Will

Computer Science Department, University of Munich
Oettingenstr. 67, 80538 Munich, GermanyÕ

abdennad, saft, wills Ö @informatik.uni-muenchen.de

Abstract

The Classroom Assignment problem consists of scheduling a set of courses into a fixed
number of rooms, given a fixed timetable. At the University of Munich, a classroom plan
has to be created each semester after collecting timetables of all departments and wishes
of teachers. This planning is very complex since a lot of constraints have to be met, e.g.
room size and equipment. Using constraint-based programming, we developed a prototype,
called RoomPlan, that supports automatic creation of classroom plans. With RoomPlan a
schedule can be created interactively within some minutes instead of some days. RoomPlan
was presented at the Systems’99 Computer exhibition in Munich.

1 Introduction
University course timetabling problems are combinatorial problems which consist in scheduling
a set of courses within a given number of rooms and time periods. In most universities, the
university course timetabling problem is solved in two phases. In the first phase timetables have
to be created, one for each department. Since departments can share rooms, the availability
of rooms is not taken into account in the first phase. In the second phase, rooms have to be
assigned to courses. The assignment of rooms is done centrally for the whole university.

The classroom assignment problem is a difficult and time-consuming expert task since a lot
of requirements have to be met. For example, courses must be assigned to rooms based on the
number of students taking the courses and capacities of rooms. Furthermore, some courses may
require special equipments such as beamer or internet access. While for the first phase of the
university course timetabling several systems have been developed [4, 12, 7], to our knowledge
mainly theoretical work has been done on the topic of the classroom assignment problem [6, 5].

Recently, Constraint Logic Programming [14, 20, 11, 18] (CLP) has become a promising
approach for solving scheduling problems. CLP combines the advantages of logic programming
and constraint solving techniques. The use of CLP has the advantage that the solving procedure
can easily be adapted to changing scheduling characteristics. The classroom assignment prob-
lem can be elegantly formalized as a partial constraint satisfaction problem and implemented
by means of specialized constraint solving techniques that are available in CLP languages.

In this paper, the generation of classroom plans for universities is tackled using the CLP
framework. The system is called RoomPlan and is currently tested at the University of Munich.



Our prototype brought down the time necessary for creating a classroom plan from a few days
by hand to a few minutes on a computer.

Usually not all specified requirements can be fulfilled. We distinguish two kinds of con-
straints. Hard constraints are conditions that must be satisfied, soft constraints may be violated,
but should be satisfied as far as possible. The classical approach to deal with these requirements
is based on a variant of branch-and-bound search. This approach starts with a solution and re-
quires the next solution to be better. Quality is measured by a suitable cost function. The cost
function depends on the set of satisfied soft constraints. Usually, the computation of the cost
function is incorporated into the labeling process. In this paper, we propose another approach
computing the cost function during the constraint solving process independent of the labeling
procedure. This requires to modify the constraint solving part.

In the beginning, constraint solving was “hard-wired” in a built-in constraint solver written
in a low-level language, termed the “black-box” approach. Since this approach makes it hard
to modify a solver or build a solver over a new domain, our aim was to implement a solver for
our problem using the “glass-box” approach Constraint Handling Rules (CHR) [9, 10]. CHR is
a powerful special-purpose declarative programming language for writing application-oriented
constraint solvers.

For our need, we extended an existing finite domain solver written in CHR [11] in a way
that the cost for a solution is computed during the propagation of soft constraints. CHR allows
to express the calculation of the cost in a very declarative and straightforward manner.

In this paper, we describe the main features of the constraint solver that was used to generate
a classroom plan for the University of Munich. Section 2 introduces our classroom assignment
problem and the constraints that a solution of the problem had to satisfy. Section 3 shows how
the problem can be modelled as a partial constraint satisfaction problem. Section 4 gives an
overview of the implementation. Section 5 describes the user interface. Finally, we conclude
with a summary.

2 Problem Description
In universities, where each department is responsible for its own timetable and where rooms
can be shared by different departments, timetables are usually generated in two phases. In
the first phase an assignment of courses within a given number of periods is done without
taking into account the availability of rooms. This task has to be performed separately for
each department. For the Computer Science Department at the University of Munich, the first
phase is solved automatically by a system that generates a new timetable based on a timetable
of the previous year [2, 3]. For other departments the generation of timetables is still done by
hand. In the second phase an assignment of courses within a given number of rooms has to be
performed. After collecting timetables of all departments and wishes of teachers a classroom
plan is generated centrally.

In the following, we want to investigate the classroom assignment problem of the University
of Munich. Since timetables for departments change every semester, a new classroom plan has
to be created each semester. The University of Munich dispose of different buildings. The



biggest building consists of 40 rooms where about 1000 courses have to be held.
The generation of a classroom plan is a difficult and time-consuming task since different

kinds of constraints have to be taken into account:

× The no-occupation overlap constraint tells that occupation time of a room by courses
must not overlap.

× The seat requirement constraint tells how many seats a course requires.

× The teacher’s wishes: We distinguish three kinds of wishes.

– A room constraint binds a course date to a room.

– A building constraint assigns a course date to a certain building.

– An equipment constraint constrains a course date to be assigned to a room with
certain technical equipment, e.g. beamer or video.

Usually not all specified requirements can be fulfilled since the number of (special) rooms
is obviously limited. Therefore we distinguish two kinds of constraints. Hard constraints must
always be satisfied, soft constraints may be violated. Roughly speaking, no-occupation overlap
constraints and seat requirement constraints determine hard constraints, wishes may be hard or
soft constraints.

3 A Constraint Model for Classroom Assignment
A constraint satisfaction problem (CSP) [16] ØÑÙ�Ú<ÛÜ is a pair, where Ù is finite set of variables,
each associated with a finite domain, and Û is a finite set of constraints on these variables.
A solution of a CSP maps each variable to a value of its domain such that all the constraints
are satisfied. Since we have to address quality of a room plan and therefore, have to take into
account wishes as well as exploitation of resources, CSP can not model our problem completely.
Therefore, we use an extension of the CSP concept. A partial constraint satisfaction problem
PCSP [8] is a triple ØÑÙ�Ú,Û\ÚDÝÔÜ , where Ø Ù:Ú,ÛoÜ is a CSP and Ý is a total function ÝsÞ�Ûàß á ,
i.e., Ý maps constraints to weights. The weight of a constraint expresses its importance. Thus,
one can describe hard constraints, which must be satisfied, as well as soft constraints, which
should be satisfied. A hard constraint is given an infinite weight. Then, a solution of the PCSP
is an assignment of the variables in Ù to their domains, such that the total weight of all violated
constraints â�ãäÛ is minimized.

Now, the classroom assignment problem is modeled as a PCSP. Note, that it does not suffice
to assign a room to each course, but instead we have to assign a room to each date, where a
course is held. Therefore, we use one variable for each course date. For example, if a course
consists of two lectures, the course is represented by two different course date variables. The
initial domain of each course date variable is the set of all rooms in the university. Thus, the
solution is an assignment of course dates to rooms.



There are two constraints that occur only as hard constraints and thus have infinite weight:
the no-occupation overlap constraint and the seat requirement constraint. Wishes may also be
hard, i.e. have infinite weight.

To ensure a good exploitation of resources by a solution, we evaluate assignments of a room
to a course date. For this reason, we modify the weight ÝnØÊå¼Ü for the constraint å , that assigns
a course date for a course â to a room æ . This is done by adding a term to the user-defined
evaluation Ý�çèØÊå¼Ü , thus defining ÝnØÑå�Ü in the following way.

ÝnØÑå�ÜêétÝ ç ØÊå¼Ü�ëtì/í�î seats ï�ð requirementseatñ
seats ï ë =>13" Ø S Ú<ì-ò�î equipment ï�ð requirementequipmentñ

equipment ï ÜóÚ
(1)

where seats ï is the number of seats in room æ , requirementseatñ is the number of seats required
by course â , equipment ï is a valuation of the technical equipment in æ and requirementequipmentñ
a value for the technical requirements of â . ì'í and ìKò are negative constants weighting the
exploitation of seats and equipment resources against each other and the violation of wishes.
Since the equipment constraint can be soft, the value of the technical requirements can be
greater than the value of the equipment. In this case, we have to avoid that the third term of the
function ÝnØÑå�Ü is positive.

4 Solving the Problem using Constraint Handling Rules
In a PCSP, one has additionally to satisfying all hard constraints to take soft constraints into
account. According to the PCSP model, we have to minimize the total weight of violated soft
constraints. This is equivalent to maximize the total weight of satisfied constraints. We use
a branch-and-bound approach to tackle this maximization problem. Branch-and-bound is a
standard method to optimize a score that works by constraining the score during the search.
Every time an assignment satisfying the hard constraints is found, the score is bound to be even
better. Thus, the last assignment compatible to the hard constraints that is found will have an
optimal score. Therefore, we incrementally compute a bound of the score, that an assignment
compatible to the current hard constraints may have, during the enumeration. This way we
prune the search tree every time the maximally achievable score is worse than the score of the
previous solution.

To prune the search tree efficiently in our branch-and-bound algorithm, we have to keep
track of the upper bound of the score. The upper bound of the score may be affected each time
the constraint store changes. This change may be done either by a constraint which is directly
inserted by the labeling process or by constraint propagation. If only changes of the first kind
could affect the upper bound, the calculation of the score could be easily incorporated into the
labeling process. However, since we also have to take care of the second kind of constraint store
changes, it is much more natural and intuitive to do this calculation concurrently to the labeling
process and triggered by the alteration of the constraint store. Constraint Handling Rules (CHR)
allows to express this in a very declarative and straightforward manner, where the calculation is
formulated independently of the labeling.



In the following, CHR is briefly introduced. Then, the core of the constraint solver, which
performs hard and soft constraint propagation, is presented. Finally, a labeling strategy to find
good solutions is described.

4.1 Constraint Handling Rules
CHR is a declarative high-level language extension especially designed for writing constraint
solvers. With CHR, one can introduce user-defined constraints into a given host language. The
main implementations of CHR are currently available in Prolog: Besides the library from 1994,
ECL ô PS õ 4.0 now includes a new experimental prototype of CHR. An advanced optimizing
CHR compiler was released for Sicstus 3.7 in 1998 [13]. CHR has also been implemented in
Common Lisp, OZ and Java. To implement the constraint solver for our classroom assignment
problem we used the CHR library of Sicstus. Thus, code examples follow the syntax of CHR
and Prolog.

CHR is essentially a committed-choice language consisting of multi-headed guarded rules
that rewrite constraints into simpler ones until they are solved. There are basically two kinds of
CHR rules: Simplification rules replace constraints by simpler constraints while preserving log-
ical equivalence. Propagation rules add new constraints which are logically redundant but may
cause further simplification. Repeatedly applying the rules incrementally solves constraints.
With multiple heads and propagation rules, CHR provides two features which are essential for
non-trivial constraint handling.

Due to space limitations, we cannot give a formal account of syntax and semantics of CHR
in this paper. An overview on CHR can be found in [10]. Detailed semantics results for CHR are
available in [1]. We introduce CHR by example. Let =< and = be built-in constraint symbols.
We implement a user-defined constraint for max, where max(X,Y,Z) means that Z is the
maximum of X and Y:

max(X,Y,Z) <=> X=<Y Z=Y.
max(X,Y,Z) <=> Y=<X Z=X.
max(X,Y,Z) ==> X=<Z, Y=<Z.

The first rule states that max(X,Y,Z) is logically equivalent to Z=Y, provided it is the case
that X=<Y. This test forms the guard of a rule, a precondition of the applicability of the rule.
Hence, whenever we see the constraint max(X,Y,Z) in any goal where it holds that X=<Y we
can simplify it to Z=Y. Analogously for the second rule.

The first and second rules are simplification rules. The third rule propagates constraints. It
states that max(X,Y,Z) unconditionally implies X=<Z, Y=<Z. Operationally, we add these
logical consequences as redundant constraints, the max constraint is kept. This kind of rule is
called propagation rule.

To the goal max(1,2,M) the first rule is applicable: max(1,2,M) will be simplified to
M=2.

Redundancy from the propagation rule is useful, as the goal max(A,3,3) shows: To this
goal only the propagation rule is applicable, but then the first rule: max(A,3,3) cause the



propagation rule to fire and adds A=<3, 3=3 to the goal. Now, the first rule is applicable and
simplifies the constraint max(A,3,3) to 3=3. The constraint 3 é 3 is simplified to true by the
built-in constraint solver. The constraint solver for max solved max(A,3,3) and produced
the answer A=<3.

4.2 The Core of the Constraint Solver
4.2.1 Handling Hard Constraints

Regarding just the hard constraints, our solver is essentially a finite domain solver, i.e. a course
date variable is bound to a list of rooms and constraints may eliminate rooms from the domain
list of the constrained variable.

Constraint solving for finite domains constraints is based on consistency techniques [17, 15].
For example, the constraints X::[2,3,4] and X::[3,4,5] may be replaced by the new
constraint X::[3,4] (The constraint X::[2,3,4]means that X has to take a value from the
list [2,3,4]). Implementing this technique with CHR is straightforward [11]. The first rule
ensures that the domain for X is non-empty, the second rule intersects two domains for the same
variable:

X::[] <=> false.
X::L1, X::L2 <=> intersection(L1,L2,L), X::L.

To solve our classroom assignment problem, the no-occupation overlap constraint can be
expressed using the global constraint all distinct. The constraint all distinct(Xs)
tells that all variables in the list Xs must be bound to different values. The no-occupation
overlap constraint is propagated to constraints all distinct(Xs), where the Xs are lists
of the course date variables for all course dates that overlap in time. The hard seat requirement
constraint propagates by filtering the domains of the course date variables.

4.2.2 Handling Soft Constraints

In the following, the calculation of the score done by a CHR program is described. It is most
intuitive to calculate the total score from three sub-scores, which can easily be done by a rule.
One sub-score ScoreWish is the total weight of satisfied wishes, the second ScoreSeatRes
is the sum of the second terms in equation (1) over all assignments of course dates to rooms,
i.e. a measure of the exploitation of seats. Analogously, the last ScoreEquipmentRes is
the sum of the third terms in equation (1), i.e. a measure of the exploitation of equipment. The
total score is computed as a weighted sum of the sub-scores. Instead of minimizing the total
weight of violated constraints, we equivalently maximize the total weight of the satisfied soft
constraints. Since we maximize the score we need to compute an upper bound of the score, that
an assignment which satisfies the hard constraints of the current constraint store may have.

We start with describing the computation of the sub-score ScoreWish. The different
types of wishes are expressed by CHR constraints of the form wish(Type, CourseDate,
Wished, Weight), where the first argument gives the type of the wish, namely room,



building or equipment. CourseDate holds a course date identifier, the variable Wished
further specifies the instance of the wish and Weight holds the weight of the wish. We use
further the constraint assignment(CDate,CDateVar)which tells that CDateVar is the
course date variable corresponding to the course date CDate. The constraint scoreWish(Up)
tells that Up is the upper bound of the sub-score ScoreWish.

In the following, we introduce simplification rules to update the sub-score ScoreWish,
whenever a wish is satisfied or violated. In the following, we will discuss the rules for handling
room constraints. The rules handling building and equipment constraints are analogous.

assignment(CDate, CDateVar), CDateVar::Dom,
wish(room, CDate, RoomWish, infinite) <=>

assignment(CDate, CDateVar), CDateVar::Dom,
CDateVar::[RoomWish].

assignment(CDate, CDateVar), CDateVar::[RoomWish],
wish(room, CDate, RoomWish, Weight) <=>

Weight \== infinite |
assignment(CDate, CDateVar), CDateVar::[RoomWish].

assignment(CDate, CDateVar), CDateVar::Dom,
wish(room, CDate, RoomWish, Weight), scoreWish(Up) <=>

Weight \== infinite, \+ member(RoomWish, Dom) |
assignment(CDate, CDateVar), CDateVar::Dom,
scoreWish(Up - Weight).

The first rule propagates a hard wish, i.e. a wish with infinite weight, in such a way that an
assignment of the course date variable to the wished room is performed. Therefore, the sim-
plification rule tests whether constraints of the form assignment(CDate, CDateVar),
CDateVar::Dom and wish(room, CDate, RoomWish, infinite) can be found
in the constraint store. In this case, the rule fires and the constraint CDateVar::[RoomWish],
that binds the room to the wished room, is added to the store. Furthermore, the wish constraint
is removed from the constraint store. The application of this rule leads to the occurrence of
two domains for the same variable. These constraints can be simplified by the intersection rule
presented above.

The second rule handles already satisfied soft constraints. If the constraints assign-
ment(CDate, CDateVar), CDateVar::[RoomWish] and wish(room, CDate,
RoomWish, Weight) are found in the constraint store, then the wish is obviously satisfied
and the rule consequently removes the wish. The guard ensures that only soft constraints, i.e.
wishes with finite weight, are handled by this rule, since hard wish constraints are already han-
dled by the first rule. Note that the upper bound of the score is unaffected if a wish is satisfied.
In contrast, if a wish is violated, the upper bound of the score has to be decreased.

The updating of the bound is done by the third rule. The guard ensures that only soft
constraints which are violated lead to a change of the score. A room constraint is violated



if the wished room is not contained in the domain of the course date variable. If the rule
fires, the upper bound is recomputed as Up - Weight and the constraint scoreWish(Up
- Weight) replaces the constraint scoreWish(Up).

The evaluation of resource exploitation is handled by a single rule.

assignment(CDate, CDateVar), CDateVar::[RoomNr],
scoreSeatsRes(UpS), scoreEquipmentRes(UpT) <=>

assignment(CDate, CDateVar), CDateVar::[RoomNr],
scoreSeatsRes_diff(CDate, RoomNr, SSD),
scoreEquipmentRes_diff(CDate, RoomNr, TSD),
scoreSeatsRes(UpS + SSD),
scoreEquipmentRes(UpT + TSD).

The rule updates the scores for seat resource and equipment resource exploitation, where the
actual weight is calculated by the separate predicates scoreSeatsRes diff and scoreE-
quipmentRes diff analogously to equation (1). The updating of the sub-scores is done
by replacing the constraints scoreSeatsRes(UpS) and scoreEquipmentRes(UpT)
by the recomputed constraints scoreSeatsRes(UpS + SSD) and scoreEquipmen-
tRes(UpT + TSD) each time an assignment of a course date variable to a room was newly
created, either by labeling or by constraint propagation.

Each time a sub-score is recomputed, the total score has to be recalculated. This can be
done by the following propagation rule.

scoreWish(UpW), scoreSeatsRes(UpS),
scoreEquipmentRes(UpT) ==>

score(UpC + UpS + UpT).

The rule fires if a sub-score changes. Then, a constraint with the newly calculated upper bound
of the total score is inserted. A further rule ensures that only the most restrictive score con-
straint remains in the constraint store.

score(A), score(B) <=> A=<B | score(A).

This rule removes the larger of two upper bounds of the total score.
Now, the upper bound can be used to prune the search tree, since we use a branch-and-

bound algorithm. Every time an assignment of the course date variables that satisfies the hard
constraints is found, we insert a constraint last score(Score) with the score of this as-
signment. The following propagation rule ensures, that only better assignments can be found in
consequence.

last_score(LastScore), score(Up) <=> LastScore >= Up | false.

This rule causes the constraint solver to fail whenever the score of an assignment in the current
branch cannot be better than the last score. This is indicated by the upper bound of the score.



4.3 Labeling
After stating the problem constraints, normally there are still many feasible solutions, so it
is necessary to label the domain variables, i.e. assign them with values that remain on their
domains. For the labeling one needs to apply a heuristic strategy that tends to enumerate high
scoring solutions early in the search. In a branch-and-bound search this helps to prune the
search tree. In practice also suboptimal solutions may be appropriate, which also emphasizes
the use of finding good solutions early.

We employed a leftmost variable, leftmost value strategy that selects for each assignment
the leftmost course date variable and the leftmost value from the domain of the selected course
date variable. Since we sort the list of variables as well as the values in the domains before the
labeling as we describe below, this strategy prefers most constrained assignments. The sorting
is done in the following way. We compute a weight for each course and a weight for each room
with respect to a certain course, i.e. actually a weight for a certain assignment. The weights for
courses respect seat and equipment requirements, such that courses with strong requirements
get great weights. The weight of an assignment totals the weights of the soft constraints which
are satisfied by the actual assignment. Then, the course date variables and the rooms in each
domain are sorted in descending order by these weights. As a consequence the leftmost course
date variables, which are selected first by our strategy, belong to the courses with the strongest
requirements. Further, the leftmost values in each domain lead to assignments, which satisfy
the ”best” soft constraints.

5 User Interface
For a classroom assignment system to be complete, a flexible user interface should be provided,
so that the specific requirements of the problem can be stated easily. RoomPlan provides such
an interface.

The RoomPlan user interface was written in JAVATM 1.1 using the Abstract Window Toolkit
(AWT). It generates the data needed by the CHR solver in form of prolog facts and starts the
CHR solver.

Figure 1 shows the input form for the courses that have to be planned. The user has to type
in the courses with title, first and last day and start- and endtime. Furthermore, the interface
allows the user to define the system parameters as preferred. All parameters like the needed
amount of seats and needed equipment, e.g. overhead projector are handled as soft constraints.
In addition, the user can specify a wish for a special room. These wishes are given in four cat-
egories: imperative, strong preferred, preferred and weakly preferred.
Imperative wishes are hard constraints. If there is no wish for a special room, a building can be
specified, which is considered by the classroom assignment.

It may happen that there exists not even one classroom plan that complies with all the given
hard constraints. Then the problem is called over-constrained. In case of a direct clash in form
of two conflicting imperative room wishes, RoomPlan may detect this and then gives the user a
variety of alternative rooms which satisfy the specified equipment wishes.



Figure 1: Classroom Assignment

Figure 2 shows a fragment of the generated classroom plan. In addition, the user can manu-
ally alter a completely generated classroom plan and let it check by RoomPlan. An advantage of
the interactive system is that the expert might assist the program to produce even better results.

6 Conclusion
In this paper, we have argued that Constraint Handling Rules (CHR) is a good vehicle for
implementing a PCSP solver. We extended an existing finite domain solver to deal with soft
constraints. The idea was to compute the cost function during the propagation of constraints.
This is much more natural and intuitive than the incorporation of the computation into the
labeling process. Thus our approach is comparable in terms of declarativity to approaches
embedding cost functions into a CLP(FD) system using reification. The solver is powerful
enough to serve as the core of a classroom assignment system.

Our system, RoomPlan, has been implemented using Sicstus Prolog. The CLP code is just



about 700 lines. RoomPlan assists a human planner in scheduling courses to rooms. Room-
Plan was presented at the Systems’99 Computer exhibition in Munich. It is currently tested at
the University of Munich. Typically, for 1000 courses and 40 rooms, RoomPlan generates a
satisfying schedule within a few minutes.

Figure 2: Fragment of a Classroom Plan

RoomPlan has been designed to meet the specific requirements of the University of Munich.
However, it can be applied to other universities, since the classroom assignment problem is
already handled in a general way. However, if necessary, adaption can easily be done due to the
the declarativity of constraint logic programming.

In general problems a labeling strategy with previously fixed enumeration order is not suit-
able, since a good order of variables or domain values often cannot be fixed in advance. Only the



special nature of our classroom assignment problem makes this strategy a suitable choice. Nev-
ertheless, we are currently developing intelligent labeling strategies as quoted by Tsang [19].

Acknowledgements
We would like to thank Thom Frühwirth and the anonymous referees for useful comments on a
preliminary version of this paper.

References
[1] S. Abdennadher. Operational semantics and confluence of constraint propagation rules. In

Third International Conference on Principles and Practice of Constraint Programming,
CP’97, LNCS 1330. Springer-Verlag, 1997.

[2] S. Abdennadher and M. Marte. University timetabling using constraint handling rules. In
Actes des Journées Francophones de Programmation en Logique et Programmation par
Contraintes, 1998.

[3] S. Abdennadher and M. Marte. University course timetabling using constraint handling
rules. Journal of Applied Artificial Intelligence, Special Issue on Constraint Handling
Rules, to appear 2000.

[4] F. Azevedo and P. Barahona. Timetabling in constraint logic programming. In Proceedings
of 2nd World Congress on Expert Systems, 1994.

[5] M. Carter and C. Tovey. When is the classroom assignment problem hard? Operations
Research, 40(1):28–39, 1989.

[6] J. Ferland and S. Roy. Timetabling problem for university as assignment of activity to
resources. Computers and Operational Research, 12(2):207–218, 1985.

[7] H. Frangouli, V. Harmandas, and P. Stamatopoulos. UTSE: Construction of optimum
timetables for university courses — A CLP based approach. In Proceedings of the Third
International Conference on the Practical Applications of Prolog, pages 225–243, 1995.

[8] E. C. Freuder and R. J. Wallace. Partial constraint satisfaction. Artificial Intelligence,
58(1-3):21–70, December 1992.

[9] T. Frühwirth. Constraint handling rules. In A. Podelski, editor, Constraint Programming:
Basics and Trends, LNCS 910. Springer-Verlag, 1995.

[10] T. Frühwirth. Theory and practice of constraint handling rules, special issue on constraint
logic programming. Journal of Logic Programming, pages 95–138, October 1998.



[11] T. Frühwirth and S. Abdennadher. Constraint-Programmierung: Grundlagen und Anwen-
dungen. Springer-Verlag, September 1997.

[12] M. Henz and J. Würtz. Using Oz for college time tabling. In Proceedings of the First
International Conference on the Practice and Theory of Automated Timetabling, pages
283–296, 1995.

[13] C. Holzbaur and T. Frühwirth. A prolog constraint handling rules compiler and runtime
system. Journal of Applied Artificial Intelligence, Special Issue on Constraint Handling
Rules, to appear 2000.

[14] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 20, 1994.

[15] V. Kumar. Algorithms for constraint-satisfaction problems: A survey. AI Magazine, 13(1),
1992.

[16] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–118,
1977.

[17] A. K. Mackworth. Constraint satisfaction. In S. C. Shapiro, editor, Encyclopedia of
Artificial Intelligence. Wiley, 1992. Volume 1, second edition.

[18] K. Marriott and P. Stuckey. Programming with Constraints: An Introduction. The MIT
Press, 1998.

[19] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[20] M. Wallace. Practical applications of constraint programming. Constraints Journal,
1(1,2), September 1996.


