On Confluence of Constraint Handling Rules

Slim Abdennadher, Thom Frühwirth, Holger Meuss

appeared in Proc. Second International Conference on Principles and Practice of Constraint Programming (CP96), Springer LNCS, 1996
http://www.pms.informatik.uni-muenchen.de/publikationen
On Confluence of Constraint Handling Rules

Slim Abdennadher, Thom Frühwirth, Holger Meuss

Computer Science Department, University of Munich
Oettingenstr. 67, 80538 Munich, Germany
{Slim.Abdennadher,Thom.Fruhwirth,Holger.Meuss}@informatik.uni-muenchen.de

Abstract. We introduce the notion of confluence for Constraint Handling Rules (CHR), a powerful language for writing constraint solvers. With CHR one simplifies and solves constraints by applying rules. Confluence guarantees that a CHR program will always compute the same result for a given set of constraints independent of which rules are applied. We give a decidable, sufficient and necessary syntactic condition for confluence. Confluence turns out to be an essential syntactical property of CHR programs for two reasons. First, confluence implies correctness (as will be shown in this paper). In a correct CHR program, application of CHR rules preserves logical equivalence of the simplified constraints. Secondly, even when the program is already correct, confluence is highly desirable. Otherwise, given some constraints, one computation may detect their inconsistency while another one may just simplify them into a still complex constraint.

As a side-effect, the paper also gives soundness and completeness results for CHR programs. Due to their special nature, and in particular correctness, these theorems are stronger than what holds for the related families of (concurrent) constraint programming languages.

Keywords: constraint reasoning, semantics of programming languages, committed-choice languages, confluence and determinacy.

1 Introduction

Constraint Handling Rules (CHR) [Frü95] have been designed as a special-purpose language for writing constraint solvers. A constraint solver stores and simplifies incoming constraints. CHR is essentially a committed-choice language consisting of guarded rules that rewrite constraints into simpler ones until they are solved.

In contrast to the family of the general-purpose concurrent constraint languages (CC) [Sar93] and the ALPS\(^1\) [Mah87] framework, CHR allow "multiple heads", i.e. conjunctions of atoms in the head of a rule. Multiple heads are a feature that is essential in solving conjunctions of constraints. With single-headed CHR rules alone, unsatisfiability of constraints could not always be detected (e.g. \(X < Y, Y < X\)) and global constraint satisfaction could not be achieved.

Non-determinacy in CHR arises when two or more rules can fire. It is obviously desirable that the result of a computation in a solver will always be the same, semantically and syntactically, no matter in which CHR rules are applied. This property of constraint solvers will be called confluence and investigated in this paper.

\(^1\) Saraswat showed in [Sar93], that ALPS can be recognized as a subset of cc(\(\downarrow,\rightarrow\))
We will introduce a decidable, sufficient and necessary syntactic condition for
confluence. This condition adopts the notion of critical pairs as known from term
rewrite systems [DOS88, KK91, Pla93]. Monotonicity of constraint store updates,
an inherent property of constraint logic programming languages, plays a central role
in proving that joinability of critical pairs is sufficient for local confluence.

Confluence turns out to be important with regard to both theoretical and practi-
cal aspects: We show that confluence implies correctness of a program. By correctness
we mean that the declarative semantic of a CHR program is a consistent theory. Un-
like CC programs, CHR programs can be given a declarative semantics since they
are only concerned with defining constraints (i.e. first order predicates), not proce-
dures in their generality. Furthermore we show how to strengthen the declarative
reading of a CHR program if it is confluent. A practical application of our definition
of confluence lies in program analysis, where we can identify non-confluent parts of
CHR programs by examining the critical pairs. Programs with non-confluent parts
evenually represent an ill-defined constraint solving algorithm.

Our work extends previous approaches to the notion of determinacy in the field of
CC languages: Maher investigates in [Mah87] a class of flat committed choice logic
languages (ALPS). He defines the class of deterministic ALPS programs as those
programs whose guards are mutually exclusive. The class of deterministic ALPS
programs is less expressive than confluent CHR programs. Saraswat defines for the
CC framework a similar notion of determinacy [Sar93], which is also more restrictive
than confluence. We also give two reasons, why CHR cannot be made deterministic
in general.

Our approach is orthogonal to the work in program analysis in [MO95] and
[FGMP95], where a different, less rigid notion of confluence is defined: A CC program
is confluent, if different process schedulings (i.e. different orderings of decisions at
non-deterministic choice points) give rise to the same set of possible outcomes. The
idea of [MO95] is to introduce a non-standard semantics, which is confluent for all
CC programs.

The paper is organized as follows. The next section introduces the syntax of con-
straint handling rules, their declarative and operational semantics. Then this section
contributes to the relationship between the declarative and operational semantics of
CHR programs by giving soundness and completeness results. Section 3 presents the
notion of confluence for CHR. In section 4 we show that confluence implies logical
correctness of a program. This leads to a stronger completeness and soundness result
for finite failed computation. Finally, we conclude with a summary and directions for
future work.

2 Syntax and Semantics of CHR

We assume some familiarity with (concurrent) constraint programming (CCP) [JL87,
JM94, SRP91, Sar93, Sha89]. There is a distinguished class of predicates, the con-
straints. We assume, that there is a built-in constraint solver that solves, checks and
simplifies built-in (predefined) constraints. On the other hand, the user-defined con-
straints are those defined by a CHR program. This implies, that we have two disjoint
sets of constraint symbols for the built-in and the user-defined constraints.
As a special purpose language, CHR usually extend a host language such as Prolog or Lisp with (more) constraint solving capabilities. This also means, that auxiliary computations in CHR programs can be performed in the host language. Without loss of generality, to keep this paper self-contained, we will not address host language issues here. We also restrict ourselves to the main kind of CHR rule.

Definition 1. A **CHR program** is a finite set of simplification rules\(^2\). A simplification rule is of the form

\[H_1, \ldots, H_i \Leftrightarrow G_1, \ldots, G_j \mid B_1, \ldots, B_k. \]

where the multi-head \(H_1, \ldots, H_i \) is a conjunction\(^3\) of user-defined constraints and the guard \(G_1, \ldots, G_j \) is a conjunction of built-in constraints and the body \(B_1, \ldots, B_k \) is a conjunction of built-in and user-defined constraints called goals.

2.1 Declarative Semantics

Unlike CC programs, CHR programs can be given a declarative semantics since they are only concerned with defining constraints (i.e. first order predicates), not procedures in their generality.

Declaratively, a simplification rule

\[H_1, \ldots, H_i \Leftrightarrow G_1, \ldots, G_j \mid B_1, \ldots, B_k. \]

is a logical equivalence provided the guard is true in the current context

\[\forall \bar{x} \left(\exists \bar{y} \left(G_1 \land \ldots \land G_j \right) \right) \rightarrow \left(H_1 \land \ldots \land H_n \leftrightarrow \exists \bar{z} \left(B_1 \land \ldots \land B_k \right) \right), \]

where \(\bar{x} \) are the variables occurring in \(H_1, \ldots, H_n \) and \(\bar{y}, \bar{z} \) are the other variables occurring in \(G_1, \ldots, G_j \) and \(B_1, \ldots, B_k \) respectively.

The declarative interpretation of a CHR program \(P \) is given by the set \(\mathcal{P} \) of logical equivalences and a consistent built-in theory \(CT \) which determines the meaning of the built-in constraints appearing in the program. The constraint theory \(CT \) specifies among other things the ACI properties of the logical conjunction \(\land \) in the built-in constraint store, the properties of the equality constraints \(= \) (Clark’s axiomatization) and the properties of the basic constraints \(true \) and \(false \).

Definition 2. A CHR program \(P \) is **correct** iff \(\mathcal{P} \cup CT \) is consistent.

2.2 Operational Semantics of CHR

We define the operational semantics as a transition system.

\(^2\) There are two other kinds of rules [BFL+94], which are not treated here.

\(^3\) For conjunctions in rules we use \(, \) instead of \(\land \).

\(^4\) we use \(\bar{z} \) as an abbreviation for a sequence of variables.
States

Definition 3. A state is a triple

\[<C_U, C_B, V> \]

\(C_U \) is a conjunction of both user-defined and built-in constraints that remains to be solved. \(C_B \) is a conjunction of built-in constraints accumulated up to this point of execution. \(V \) is an ordered set of variables.

Definition 4. A variable \(X \) in a state \(<C_U, C_B, V> \) is called global if it appears in \(V \). It is called local otherwise.

Definition 5. The pair \((C_1, C_2) \) \((C_1 \text{ and } C_2 \) are conjunctions of constraints) is called enclosed by the ordered set \(V \) iff all variables shared by \(C_1 \) and \(C_2 \) are contained in \(V \).

We can attribute to each state \(<C_U, C_B, V> \) the formula

\[\exists Y_1, \ldots, Y_m \ C_U \land C_B \]

as a logical meaning, where \(Y_1, \ldots, Y_m \) are the local variables in \(C_U \) and \(C_B \). Note that the global variables remain unbound in the formula.

Update We define now the basic operation of the built-in constraint solver: The main task of update is transforming a state into a logically equivalent state with a normalized built-in constraint store. update performs the following tasks:

- normalize the built-in constraint store according to \(CT \)
- propagate equality constraints through the state
- remove redundant equality constraints where one side is a local variable.

Definition 6. update normalizes a state by performing the following operations in sequence:

1. update produces a unique representation of the built-in constraint store according to the theory \(CT \).
2. Equality constraints of the form \(X \equiv t \) receive a special treatment: occurrences of \(X \) in all constraints (except the equality itself) in the built-in constraint store and goal store are replaced by \(t \).
3. All equality constraints of the form \(X \equiv t \) or \(Y \equiv X \) are removed, if \(X \) is local.

These equality constraints will be called local. This reflects the validity of formulas \(\exists X \ X \equiv a \), which follows from the axioms in \(CT \) (see example 2.1).

Example 2.1

update(\(<p(Y) \land q(Z), Y \equiv f(X) \land Z \equiv a, [Y]> \)) = \(<p(f(X)) \land q(a), Y \equiv f(X), [Y]> \)

Under an enclosure condition update is compatible with addition of constraints. This result is given by the following lemma, which is proven by contradiction.
Lemma 7. If \(C \) is a conjunction of built-in constraints and \((C, C_B)\) is enclosed by \(V \) and \(\text{update}(<C_U, C_B, V>) = <C'_U, C'_B, V> \) then
\[
\text{update}(<C_U, C_B \land C, V>) = \text{update}(<C_U, C_B \land C, V>).
\]
The enclosure condition in the lemma above reflects the sensitivity of update with respect to local variables. It guarantees that equality constraints involving variables appearing in the added constraint \(C \) are not removed due to locality. If the condition is violated, the claim is false:

Example 2.2
\[
\text{update}(<\text{true}, X \leftarrow 2, [], []>) = <\text{true}, \text{true}, [], []>,
\]
adding the built-in constraint \(X \leftarrow 1 \) on both sides results for the left side in:
\[
\text{update}(<\text{true}, X \leftarrow 2 \land X \leftarrow 1, [], []>) = <\text{true}, \text{false}, [], []>
\]
but for the right side in:
\[
\text{update}(<\text{true}, \text{true} \land X \leftarrow 1, [], []>) = <\text{true}, \text{true}, [], []>
\]

Definition 8. Entailment \((\rightarrow_o)\) tests whether a given conjunction of built-in constraints is implied by another conjunction of built-in constraints in the context of a state and is defined as follows:
\[
<\text{C}_U, \text{C}_{B_1}, \text{V} > \rightarrow_o <\text{C}_{U_2}, \text{C}_{B_2}, \text{V} > \iff \\
<\text{C}_U, \text{C}_{B_1}, \text{V} > = \text{update}(<\text{C}_{U_2}, \text{C}_{B_1} \land \text{C}_{B_2}, \text{V}>).
\]
where \(\text{update}(<\text{C}_U, \text{C}_{B_1}, \text{V}>) = <\text{C}_U, \text{C}'_{B_1}, \text{V} > \) and \(\text{update}(<\text{C}_{U_2}, \text{C}_{B_2}, \text{V}>) = <\text{C}_{U_2}, \text{C}'_{B_2}, \text{V} > \).

Computation Steps Given a CHR program \(P \) we define the transition relation \(\rightarrow_P \) by introducing two kinds of computation steps:

Solve \(<\text{C} \land \text{C}_U, \text{C}_{B}, \text{V} > \rightarrow_P \text{update}(<\text{C}_U, \text{C} \land \text{C}_{B}, \text{V}>) \)
if \(\text{C} \) is a built-in constraint.

The built-in constraint solver updates the state after adding the built-in constraint \(\text{C} \) to the built-in store \(\text{C}_{B} \).

Simplify \(<\text{H}' \land \text{C}_U, \text{C}_{B}, \text{V} > \rightarrow_P \text{update}(<\text{C}_U \land \text{B} \leftarrow \text{H}' \land \text{C}_{B}, \text{V}>) \)
if \(\text{H} \leftarrow \text{G} \mid \text{B} \) is a variant with fresh variables of a rule in \(P \) and
\(<\text{H}', \text{C}_{B}, \text{V} > \rightarrow_o <\text{H}', \text{H}' \leftarrow \text{H} \land \text{G}, \text{V} >. \)

To simplify user-defined atoms means to apply a simplification rule on these atoms. This can be done if the atoms match with the head atoms of the rule and the guard is entailed by the built-in constraint store. The atoms occurring in the body of the rule are added to the goal constraint store.

Notation. By \(c(t_1, \ldots, t_n) \leftarrow c(s_1, \ldots, s_n) \) we mean \(t_1 \leftarrow s_1 \land \ldots \land t_n \leftarrow s_n \), if \(c \) is a user-defined constraint. By \(p_1 \land \ldots \land p_n \leftarrow q_1 \land \ldots \land q_n \) we mean \(p_1 \leftarrow q_1 \land \ldots \land p_n \leftarrow q_n. \)
Definition 9. $S \rightsquigarrow_p S'$ holds if

$$S = S' \text{ or } S = \text{update}(S') \text{ or } S \rightsquigarrow_p S_1 \rightsquigarrow_p \ldots \rightsquigarrow_p S_n \rightsquigarrow_p S' \quad (n \geq 0).$$

We will write \rightsquigarrow instead of \rightsquigarrow_p and \rightsquigarrow^* instead of \rightsquigarrow_p^* if the program P is fixed.

Lemma 10. Update has no influence on application of rules, i.e.

$$S \rightsquigarrow S' \text{ implies } \text{update}(S) \rightsquigarrow S'.$$

The *initial state* consists of a goal G, an empty built-in constraint store and the list V of the variables occurring in G,

$$<G, \text{true}, V>.$$

A computation state is a *final state* if

- its built-in constraint store is false, then it is called *failed*;
- no computation step can be applied and its built-in constraint store is not false.

Then it is called *successful*.

Definition 11. A *computation* of a goal G is a sequence S_0, S_1, \ldots of states with $S_i \rightsquigarrow S_{i+1}$ beginning with the initial state $S_0 = <G, \text{true}, V>$ and ending in a final state or diverging. A finite computation is *successful* if the final state is successful. It is *failed* otherwise.

Definition 12. A *computable constraint* C of G is the conjunction $\exists \exists C_V \land C_B$, where C_V and C_B occur in a state $<C_V, C_B, V>$, which appears in a computation of G. \exists are the local variables.

A *final constraint* C is the conjunction $\exists \exists C_V \land C_B$, where C_V and C_B occur in a final state $<C_V, C_B, V>$.

Equivalence and Monotonicity The following definition reflects the AC1 properties of the goal store and the fact that all states with an inconsistent built-in constraint store are identified.

Definition 13. We identify states according to the equivalence relation \cong:

$$<C_V, C_B, V> \cong <C_V', C_B, V> \iff C_V \text{ can be transformed to } C_V' \text{ using the AC1 properties of the conjunction } \land, \text{ or } C_B \text{ is false.}$$

We have to ensure that the equivalence \cong is well-defined, i.e., that it is compatible with the operations we perform on states. We have six different operations working on states, 1-3 are explicitly used for computation steps, whereas 4-6 occur only in the proof for the theorem on local confluence:

1. **Solve**
2. **Simplify**
3. **update**
4. add a constraint to the goal store or built-in constraint store
5. form a variant
6. replace the global variable store by another ordered set of variables
It is easy to see that all these operations are congruent with the relation \(\cong \), i.e. the following holds for each instance \(o \) of an operation:

\[
S_1 \cong S_2 \text{ implies } o(S_1) \cong o(S_2)
\]

Therefore we can reason about states modulo \(\cong \).

The next definition defines the notion of monotonicity, which guarantees that addition of new built-in constraints does not inhibit entailment (and hence the application of Simplify):

Definition 14. A built-in constraint solver is said to be monotonic iff the following holds:

\[
<C_U, C_B, \mathcal{V}> \rightarrow_o <C_{U_2}, G, \mathcal{V}> \text{ implies } <C_U, C_B \land C, \mathcal{V}> \rightarrow_o <C_{U_2}, G, \mathcal{V}>.
\]

Lemma 15. Every built-in constraint solver (where update fulfills the stated requirements) is monotonic.

2.3 Relation between the declarative and the operational semantics

We present results relating the operational and declarative semantics of CHR. These results are based on work of Jaffar and Lassez [JL87], Maher [Mah87] and van Hentenryck [vH91].

Lemma 16. Let \(P \) be a CHR program, \(G \) be a goal. If \(C \) is a computable constraint of \(G \), then

\[
\mathcal{P}, CT \models \forall \ (C \rightarrow G).^5
\]

Proof. By induction over the number of computation steps.

Theorem 17 Soundness of successful computations. Let \(P \) be a CHR program and \(G \) be a goal. If \(G \) has a successful computation with final constraint \(C \) then

\[
\mathcal{P}, CT \models \forall \ (C \rightarrow G).
\]

Proof. Immediately from lemma 16.

The following theorem is stronger than the completeness result presented in [Mah87], in the way that we can reduce the disjunction in the strong completeness theorem to a single disjunct. This is possible, since the computation steps preserve logical equivalence (lemma 16).

Theorem 18 Completeness of successful computations. Let \(P \) be a CHR program and \(G \) be a goal. If \(\mathcal{P}, CT \models \forall \ (C \rightarrow G) \) and \(C \) is satisfiable, then \(G \) has a successful computation with final constraint \(C' \) such that

\[
\mathcal{P}, CT \models \forall \ (C \rightarrow C').
\]

^5 \(\forall F \) is the universal closure of a formula \(F \).
The next theorem gives a soundness and completeness result for correct CHR programs.

Theorem 19 Soundness and Completeness of failed computations.
Let \(P \) be a correct CHR program and \(G \) be a Goal. The following are equivalent:

a) \(P, CT \models \neg \exists \)

b) \(G \) has a finitely failed computation.

3 Confluence of CHR programs

We extend the notion of determinacy as used by Maher in [Mah87] and Saraswat in [Sar93] to CHR by introducing the notion of confluence. The notion of deterministic programs is less expressive and too strict for the CHR formalism, because it is not always possible to transform a CHR program into a deterministic one. This has two reasons, of which the first also holds for the CC formalism:

The constraint system must be closed under negation so that a single-headed CHR program can be transformed into one with non-overlapping guards.

Example 1. We want to extend the built-in solver, which contains the built-in constraints \(\leq \) and \(= \), with a user-defined constraint \(\text{maximum}(X,Y,Z) \) which holds if \(Z \) is the maximum of \(X \) and \(Y \). The following could be part of a definition for the constraint \(\text{maximum} \):

\[
\begin{align*}
\text{maximum}(X,Y,Z) & \iff X \leq Y \land Z \equiv Y. \\
\text{maximum}(X_1,Y_1,Z_1) & \iff Y_1 \leq X_1 \land Z_1 \equiv X_1.
\end{align*}
\]

This program cannot be transformed into an equivalent one without overlapping guards.

The second reason is that CHR rules have multiple heads. We can get into a situation, where two rules can be applied to different but overlapping conjunctions of constraints. In general it is not possible to avoid commitment of one of the rules (and thus making the program deterministic\(^6\)) by adding constraints to the guards.

Example 2. Consider the following part of a CHR program defining interactions between the boolean operations \(\text{not} \), \(\text{imp} \) and \(\text{or} \).

\[
\begin{align*}
\text{not}(X,Y), \text{imp}(X,Y) & \iff \text{true} \mid X \equiv 0, Y \equiv 1. \\
\text{not}(X_1,Y_1), \text{or}(X_1,Z_1,Y_1) & \iff \text{true} \mid X_1 \equiv 0, Y_1 \equiv 1, Z_1 \equiv 1.
\end{align*}
\]

Note that both rules can be applied to the goal \(\text{not}(A,B) \land \text{imp}(A,B) \land \text{or}(A,C,B) \). When we want that only the first rule can be applied, we have to add a constraint to the guard of the first rule, that \(\text{or}(A,C,B) \) doesn’t exist. Such a condition is meta-logical and syntactically not allowed.

\(^6\) We extend the notion of deterministic programs to our formalism in the natural way that only one rule can commit by any given goal.
In the following we will adopt and extend the terminology and techniques of conditional term rewriting systems (CTRS) [DOS88]. A straightforward translation of results in the field of CTRS was not possible, because the CHR formalism gives rise to phenomena not appearing in CTRS. These include the existence of global knowledge (the built-in constraint store) and local variables.

Definition 20. A CHR program is called **terminating**, if there are no infinite computation sequences.

Definition 21. Two states \(S_1\) and \(S_2\) are called **joinable** if there exist states \(S'_1, S'_2\) such that \(S_1 \rightarrow^{*} S'_1\) and \(S_2 \rightarrow^{*} S'_2\) and \(S'_1\) is a variant of \(S'_2\) (\(S'_1 \sim S'_2\)).

Definition 22. A CHR program is called **confluent** if the following holds for all states \(S, S_1, S_2\):

\[
\text{If } S \rightarrow^{*} S_1, S \rightarrow^{*} S_2 \text{ then } S_1 \text{ and } S_2 \text{ are joinable.}
\]

Definition 23. A CHR program is called **locally confluent** if the following holds for all states \(S, S_1, S_2\):

\[
\text{If } S \rightarrow S_1, S \rightarrow S_2 \text{ then } S_1 \text{ and } S_2 \text{ are joinable.}
\]

For the following reasoning we require, that rules of a CHR program contain disjoint sets of variables. This requirement means no loss of generality, because every CHR program can be easily transformed into one with disjoint sets of variables.

In order to give a characterization for local confluence we have to introduce the notion of critical pairs:

Definition 24. If one or more atoms \(H_{i_1}, \ldots, H_{i_n}\) of the head of a CHR rule \(H_1, \ldots, H_n \Rightarrow G \mid B\) unify with one or more atoms atom \(H_{j_1}', \ldots, H_{j_m}'\) of the head of another or the same CHR rule \(H_1', \ldots, H_n' \Rightarrow G' \mid B'\) then the triple

\[
(G \land G'/\land H_{i_1} \equiv H_{j_1}' \land \cdots \land H_{i_n} \equiv H_{j_n}' \mid B \land H_{j_{k+1}}' \land \cdots \land H_{j_m}' = \lvert B' \land H_{i_{k+1}} \land \cdots \land H_{i_n} \mid V)
\]

is called a **critical pair** of the two CHR rules \(\{i_1, \ldots, i_n\}\) and \(\{j_1, \ldots, j_m\}\) are permutations of \(\{1, \ldots, n\}\) and \(\{1, \ldots, m\}\) respectively, \(V\) is the set of variables appearing in \(H_1, \ldots, H_n, H_1', \ldots, H_n'\).

Example 3. Consider example 1. There are two trivial\(^7\) and the following nontrivial critical pair:

\[
(X \leq Y \land Y \leq X_1 \land X \leq X_1 \land X = Y_1 \land Z \leq Z_1 \mid
Z \geq Y = \mid Z_1 = X_1 \mid [X, Y, Z, X_1, Y_1, Z_1])
\]

The rules of example 2 have the nontrivial critical pair (We omit the global variable store for reasons of clarity):

\[
(X \leq X_1 \land Y \leq Y_1 \mid
\text{imp}(X, Y) \land X_1 \leq 0 \land Y_1 = 1 \land Z_1 = 1 \Rightarrow \mid = \text{or}(X_1, Z_1, Y_1) \land X \leq 0 \land Y \leq 1 \mid [..])
\]

\(^7\) We call critical pairs of the form \((G \mid B = \mid B \mid V)\) trivial.
Trivial critical pairs in example 1 are stemming from unifying the heads of either the first or second rule with themselves. Note that not every critical pair stemming from one rule only is trivial. If the head of a rule contains a constraint symbol more than once, the resulting critical pair may be nontrivial.

Definition 25. A critical pair \((G \mid B_1 \equiv _ \equiv B_2 \mid V)\) is called joinable if \(<B_1, G, V>\) and \(<B_2, G, V>\) are joinable.

Example 4. The first critical pair in example 3 is joinable, if the built-in constraint solver simplifies \(X \leq Y \land Y \leq X\) to the constraint \(X = Y\).

The following lemmas are necessary to prove theorem 33. The proofs for these lemmas can be found in [AFM96]. The first lemma states that the global variables are not touched when testing the variance of two states. Crucial for this lemma is the fact that \(V\) is an ordered set.

Lemma 26. If
\[<C_{U_1}, C_{B_1}, V> \sim <C_{U_2}, C_{B_2}, V>\]
then the variables in \(V\) are not modified by variable renaming.

The following lemma shows that enclosure guarantees that addition of built-in constraints is compatible with update:

Lemma 27. If \((C, C_U \land C_B)\) is enclosed by \(V\) and
\[<C_U, C_B, V> \Rightarrow^* <C'_{U}, C'_{B}, V>\] then
\[<C_U, C_B, V> \Rightarrow^* \text{update}(<C'_{U}, C'_{B} \land C, V>).\]

We apply lemma 27 to prove lemma 28, stating the enclosure conditions under which joinability of states is compatible with addition of built-in constraints.

Lemma 28. If
\[<C_{U_1}, C_{B_1}, V> \Rightarrow^* <C'_{U_1}, C'_{B_1}, V>,\]
\[<C_{U_2}, C_{B_2}, V> \Rightarrow^* <C'_{U_2}, C'_{B_2}, V>,\]
\[<C'_{U_1}, C'_{B_1}, V> \sim <C'_{U_2}, C'_{B_2}, V>,\]
and \((C, C_{U_1} \land C_{B_1})\) and \((C, C_{U_2} \land C_{B_2})\) are enclosed by \(V\), then

a) \[<C_{U_1}, C_{B_1} \land C, V> \Rightarrow^* \text{update}(<C'_{U_1}, C'_{B_1} \land C, V>),\]
\[<C_{U_2}, C_{B_2} \land C, V> \Rightarrow^* \text{update}(<C'_{U_2}, C'_{B_2} \land C, V>),\]
\[\text{update}(<C'_{U_1}, C'_{B_1} \land C, V>) \sim \text{update}(<C'_{U_2}, C'_{B_2} \land C, V>).\]

b) \[<C_{U_1} \land C, C_{B_1}, V> \Rightarrow^* \text{update}(<C'_{U_1} \land C, C'_{B_1}, V>),\]
\[<C_{U_2} \land C, C_{B_2}, V> \Rightarrow^* \text{update}(<C'_{U_2} \land C, C'_{B_2}, V>),\]
\[\text{update}(<C'_{U_1} \land C, C'_{B_1}, V>) \sim \text{update}(<C'_{U_2} \land C, C'_{B_2}, V>).\]
Definition 29. We call two states $<C_{U1}, C_{B1}, V>$ and $<C_{U2}, C_{B2}, V>$ update equivalent iff

$$\text{update}(<C_{U1}, C_{B1}, V>) = \text{update}(<C_{U2}, C_{B2}, V>)$$

Lemma 30. If $<C_{U}, C_{B}, V>$ and $<C'_{U}, C'_{B}, V>$ are update equivalent and $<C_{U}, C_{B}, V> \rightarrow^* S'$, then $<C'_{U}, C'_{B}, V> \rightarrow^* S'$.

Proof. The lemma follows directly from lemma 10.

The next lemma gives a condition when joinability is compatible with changing the global variable store:

Lemma 31. Let $<C_{U1}, C_{B1}, V>$ and $<C_{U2}, C_{B2}, V>$ be joinable. Then the following holds:

a) $<C_{U1}, C_{B1}, V'>$ and $<C_{U2}, C_{B2}, V'>$ are joinable, if V' consists only of variables contained in V.
b) $<C_{U1}, C_{B1}, V \circ V'>$ and $<C_{U2}, C_{B2}, V \circ V'>$ are joinable, if V' contains only fresh variables (\circ denotes concatenation).

The following theorem is an analogy to Newman’s Lemma for term rewriting systems [Pla93] and is proven analogously:

Theorem 32 confluence of CHR programs. If a CHR program is locally confluent and terminating, it is confluent.

Theorem 33 gives a characterization for locally confluent CHR programs. The proof is given in [AFM96] and relies on lemmas 26 to 31.

Theorem 33 local confluence of CHR programs. A terminating CHR program is locally confluent if and only if all its critical pairs are joinable.

The theorem also means that we can decide whether a program (which we do not know is terminating or not) will be confluent in case it is terminating.

Example 5. This example illustrates the case that an unjoinable critical pair is detected. The following CHR program is an implementation of merge/3, i.e. merging two lists into one list as the elements of the input lists arrive. Thus the order of elements in the final list can differ from computation to computation.

merge([], L2, L3) = true | L2 = L3.
merge([M1, M2], M3) = true | M1 = M3.
merge([X|N1], N2, N3) = true | N3 = [X|N], merge(N1, N2, N).
merge([01, [02, 03] = true | 03 = [Y|0], merge(01, 02, 0).

There are 8 critical pairs, 4 of them stemming from different rules.

If merge/3 meets the specification, there is space for nondeterminism that causes non-confluence. Indeed, a look at the critical pairs reveals one critical pair stemming from the third and fourth rule that is not joinable.
\[(X \{ Y \} \neq \emptyset \land X_2 = \{ Y \} \land X_1 \neq \emptyset \mid
X_3 \neq \{ X \} \land \text{merge}(X_1, X_2, X_3) = |\{ \emptyset \} \land \text{merge}(0, 1, 2, 0) | [..])
\]

It can be seen from the unjoinable critical pair above that a state like
<merge([a], [b], L), true, [L]> can either result in putting a before b in the output list L or vice versa, since a Simplify-step can result in differing unjoinable states, depending on which rule is applied. Hence - not surprisingly - merge/3 is not confluent.

4 Correctness and Confluence of CHR Programs

Definition 34. Given a CHR program \(P \), we define the computation equivalence
\(<\rightarrow_p; S_1 \rightarrow_p S_2\> \text{ iff } S_1 \rightarrow_p S_2 \text{ or } S_1 \rightarrow\rightarrow_p S_2 \text{ or } S \rightarrow\rightarrow_p S' \text{ iff there is a sequence } S_1, \ldots, S_n \text{ such that } S_i \rightarrow_p S_i \text{ for all } i \text{. We will write } \leftrightarrow \text{ instead of } \rightarrow_p \text{ and } \leftrightarrow \text{ instead of } \rightarrow_p \text{, if the program } P \text{ is fixed.}

For the sake of simplicity and clarity we prove the following two lemmas only for the special case that all rules are ground-instantiated, without guards and that true and false are the only built-in constraints used. One can extend the proof to full CHR by transforming each rule of a CHR program into (possibly infinitely many) ground-instantiated rules. This includes evaluating the built-in constraints in the guards and bodies.

Lemma 35. If \(P \) is confluent, then <true, true, V> \(\rightarrow_p <true, false, V> \) does not hold.

Proof. We show by induction on \(n \) that there are no states \(S_1, S_2, \ldots, S_{n+1} \) such that

\(<true, true, V> \rightarrow \rightarrow_S \rightarrow T_1 \rightarrow \rightarrow_S \rightarrow T_2 \rightarrow \rightarrow_S \rightarrow \ldots \rightarrow T_{n-1} \rightarrow \rightarrow_S \rightarrow \rightarrow_T \rightarrow <true, false, V>\>

Base case: <true, true, V> \(\rightarrow \rightarrow_S \rightarrow <true, false, V> \) cannot exist, because <true, true, V> and <true, false, V> are different (no variants) final states and \(P \) is confluent.

Induction step: We assume that the induction hypothesis holds for \(n \), i.e. <true, true, V> \(\rightarrow \rightarrow_S \rightarrow T_1 \rightarrow \rightarrow_S \rightarrow T_2 \rightarrow \rightarrow_S \rightarrow \ldots \rightarrow T_{n-1} \rightarrow \rightarrow_S \rightarrow \rightarrow_T \rightarrow <true, false, V> \) doesn't exist. We prove the assertion for \(n+1 \) by contradiction:

We assume that a sequence of the form <true, true, V> \(\rightarrow \rightarrow_S \rightarrow T_1 \rightarrow \rightarrow_S \rightarrow T_2 \rightarrow \rightarrow_S \rightarrow \ldots \rightarrow T_{n-1} \rightarrow \rightarrow_S \rightarrow \rightarrow_T \rightarrow <true, false, V> \) exists. We will lead this assumption to a contradiction.

Since \(P \) is confluent, <true, false, V> and \(T_n \) are joinable. Since <true, false, V> is a final state, there is a computation of \(T_n \) that results in <true, false, V> \((T_n \rightarrow <true, false, V>) \), and hence \(S_n \rightarrow <true, false, V> \). Therefore there is a sequence of the form

\(<true, true, V> \rightarrow \rightarrow_S \rightarrow T_1 \rightarrow \rightarrow_S \rightarrow T_2 \rightarrow \rightarrow_S \rightarrow \ldots \rightarrow \rightarrow_T \rightarrow <true, false, V>\>

which is a contradiction to the induction hypothesis.
Lemma 36. If \(<\text{true}, \text{true}, \mathcal{V}> \iff \rightarrow^* \langle\text{true}, \text{false}, \mathcal{V}\rangle\) does not hold, then \(\mathcal{P} \cup CT\) is consistent.

Proof. We show consistency by defining an interpretation which is a model of \(\mathcal{P}\), and therefore of \(\mathcal{P} \cup CT\).

We define \(I_0 \coloneqq \{\{C_1, \ldots, C_n\}|<C_1 \land \ldots \land C_n, \text{true}, \mathcal{V}> \iff \rightarrow^* \langle\text{true}, \text{true}, \mathcal{V}\rangle\}\). Let be \(I : = (\bigcup I_0)\setminus\{\text{true}\}\ (\bigcup M\) is the union of all members of \(M\). false \(\notin I\), because \(<\text{false, true, \mathcal{V}> \iff \rightarrow^* \langle\text{true, true, \mathcal{V}\rangle}\) does not hold. Therefore \(I\) is a Herbrand interpretation.

We show that \(I \models \mathcal{P}\).

For all formulas \(H_1 \land \ldots \land H_n \rightarrow B_1 \land \ldots \land B_m \in \mathcal{P}\) the following equivalences hold:

\[
\begin{align*}
I \models H_1 \land \ldots \land H_n \\
\text{iff } \{H_1, \ldots, H_n\} \subseteq I \\
\text{iff } <H_1 \land \ldots \land H_n, \text{true}, \mathcal{V}> \iff \rightarrow^* \langle\text{true, true}, \mathcal{V}\rangle \\
\text{iff } <B_1 \land \ldots \land B_m, \text{true}, \mathcal{V}> \iff \rightarrow^* \langle\text{true, true}, \mathcal{V}\rangle \\
\text{iff } \{B_1, \ldots, B_m\} \subseteq I \\
\text{iff } I \models B_1 \land \ldots \land B_m.
\end{align*}
\]

Therefore \(I \models H_1 \land \ldots \land H_n \rightarrow B_1 \land \ldots \land B_m\) for all formulas \(H_1 \land \ldots \land H_n \rightarrow B_1 \land \ldots \land B_m\) in \(\mathcal{P}\).

Theorem 37. If \(P\) is confluent, then \(\mathcal{P} \cup CT\) is consistent.

Proof. The theorem follows directly from the lemmas 35 and 36.

Maier proves the following result for deterministic programs: if any computation sequence terminates in failure, then every (fair) computation sequence terminates in failure. We extend this result on confluent programs and give, compared to theorem 19, a closer relation between the operational and declarative semantics.

Definition 38. A computation is fair iff the following holds:

If a rule can be applied infinitely often to a goal, then it is applied at least once.

Lemma 39. Let \(P\) be a confluent CHR program and \(G\) be a goal which has a finitely failed derivation. Then every fair derivation of \(G\) is finitely failed.

The following theorem is a consequence of the above lemma and theorem 19.

Theorem 40. Let \(P\) be a confluent program and \(G\) be a Goal.

The following are equivalent:

a) \(\mathcal{P}, CT \models \neg \exists G\)

b) \(G\) has a finitely failed computation.

c) every fair computation of \(G\) is finitely failed.
5 Conclusion and Future Work

We introduced the notion of confluence for Constraint Handling Rules (CHR). Confluence guarantees that a CHR program will always compute the same result for a given set of user-defined constraints independent of which rules are applied.

We have given a characterization of confluent CHR programs through joinability of critical pairs, yielding a decidable, syntactically based test for confluence. We have shown that confluence is a sufficient condition for logical correctness of CHR programs. Correctness is an essential property of constraint solvers.

We also gave various soundness and completeness results for CHR programs. Some of these theorems are stronger than what holds for the related families of (concurrent) constraint programming languages due to correctness.

Our approach complements recent work [MO95] that gives confluent, non-standard semantics for CC languages to make them amenable to abstract interpretation and analysis in general, since our confluence test can find out parts of CC programs which are confluent already under the standard semantics.

Current work integrates the two other kinds of CHR rules, the propagation and the simpagation rules, into our condition for confluence. We are also developing a tool in ECLIPS (ECRC Constraint Logic Programming System [Ecl94]) which tests confluence of CHR programs. Preliminary tests show that most existing constraint solvers written in CHR are indeed confluent, but that there are inherently non-confluent solvers (e.g. performing Gaussian elimination), too. We also plan to investigate completion methods to make a non-confluent CHR program confluent.

Acknowledgements

We would like to thank Heribert Schütz and Norbert Eisinger for useful comments on a preliminary version of this paper and Michael Marte for his implementation of a confluence tester.

References

